
Estimation Process of Performance Constraints
during the design of Real-Time & Embedded Systems

by

Ram6n PUIGJANER Abdelmalek BENZEKRI
Univ. de les Illes Balears IRIT - SIERA
Departament de Ci6ncies Univ. Paul Sabatier

Matemb.tiques i lnform&tica 118, Rte. de Narbonne
Cr. de Valldemossa km 7.6 F-31062 Toulouse Cedex

E-07071 Palma phone: (+33).61.55.67.68
e-mail: benzekri @ irit.fr

et al l
Sandra AYACHE

Matra Marconi Space
Space Branch

Rue des Cosmonautes
Z.I. du Palays

F-31400 Toulouse

Abstract

Real Time and Embedded systems always have performance constraints either on response

time or on throughput or on device utilisation rate. With conventional design methods these

constraints are verified until the testing phase. No estimation of the variables on which the

designer has specified some performance constraint is available before.

In the frame of the Esprit II project COMPLEMENT 2, whose aim is to detect and fulfil the

gaps between the different methods and tools that cover the whole design process of a real

time and embedded system, an important effort is invested in including the use of perform-

ance modelling techniques very early in the development life-cycle in order to compute es-

timations of the performance criteria.

The goal of this paper is to present some of the results obtained around the integration of

performance evaluation modelling within design methods:

- the taxonomy of performance requirements to classify the types of performance con-

straints,

- the performance information model to bridge the gap between the design entities and the

performance models, by introducing annotations to be able to run the derived models in or-

der to provide the efficiency estimation of the system.

1. Eric CONQUET, Delphine GAZAL, Omar HJIEJ, Alberto VALDERRUTEN and

Yves RAYNAUD, members of the COMPLEMENT Performance Task Force team.

2. COMPLEMENT is partially funded by the Commission of the European Commu-

nities as an ESPRIT II project (project number 5409)

630

1. Introduction

There are many reasons why a designer may wish to calculate the performance of real time

and embedded systems, as their functionality may be influenced by performance require-

ments. If the quality of service is often specified, it is of the responsibility of the designer to

build a system that meets the non-behavioural requirements. Response times, throughput of

the system or its utilisation rate are some of the non functional criteria that measure the ef-

ficiency of a system. Performance evaluation modelling is an activity that is driven by quan-

titative specifications of the system separate functions. This activity leads to compute the

value of the performance variables in order to verify if the performance constraints are met.

With conventional design methods, this activity is often held at the testing phase. However

a bad design decision can lead to a non acceptable efficiency of the implemented system and

hence oblige the designer to go back to the design phase. To avoid such a costly revision,

the integration of performance evaluation techniques within design methods is an issue to

predict the non behavioural criteria, early in the development life-cycle. This hence can lead

to a better understanding of the system and moreover, both quantitative and qualitative val-

idation of the system may be conducted.

Section 2 of this paper is devoted to the taxonomy of performance constraints versus the

types of systems.

Section 3 deals with the performance information model which aim is to introduce the set

of annotations required to specify quantitatively the design entities attributes related to per-

formance.

Section 4 describes these annotations.

Finally section 5 summarizes the work achieved up to now and points out ongoing activities.

2. Taxonomy of Performance Requirements versus Types of Systems

2.1 Taxonomy of Perfornrance Requirements

The meaning of the term "performance requirement" complies with the PSS-05-0 definition

[ESA 91]:

Performance requirements: These specify numerical values for measurable variables (e.g.

rate, frequency, capacity and speed). Performance requirements may be incorporated in the

quantitative specification of each function, or stated as separate requirements. Qualitative

statements are unacceptable (e.g. replace"quick response" with "response time must be less

than x seconds for y% of the cases with an average response time of less than z seconds").

The performance attributes may be presented as a range of values, for example the:

631

- worst case that is acceptable,

- nominal value to be used for planning,

- best case value, to indicate where growth potential is needed.

Performance requirements should express static or dynamic requirements. Static perform-

ance requirements are generally described as capacity requirements, whereas dynamic per-

formance requirements are denominated as speed requirements.

Capacity is easy to quantify: specify how many end users, nodes in networks... Since capac-

ity requirements often increase in the future, it may also be helpful to indicate how volatile

the stated capacity is likely to be in the future [DAV90].

Dynamic performance requirements are often more difficult to satisfy and to evaluate. Tim-

ing constraints and Probabilistie constraints are the two main dynamic performance re-

quirements classes.

Timing constraints define response time requirements for systems and/or their environment.

A special attention is needed to express correctly such requirements. Four types of timing

constraints can be defined [DAS85]:

- S t i m u l u s - r e s p o n s e also called responsive output constraint which denotes typically a re-

sponse time of a transaction. This constraint can be expressed by a mean value or by some

type of statistical distribution related characteristics.

