
Schema Integration in Object-Oriented
Databases*

Christiaan Thieme and Arno Siebes

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
{ct,arno}@cwi.nl

Abstract

This paper presents a formal approach to support schema integration in object-
oriented databases. The basis of the approach is a subclass order, which is de-
fined in terms of a weak subtype relation on underlying types of classes and a
subfunction relation on functional forms of methods. The subclass order induces
an equivalence relation and a join operator, which are used to identify and fac-
torise class hierarchies, leading to a natural framework for integration of class
hierarchies. The novelty of this paper is that both attributes and methods are
used to compare classes, and that behaviour of methods is used to compare at-
tributes, resulting in a more semantic approach towards schema integration in
object-oriented databases.

1 I n t r o d u c t i o n

Database design is a complex, iterative process consisting of several activities, including
conceptual design and implementation design [16]. Conceptual design concerns itself
with the description of diverse users' information requirements and the integration
of these requirements into a DBMS-independent database schema. Implementation
design uses the results of the conceptual design phase and the processing requirements
as input to produce a DBMS-processible database schema. Due to its complexity,
database design is an error-prone process. Therefore, it has to be structured by a
design methodology [15], which includes guidelines, techniques, methods, and tools to
support the activities of the designer.

This paper addresses the problem of identifying and factorising classes in class
hierarchies, which form the static part of object-oriented database schemas [2, 14, 3, 12].
A solution to this problem can be used to support integration of different user views
in the conceptual design phase of an object-oriented design methodology [11], schema
normalisation in the implementation design phase, or schema integration in general,
e.g., in multidatabase systems.

An overview of methods for schema integration in relational and semantic databases
can be found in [5]. These methods intend to integrate entities and relationships that

*This research is partly funded by the Dutch Organisation for Scientific Research through NFLgrant
NF74.

55

represent the same concept in the application domain. First, naming conflicts, such
as homonyms and synonyms, and structural conflicts such as type inconsistencies, in-
tegrity constraint conflicts, redundancy conflicts, and differences in abstraction levels
are investigated. Subsequently, the conflicts are resolved by renaming, type transfor-
mations, restriction, redundancy elimination, and aggregation. Some of the methods
create generalisation hierarchies to combine entities. Finally, entities and relationships
are merged.

Normalisation of class hierarchies is the subject of [6], in which Bergstein and Lieber-
herr give an algorithm for the construction of class hierarchies from examples and the
optimisation of the resulting class hierarchies by reducing the number of attributes
and subclass relationships. However, normalisation of classes is restricted in two ways.
Firstly, only attributes are considered, methods are ignored. Secondly, attributes are
compared by name and type only (i.e., syntactic), not by meaning (i.e., semantic). In
[9], Fankhanser, Kracker, and Neuhold present an approach to determine the seman-
tic similarity of classes using probabilistic knowledge on terminological relationships
between classes.

This paper presents a formal approach to integrate class hierarchies on the basis
of syntactic and semantic similarity of classes. First, classes are described in terms
of types and functions, based on CardeUi's work on subtyping [7]. Subsequently, a
synthetic subclass order is introduced, which induces an equivalence relation on classes.
The subclass order requires attributes to have equivalent types and to play the same
roles in the methods, and methods to be extensionally equal. This leads to a natural
framework for integration of class hierarchies, where classes are identified using the
equivalence relation and factorised using a join operator w.r.t, the subclass order.

2 Class Hierarchies

In this section, we introduce class hierarchies, similar to class hierarchies in Galileo [2],
Goblin [12], O2 [14], and TM/FM [3], and show how to flatten class hierarchies.

Informally, a class hierarchy is a set of classes. A class has a name, a set of super-
classes, a set of attributes, and a set of methods. An attribute has a name and a type,
which can be a basic, set, or record type, or a class. Hence, classes can be recursive.
An update method has a name, a list of parameters and a body which consists of
simple assignments. The formal syntax definition of class hierarchies can be found in
Appendix A.

A class hierarchy is well-defined if it satisfies two constraints. The first constraint
is that classes have a unique name and only refer to classes in the class hierarchy. The
second constraint is that attributes and methods (inherited attributes and methods
included) have a unique name within their class and methods are well-typed. The
formal definition of well-typed methods can be found in Appendix B.