- R e s p o n s e . r e s p o n s e also called timed output constraint where the constraint is given by the

interval between successive outputs. This interval is frequently constrained to be between a

minimum and a maximum values but can also be defined by some type of statistical distri-

bution related characteristics.

- S t i m u l u s . s t i m u l u s also called throughput input constraint which denotes the interval be-

tween two successive inputs.

- R e s p o n s e - s t i m u l u s also called interactive input constraint where the constraint is given by

the interval between an output and the following input.

The latter two types of timing constraints imply that the system may be able to detect a vi-

olation of timing constraints by the environment or the users, and then perform an alterna-

tive action (generate warnings, error messages...).

The former two types of timing constraints define timing requirement on the system being

specified. They imply that designers of Ihe software may involve any architectural solution

they choose but the software components must be implemented rapidly or slowly enough to

meet the timing requirement.

If the approach is taken to specify the environment and the system as two cooperating proc-

esses, then the timing constraints can be reduced to the two former types. Each process then

632

controls the inputs - or even ignores them - but has to take care of the constraints upon the

responses.To simplify, these constraints can be seen as either duration constraints (time be-

tween two events of same type) or throughput constraints (time between two events of dif-

ferent types).

An example of a duration constraint is the one where a SYSTEM X test node shall send a

TC or generate a stimulus to SAS as a result of a monitoring exception within 10ms (time

between the detection of the exception and the TC packet/command to SAS leaving the test

node). Mandatory attributes expressing the duration constraint are:

�9 Identification of the constrained object (SYSTEM X).

�9 Description of the constrained transaction (send a TC or generate a stimulus to SAS as

a result of a monitoring exception).

�9 Duration limit (absolute value or average vaiue, here 10ms).

�9 Relation between the duration of the transaction and the duration limit (less than,

greater than or between).

Other recommended attributes are:

�9 Events delimitating the constrained transaction (detection of the exception, TC packet/

command to SAS leaving the test node).

�9 Context (specific, any).

An example of a throughput constraint is the one where a SYSTEM X test node shall gen-

erate a maximum number of 64 data delivery messages per second, independent of the other

processing on the node. Mandatory attributes expressing the throughput constraint are:

�9 Identification of the constrained object (SYSTEM X test node).

�9 Kind of throughput (interactive input or timed output, here timed output).

�9 Identification of the kind of "flowing" item (data delivery message).

�9 Description of the constrained transaction (generate data delivery message).

�9 Throughput limit (64 data delivery messages / second).

�9 Kind of throughput constraint (minimum input, exact input, maximum output,

minimum output, exact output).

Other recommended attributes are:

�9 Context (specific, any).

Probabilistic constraints include both resource utilisation rate and throughput absorp-

tion. Resource utilisation rate denotes the use of a system component per time unit. Mini-

mum or maximum values can be given in order to express the limitations on the resources.

An example of a resource utilisation rate constraint is the one where for each SYSTEM Y

computer, the set of processes (applicative processes or system processes) needed for the ex-

633

ecution of crucial and nominal functionalities, excepted tendency analysis, shall not use

more that 50%of the CPU in nominal mode and 70% of the CPU in peak mode, in order to

insure a sufficient evolutivity. Mandatory attributes expressing the resource utilisation rate

constraint are:

�9 Identification of the resource (SYSTEM Y computer).

�9 Rate limit (absolute or average value, interval).

�9 Relation between resource utilization rate and rate limit (less than or greater than).

Other recommended attributes are:

�9 Context (specific, any).

�9 Constraint origin (rigorous level of satisfaction: evolutivity, or performance). In the

ease of evolutivity origin, it is necessary to take into account that for some resources

the service time is a function of the workload (e.g. the disks have a load dependent

service time due to the time used to solve the contention in the control unit); in

consequence, in these cases the capacity of growth is not directly proportional to the

increase of the workload.

Throughput absorption constraint is used to express the capacity of a system to absorb the

throughput input and is measured as the allowed loss rate. An example of a throughput ab-

sorption constraint is the one where an ATM switch (Broadband ISDN) is to be designed so

that the throughput of 1 million cells per second be allowed to have a maximum cell loss of

10 "9.Mandatory attributes expressing the throughput absorption constraint are:

�9 Identification of the constrained object (ATM switch).

�9 Description of the constrained transaction (ATM cell processing).

�9 Throughput absorption limit (upper limit expressing the constraint tolerance) (the loss

of one cell over a billion in average).

Other recommended attributes are:

�9 Starting event of the transaction (the front wave of the cell).

�9 Context (specific, any).

Our purpose elaborating this taxonomy of performance requirements was to reach two dif-

ferent goals:

�9 The first one is to provide guidelines for the production of "good" performance

requirements.

�9 The second one is to provide a starting point for the study of traceability of performance

requirements onto design elements: it is easier to identify elements of the design

concerned with performance when information on the kind of performance requirement

is available.

634

2.2 Types of System Transactions

The specification of a system's performance defines the temporal behaviour that the system

must satisfy under a certain workload scenario. Such specification is compound of a descrip-

tion of the environment where the system is to be run -also called the scenario- plus a set of

timing and probabilistic constraints on the behaviour of the system. The scenario should de-

scribe both the workload of the system plus the hardware constraints, if any, imposed to the

designer, whereas timing and probabilistic constraints specify both responsiveness of the

system and its resources utilisation rate [UIB77].

System transactions form part of system requirements. They constitute a valuable means of

description of intended behaviour of the system. It is usual to classify system requirements

into two groups: functional and non-functional. One of the major problems with functional

system requirement is that they tend to define system actions only locally. On the other hand,

non-functional requirements (the abilities and concrete constraints) are frequently wide-

spread in their effect. System transactions represent the way of bringing these two disparate

views into unison and provide a better focus to ensure that the user requirements are prop-

erly taken into account by the requirements concerning the system under development

[TSG 11].

The usual way of obtaining the description of overall system behaviour consists of the def-

inition of a series of input events together with the system actions related to those events. A

characterisation of system transactions depending on the constraints upon these events may

guide the designer tackling the performance requirements.

Throughput input transaction systems (e.g. a system processing inputs coming from an ex-

ternal source) must take the inputs at the rate the environment provides them. The control is

outside of the scope of the target system. The rate of the information flow may be absolutely

determined or be stochastic, with a known or assumed distribution of arrival times. The most

usual arrival patterns are at constant intervals or as a Poisson distribution, although other

distribution laws sometimes occur.

Interactive input transaction systems (e.g. polling systems), oblige the environment to wait

for a system output before generating a new input. Thus after an input, there will be no sub-

sequent input until the appropriate output has been given by the target system, allowing it to

control the rate at which transactions arrive. The interval between the previous output and

the subsequent input may be absolutely determined or stochastic.

Timed output transaction systems (e.g. unsolicited and periodical actions), must send events

to the environment at a pre-established time intervals. The output rate should be specified

with a tolerance margin.

635

Responsive output transaction systems (e.g. interactive terminal system), must send events

to the environment at times within a specified period or delay after some input (the time nec-

essary to process the input) and the environment sends a new input some time (thinking

time) after the reception of the output. The bounds to the delay are not usually absolute but

are determined by a distribution law.

3. T h e P e r f o r m a n c e I n f o r m a t i o n M o d e l

3.1 The COMPLEMENT a p p r o a c h

The COMPLEMENT approach to the investigation of real-time development methods is,

firstly, to determine the information which must be created (and recorded) for RT&E sys-

tems and secondly to compare this with the information which can be created and recorded

by the methods and tools under investigation [TSG22].

The information model is the total sum of the information which must be generated and/or

collected during the life of any project to develop a computer based system. The requirement

model contains all information about what the system is intended to do. The design model

contains all the information about how the design is intended to satisfy the requirements.

The implementation contains all the information about how the implementation achieves the

intentions of the design. The technical management model contains all the information on

the processes used to develop the requirement, the design and the implementation.

The information model in COMPLEMENT has to express various desired characteristics of

both the target RT&E system and the process by which it is developed. In order to achieve

this goal, and to facilitate the integration of the performance modelling activity within the

life-cycle, the Performance Information Model has been elaborated. The aims are to repre-

sent entities used in the different kinds of activities related to performance:

- the performance constraints expression,

- the modelling and design assessment,

- the performance variable measurement.

3.2 Conventions

As we want to show information entities and relationships, we describe the information

models using an entity-relationship approach, with our own conventions.

Note all examples given below are taken from Figure 1.

Convention 1: Entity A consists of two or more sub-entities B, C... e.g. the Performance Con-

straint entity consists of Duration Constraint, Throughput Constraint and Utilisation Rate

Constraint entities.

636

Convention 2: Entity A has B as an attribute; e.g. Design Component entity has Perform-

ante Annotations as attribute.

Convention 3: EntityA "Xes" the entity B; e.g. Performance Model produces Model Result.

Convention 4: Two (or more) relationships having the same label and relating the same en-

tity A to other entities B and C can be described by joining or splitting arrows; e.g. Meas-

urement Result validates Performance Model and Model Result (which is produced by the

Performance Model).

Convention 5: Relationship X has A as an attribute; e.g. Scenario Includes System Trans-

action with Transaction Timing Parameter as an attribute.

3.3 Overview of tile Performance Information Model

A top level view of the model is represented in Figurel.

The specification of Performance Requirements requires the specification of:

�9 System utilization Scenarios

We consider that a Scenario is a list of pairs <System Transaction, Transaction Tim-

ing Parameter> where the transaction timing parameter is a "user thinking time" for a

responsive output system or an activation rate (of transaction start events) for through-

put input systems.

�9 Performance Constraints

The two types of dynamic performance constraints Timing Constraints and Utiliza-

tion Rate Constraints identified in the taxonomy of performance requirements are rep-

resented. The relationship refers to between a Performance Constraint and a Scenario

recalls that it is important to specify the context of applicability of a performance con-

straint.

�9 Performance Measurement Requirements and Performance Measurement Means

(for taking into account the need for performance measurements since system

specification)

Performance Measurement Means express how performance measurements will be

done. A Performance Measurement Requirement expresses a performance variable to

be measured and how it will be measured. As this performance variable is expressed in

a performance constraint, we say that a Performance Constraint defines a Performance

Measurement Requirement. Such a requirement specifies a Measurement Check to be

done after system implementation and refers to Performance Measurement Means.

Requirements Elements to be considered for the specification of performance aspects are:

�9 System Transactions

Pe
rf

or
m

an
ce

R

eq
ui

re
m

en
ts

_D

es
ig

n
Pe

rf
or

m
an

ce

Ev
alu

ati
on

Re

qu
ire

m
en

ts
v.i

em
en

ts
r.i

em
en

ts
El

em
en

ts

l
~

o
n

tim

in
g p

ar
am

ete
r

]
t~

~
'-

"~
__

Sc

en
ar

io

"
..9

1
ex

ec
ut

es

~e
fe

rs
 tJo

 m
cm

ae
s

~
Tr

a~
Sa

at~
ti~

..S

ys
tem

.
in

-
I

Tg
oe

s th
ro

ug
h

i ra
ns

ac
uo

n
Pe

rfo
rm

an
ce

Co

ns
tra

in
t

D
ur

ati
on

]

Co
ns

tra
in

t

Pe
rfo

rm
an

ce

Im
ol

em
en

tat
io

n
"E

lem
en

ts

ca
lib

ra
tes

va
lid

ate
s

M
 Sy

ste
m

ea

su
re

m
en

t
El

em
en

ts

M
ea

su
re

m
en

t
Pe

rfo
rm

an
ce

M

od
el

In
pu

t

/le
as

~r
er

rle
nt

R

es
ul

t

M
ea

su
red

]

D
ur

ati
on

M
ea

su
red

]

Th
ro

ug
hp

ut

M
ea

su
red

 1

U
til

iza
tio

n
Ra

te

[r~

] .I
[

U
til

iza
tio

n
]

Ra
te

Co
ns

tra
in

t
.,~

I R
eq

ui
re

m
en

t
re

fe
rs

 to

D
es

ig
n

Co
m

po
ne

nt

Pe
rfo

rm
an

ce

am
no

tat
lo

ns
 3

pr
ov

id
es

 in
pu

ts f
or

 ev
alu

ati
ng

 ve
rif

ica
tio

n o
f

M
od

el

pr
od

uc
es

 L

l~
es

ul
t

va
lid

ate
s sy

ste
m

 w
.r.

t.

Pe
rfo

rm
an

ce

M
ea

su
re

m
en

t M
ea

ns

u
se

s

Ex
ec

ut
ab

le
Bu

ilt

~
pr

od
uc

es

_ ea
 m n

t
sp

ec
ifi

es

FI
GU

RE
 1:

CO
M

PL
EM

EN
T p

er
fo

rm
an

ce
 in

fo
rm

ati
on

 m
od

el (
to

p l
ev

el
 vi

ew
)

L
O

""

4

638

The relationship includes (Scenario ---> System Transaction) and its attribute has been

introduced in order to allow the definition of scenarios as a list of pairs <System Trans-

action, Transaction Timing Parameter>. The relationship constrains (Performance

Constraint ---> System Transaction) recalls that it is important to express the con-

strained transaction when specifying a Duration or a Throughput Constraint.

Design Elements to be considered for performance evaluation are:

�9 Design Components

We have represented Performance Annotations to be associated with design compo-

nents as attributes of Design Components. These annotations are introduced in section

4.

The relationship constrains establishes links between Performance Constraints and

sets of design components belonging to the same hierarchical level in a design hierar-

chy. It aims to trace during design the software or hardware design components which

are constrained by the constraint.

The relationship impacts establishes links between Performance Constraints and soft-

ware atomic components of the lowest level of a hierarchical design. It aims to deter-

mine precisely the software atomic components which will be impacted by the

constraint. That means that a change in the design of such a component may impact on

the fact that the constraint is verified (or not verified). The main interest of impacts

links is the identification of software components to be modelled.

To illustrate the difference between the two relationships, we can say that an Utilization

Rate Constraint constrains a hardware component and impacts software components.

�9 Transaction Paths

This entity represents how design components implement system transactions. We can

say that a Transaction Path goes through Design Components. As a transaction path is

a design element, we have chosen to say that a System Transaction is designed in a

Transaction Path.

Entities related to Performance Evaluation are:

�9 The Performance Model itself in which some Design Components (considered as

sensible from a performance point of view) are modelled. The relationship is an input

of (Scenario ---> Performance Model) expresses that a Performance Model has to be

generated for each system utilization scenario. The relationship executes (Performance

Model ---> System Transaction) expresses that during model solving, transactions

belonging to the input scenario are executed.

�9 Model Result

639

This entity aims to represent results produced by the resolution of a Performance Mod-

el. Model Results provide inputs for evaluating verification of Performance Con-

straints.

The lmplenlentation Element to be considered for performance measurement is the Exe-

cutable Built.

Entities related to System Measurement are:

�9 Measurement Cheek

It aims to represent quantitative checks. A Measurement Check uses Performance

Measurement Means.

�9 Measurement Result

It aims to represent results produced by Measurement Checks. The three kinds of

Measurement Results, Measured Duration, Measured Throughput and Measured

Utilization Rate are represented.

The relationship validates system w.r.t. (Measurement Result ---> Performance Con-

straint) expresses that some measurement results corresponding to measurements of

variables expressed in performance constraints are useful for system validation.

The relationship validates (Measurement Result, Model Result ---> Performance Mod-

el) expresses that the comparison between a measurement result (measuring a set of

performance variables) and a model result (estimating the same variables) is useful for

model validation.

�9 Measurement Performa,lce Model Inputs

They are measurements of model inputs (e.g. Transaction Timing Parameters, operation

durations, hardware component characteristics...). These measurements are useful for

performance model calibratio,L Calibration consists in replacing values of perform-

ance models inputs (which are estimated before system implementation) by values

measured during and after system implementation. Exceptionally, part of the calibra-

tion process can be done before system implementation when some systems compo-

nents are reused. The calibration activity is a cornerstone of a good modelling process

because it allows reuse of models which are modelling reusable components.

4. P e r f o r m a n c e I n f o r m a t i o n A n n o t a t i o n

4.1 Levels of Performance Models

During the design, as the system is not yet available, the way to estimate whether or not the

performance constraints are met is to build performance models.

640

The results of these models should allow the designers to select among several design op-

tions taking into account the estimated performance of each one.

Two levels of performance models are being explored:

�9 the logical performance model built from the system logical design that should allow

estimations of response times and throughputs to be obtained.

�9 the physical performance model built from the system physical design (the

implementation of the previous one taking into account the geographical distribution of

the hardware resources and the physical implementation of software components in

hardware systems) that should allow estimations of response times, throughputs and

t:tilization rates to be obtained.

Classes of
Transactions

Profile
deft.ned by
visits to
logical
entities

Annotated Logical Design

Logical ... ~
t~ntlty

Mapped to
Described by

High Level
Performance Model

Results : Throughputs
and Response Times

I Detailed by

Classes of
Transactions

Profile
deft.ned by
visits to
physical
entities Annotated Physical Design

Low Level
Performance Model

Results : Utilization
Rates, Throughputs
and Response-Times

FIGURE 2: Levels of Performance Models

From the design information it is possible to deduce the model but to run it, it is necessary

to annotate the design with supplementary information concerning the estimations of the el-

ementary times to execute the access to the logical and/or physical design entities. The per-

formance model allows the computation of the delays generated by the logical lockings and

by the resource use conflicts by means of analytical or simulation techniques.

641

4.2 Definitions

We assume that the design of a RT & E System is an iterative process. In this process (see

the Figure 2), we identify two levels:

�9 the logical design,

�9 the physical design.

In the first one a set of logical entities (like access to a Data Base, send a message, etc.), that

we shall call operations, is defined.

From the other hand we shall define a set of classes of active entities, that we shall call trans-

actions, that are executed by a sequential access to different operations. During this execu-

tion some kind of synchronization among several transactions can appear (locking the use

of an operation, fork and join operations, etc.) and this synchronization will be the main

source of execution delays.

To execute these operations, they must be mapped on to physical entities or devices (CPU,

disks, specific types of networks, etc.) taking into account their capacity and their geograph-

ical distribution; this physical implementation constitutes the physical design of the RT & E

System. Once this implementation has been done, each one of the transaction classes can be

described by a sequence of accesses to these physical entities. When we look at the system

at this level, the delays are mainly due to the waiting queues when several transactions try

to use simultaneously the same device.

From the transaction profile at the logical level and the mapping of the logical design onto

the physical design, it is possible to deduce the transaction profile for the physical level.

However, in order to have clearer models it can be useful to collapse several successive op-

erations in one if there are no synchronization relations among them or with other transac-

tions and/or operations.

A set of different transactions can be included in the same class if they have a similar path

through the entities constituting the design. A transaction is bounded by its starting and end-

ing events.

The scenarios defining the RT & E System workload will be characterized by different mix-

tures of transaction classes.

From both levels of design, performance models can be derived in order to estimate, wheth-

er the performance constraints established in the requirements analysis, are met. From the

Logical Design can be derived the High Level Performance Model and from the Physical

Design, the Low Level Performance Model. However, with the strict information contained

in both designs it is just possible to build the model but not to run it because of lack of nu-

merical data. This information must be included in the design by means of annotations in-

642

eluding the necessary data.

In all cases it is assumed that from the design description it is possible to build a model de-

scribing the behaviour of the system. However, to run it to obtain performance estimations,

it is necessary to include by annotation some supplementary information in the design.

As the performance constraints are always related to time (response time; utilization rate:

proportion of time that a device is used; throughput: quantity of load executed per unit time),

the information to be annotated will be either directly time or other magnitudes allowing the

computation of times.

4.3 Information to be Annotated

In this section the information necessary to run the model will be described. To run a per-

formance model there are three kinds of informations necessary describing:

�9 each one of the logical or physical entities constituting the system,

�9 each one of the transaction classes to be executed in the system,

�9 the workload scenario.

Obviously there will be some differences on the information to annotate depending on the

level of design considered.

4.3.1 Entities

4.3.1.1. Logical Design

It is assumed that the logical design gives information concerning the use of each operation

and that this use can be:

�9 by just one transaction,

�9 by a finite number of transactions simultaneously,

�9 by as many simultaneous transactions as necessary.

In all cases, it is necessary to annotate the time to execute the operation or the rate at which

the quantity of service asked by the transaction (e. g. the length of a message in a commu-

nication system) allowing to estimate the service time. Also it is necessary to annotate all

other informations concerning the internal behaviour of the logical entity as buffer size, al-

gorithm used by the logical entity, internal synchronization procedures, etc.

In addition, in cases 2 and 3, the execution time or the rate can be load dependent, that is

either the execution time or the rate can vary according to the total number of transactions

executing simultaneously the operation.

643

4.3.1.2. Physical Design

In this level of design, the physical entities to be considered are CPU's, disks, communica-

tion systems, etc. However the quantity of information to be annotated is depending on how

critical is the entity considered in the system performance. In consequence, alternatives in

the information and default hypothesis are proposed for some devices.

The information to be annotated concerns the hardware and software characteristics of the

components of the system:

CPU: Number of processing units; Scheduling discipline; Capacity of each processor; etc.

Disks: Policy of the control unit to solve the access conflicts. Rotational speed. If the disks

are sectorized, number of sectors per track, otherwise statistical distribution of the number

of registers per track. If the service time of each disk is considered independent of the load,

service time distribution. If it is necessary to consider the physical structure and connection

of the disk subsystems, it is necessary to annotate: Number of disks in each subsystem and

connection path. Statistical distribution and/or characteristics of the seek time. If the control

unit has a subsidiary cache memory, read and write policies and hit rates.

Memory: In present systems this element is not normally a critical one and frequently can

be ignored in the performance model. If it is necessary to consider the memory, the infor-

mation to be annotated concerns mainly the memory management policy.

Operating System: It is necessary to define the scheduling policies used by it in managing

all the queues organized in the system. From the quantitative point of view, it is necessary

to describe the overhead resource consumption.

Communication System: For this device it is very difficult to standardize the information

to be annotated due to the large variety of configurations and solutions that this element can

have. In consequence the information to be annotated can be very different depending on

the type of solution adopted in this subsystem. Informations to be annotated are, for exam-

ple: Type of communication media (private line or leased line or switched line). Transfer

rate and transfer policy. Topology of the network and the terminals connection. Fixed or

adaptive routing. If the communication media is a public packet switched network: the

agreed response time. If the communication media is ofethemet type: cable length, nominal

rate, number of nodes connected and retransmission policy. If the communication media is

of token ring type: the cable length, nominal rate, number of stations connected and delay

in bits per station.

4.3.2 Transactions

Although most of the informations needed to build the performance model come from the

644

strict design information, there are some supplementary informations to be annotated in or-

der to clarify the model building and to run the model.

As it has been said, to model the performance o fa RT & E System it is convenient to group

the transactions in classes with similar characteristics from the point of view o fits behaviour

(similar sequence of accesses to logical entities or similar resource consumption). Also it is

not necessary to consider all the transactions but only those being representatives of the sys-

tem workload.

4.3.2.1. Logical Design

For each class of transactions it is necessary to annotate:

�9 The start event and how these events are generated (throughput input or interactive

input coming from the environment; responsive output or timed output of another

system component).

�9 The estimated logical profile, that is the sequence of visits to the different operations to

complete the execution. The service asked to each one can be depending on some

parameter associated to the transaction or not. In the first case it is necessary to annotate

the corresponding parameter measured in terms of time or any other unit able to

estimate the service time. This service time (or parameter allowing its computation) can

be defined by a fixed quantity or by a statistical distribution with its characteristics. In

order to reduce the number of transaction classes the logical profile can be described by

means of routing probabilities, that are the probabilities to access an operation after

exiting from another one.

�9 The synchronization relations between each transaction class with other transaction

classes or events in the system (locking the use of an operation, fork and join

operations, etc.).

�9 The end event.

4.3.2.2. Physical Design

For each class of transactions it is necessary to annotate:

�9 The start event and how these events are generated (throughput input or interactive

input coming from the environment; responsive output or timed output of another

system component).

�9 The estimated physical profile, that is the sequence of visits to the different devices to

complete the execution. The service asked to each one can be depending on some

parameter associated to the transaction or not. In the first case it is necessary to annotate

the corresponding parameter measured in terms of time or any other unit able to

645

estimate the service time. This service time (or parameter allowing its computation) can

be defined by a fixed quantity or by an statistical distribution with its characteristics. In

order to reduce the number of transaction classes the physical profile can be described

by means of routing probabilities, that are the probabilities to access a physical entity

after exiting from another one.

�9 The synchronization relations between each transaction class with other transaction

classes or events in the system (locking the use of a resource, fork and join operations,

etc.).

�9 The end event.

4.3.3 Working Scenarios

The goal of this annotation is to define the workload submitted to the system establishing

the mix of transaction classes and their timing.

For each class of throughput input class of transactions it is necessary to annotate the statis-

tical distribution of the interarrival time and its characteristics.

For each class of interactive input class of transactions it is necessary to annotate the statis-

tical distribution of the time between successive outputs and inputs and its characteristics.

For each class of responsive output class of transactions it is necessary to annotate the sta-

tistical distribution of the time between successive outputs and inputs (thinking time) and its

characteristics. Also it is necessary to annotate the number of simultaneous users generating

each class of transactions.

For each class of timed output class of transactions it is necessary to annotate the statistical

distribution of the time between successive events starting the transaction to be output and

the characteristics of the statistical distribution.

5. G u i d e l i n e s f o r b u i l d i n g P e r f o r m a n c e m o d e l s

When a performance model of a design is to be built, two kinds of problems appear:

- the model itself to be used,

- the data needed to run the model to obtain the performance estimations.

In the following sections several rules and recommendations are given in order to ease the

model building process.

5.1 For the Model Selection and Construction

Recommendations:

To have a library of generic parameterized models of frequently used devices or subsystems:

646

�9 For each device or subsystem it is convenient to have several models with different

level of detail and oriented to either analytical or simulation modelling.

�9 The parameters are to be chosen as close as possible to physical quantities describing

the device and that can be found in its description.

~ These generic models can represent either elementary devices (CPU, disk, ethernet,

etc.) or subsystems (disk subsystem with its control unit) or computer systems

(elements of computer series); obviously the models of each level can be built with the

models of the previous levels.

�9 It is convenient that the models of all levels have been tested in order to debug them as

well as to match their correctness with the corresponding devices or subsystems.

To have a library of basic parameterized models of design elements:

�9 For each device or subsystem is convenient to have several models with different level

of detail and oriented to either analytical or simulation modelling.

�9 The parameters are to be chosen as close as possible of physical quantities describing

it and that can be found in its description.

�9 Associated with the library it is convenient to have a set of rules to help in the

simplification of models obtained from the juxtaposition of the basic models of design

elements (collapsing of several elements, replacing by simpler models, etc.) in order to

do not get too huge models.

�9 It is convenient that the models of all levels have been tested in order to debug them as

well as to match their correctness with the corresponding design elements.

To have a library of generic parameterized models of frequently used operating systems:

�9 For each operating system it is convenient to have several models with different level

of detail and oriented to either analytical or simulation modelling.

�9 The parameters are to be chosen as close as possible to the accessible parameters of the

operating system and that can be found in its description.

�9 These generic models can represent the operating systems either as an increment of the

resource consumption of the workload programs or as an independent task using the

system resources according to the instantaneous system load.

�9 It is convenient that the models of all levels have been tested in order to debug them as

well as to match their correctness with the corresponding devices or subsystems.

Rules:

- The accuracy of the model results is more sensible to the data than to the model accuracy.

- For a first exploration of the system behaviour it is convenient to use an analytical model

even if it is necessary to force some hypothesis.

647

- For equivalent accuracy models it is more preferable an analytical one than a simulation

one due to the shorter computing and debugging times.

5.2 For tile Des ign Annotat ion

Recommendations:

To have a data base of reasonable values (resource consumption, probabilities, distribution

laws, characteristics of operating systems, etc.) used in previous models of real systems duly

matched with the measurements of the implemented system; in this way the designer has

some help in the process of design annotation.

�9 For each filed value it is convenient to have its history, say the series of estimated

values and the measured one as well as some indication of the environment in which

the value has been estimated or measured.

�9 The data base must include some intelligent rules or accessing paths in order to ease the

selection of the corresponding value.

To have a tool allowing the measurement of data corresponding to the implemented ele-

ments to substitute the estimated values and to have a better performance estimation as long

as the different elements are implemented.

Rules:

- If no previous estimation exists, it is convenient to explore the performance of the system

when the variable gets a reasonable range of values.

- It is better a bad estimation than no estimation.

6. C o n c l u s i o n

Performance constraints are of high criticism in RT&E systems world. The performance

evaluation modelling activity is a mean by which systems designers validate quantitatively

their work. However this activity is often taken very late in the software life-cycle and may

lead to costly revisions if the performance constraints are not met.

The COMPLEMENT Performance Task Force team is integrating this activity within con-

ventional design methods in order to tackle both functional and performance requirements,

in an efficient manner. This integration needed to characterise performance constraints to

make them familiar to the designers.

The Performance Information Model introduces annotations of design entities. A new dis-

cipline is required from the designers: the estimation of the likely performance criteria.

However, in return performance evaluation modelling and analysis provide a great help

when validating designs.

648

Feasibility studies have been realised in the COMPLEMENT framework:

�9 integration of annotated LOTOS and Queueing Networks [VHBG92] [IRI37] [IRI39],

�9 derivation of performance models from HOOD annotated descriptions [MAT33],

�9 building generic performance models for the MASCOT design method [JLP92]

[PIA92].

The estimation process of performance constraints during the design of RT&E systems is

only the first step in the integration approach. The next step is to define transformation rules

from annotated method specific designs to model building languages, in order to automate

as much as possible the modelling activity.

o

[DAS85]

[DAV90]

[ESA91]
[IRI37]

[IRI39]

[JLP92]

[MAT33]

[PLJ921

[TSG11]
[UIB77]

[TSG22]

[VHBG92]

B i b l i o g r a p h y

B. Dasarathy, 1Tmhlg Constraints of Real-TTme Systems: Constructs for Ex-
pressing them, Methods of Validating them, IEEE Trans. on Software Engi-
neering, Vol. I1, No. 1 (January 1985), pp. 80-86.

A. M. Davis, Software Requirenzents - Analysis and Specifications, Prentice-
Hail, 1990, 516 pp.
ESA PSS-05-0 Standard Issue 2 (February 1991).
First Approach to annotate METALS LOTOS Specifications, by Y. Douma, O.
Hjiej, A. Valderruten, COMPLEMENT report, April 1992.
Queueing Network Models derived from annotated METALS LOTOS Specifi-
cations, by A. Valderruten, O. Hjiej, COMPLEMENT report, April 1992.
K. Jackson, A. Llamosl, R. Pui~aner, Performance Models under the Mascot
Method. Proceedings of the Software Engineering Research Forum SERF'92.
Melbourne Florida 1992. Editor: R. Rodriguez.
Feasibility Study of HOOD annotations, by S. Ayache, E. Conquet, COM-
PLEMENT report, Sept. 1991.
R. Pui~aner, A. Llamosl, K. Jackson, Generic Performance Models of the Ba-
sic Structures of the MASCOT Design Method, University of the Balearie Is-
lands, Spain, 1992.
COMPLEMENT Glossary, COMPLEMENT members, January 1992.
R.Pui~aner, A. LlamosL Performance Annotations for MASCOT, COMPLE-
MENT report, Dec. 1992.
Information Model for RT&E Systems, COMPLEMENT Task 1A team, De-
cember 1991.
A. Valderruten, O. Hjiej, A. Benzekri, D. Gazal, Deriving Queueing Networks
Performance Models front Annotated LOTOS Specifications, 6th Int. Conf. on
Modelling Techniques and Tools for Performance Evaluation, Edinburgh,
16th to 18th September, 1992.