E x a m p l e 1. The following well-defined class hierarchy introduces a class 'Person',
which is recursive, a class 'Employee', which is a subclass of 'Person', and a class 'Date':

Class Person
A t t r i b u t e s

name : string

56

dob : Date
mother : Person

M e t h o d s
change (s:string) = name := s

Endc las s
Class Employee I sa Person
A t t r i b u t e s

salary : int
company : string

M e t h o d s
increase (i:int) = salary := salary+i

Ende lass
Class Date
A t t r i b u t e s

day : int
month : int
year : int

Endclass .

[]

The attributes and methods of class 'Person' are also attributes and methods of class
'Employee'. This leads to the notion of flattened class hierarchies.

Let H be a class hierarchy and C be a class in H. The flattened form of C, denoted
by fiat(C), is obtained by accumulating the attributes and methods of all superclasses
of C.

E x a m p l e 2. Let C~ be class 'Employee' of Example 1. The flattened form of Ce is
given by:

Class Employee
A t t r i b u t e s

name : string
dob : Date
mother : Person
salary : int
company : string

M e t h o d s
change (s:string) -- name := s
increase (i:int) = salary := salary+i

Endc l a s s

or, more concisely, by:

(Employee,
{name:string, dob:Date, mother:Person, salary:int, company:string},
{change (s:string) = name := s, increase (i:int) = salary := salary+i}).

57

The flattened class hierarchy corresponding to H, denoted by fiat(H), is obtained by
replacing every class by its flattened form:

flat(H) = {fiat(C) I C e g}.

Note that the subclass (Isa) relation is not explicitly preserved by flattening. In Section
4, we will define a synthetic subclass relation on flattened classes.

3 T y p e s a n d F u n c t i o n s

In this section, we describe classes in terms of types and functions, similar to TM/FM
[4, 8], which is based on CardeUi's work on subtyping [7]. First, we introduce the
underlying type of a class, define structural equality for underlying types, and briefly
mention an order on underlying types. Subsequently, we introduce the functional form
of a method and define extensional equality for functional forms. Underlying types and
functional forms will be used to define class equivalence.

3.1 U n d e r l y i n g T y p e s

Every class in a well-defined class hierarchy corresponds to an underlying type and a
set of functional forms, one for each of its methods. The underlying type describes the
structure of the class (i.e., the structure of the objects in its extensions). Let H be
a well-defined class hierarchy and C be a class in fiat(H). Furthermore, let c be the
name and {al : T1, . . . , ak : Tk} be the attributes of class C. The underlying type of
C, denoted by type(C), is defined as:

type(C) = < a l : type(T1),.. ",ak : type(Tk) >,

where

type(d) = T type(D) if D = (d, A, M) 6 fiat(H),
type(T) = T if T 6 {bool, int, string},
type({v}) = {type(U)},
type(< Vx : T1, . . . , l,, : V,, >) = < 11 : type(Vx), . . . , l,~ : type(U,,) >.

That is, the underlying type of a class is an aggregation of its attributes, where pointer
types are used to cope with attributes that refer to classes. Note that, if a class is
recursive, then its underlying type is recursive [13].

Example 3. Let Cp be class 'Person' of Example 1. The underlying type of fiat(Cp)
is given by:

rp =<name:string, dob:T<day:int,month:int,year:int>, mother:T rp >,

which is a recursive type. []

A natural notion of type equivalence is structural equality [1]. Two types are struc-
turally equal if they are either the same basic type or are formed by applying the same
constructor to structurally equal types. Algorithms for testing structural equality of
recursive types can, e.g., be found in [1] and [13]. In [13], (infinite) trees are used to
represent (recursive) types and structural equality of types is defined in terms of tree

58

equality. In Section 5, class equivalence will be defined in terms of structural equality of
classes and method equivalence. Two classes are structurally equal if their underlying
types are structurally equal, ttenee, the algorithm from [13] can be used to determine
structural equality of classes, using trees to represent their underlying types.

Class equivalence will be defined using a weaker form of structural equality of
classes, where an attribute can be mapped to an attribute with a different name. For
that purpose, the tree representing the underlying type of a class is adapted slightly.
The adapted tree is obtained by removing pointers and labeling class nodes by the name
of the corresponding class. Let H be a well-defined class hierarchy and C be a class in
fiat(H). Furthermore, let c be the name and {al : T 1 , ' " , ak : Tk} be the attributes of
class C. The tree representing the structure of class C, denoted by struc(C), is defined
as:

struc(Tl) struc(Tk)

where

struc(d) = struc(O) if D = (d, A, M) e fiat(H),
struc(T) has only one node, labeled T if T E {bool, int, string},
struc({U}) consists of a root, labeled by {}, a subtree struc(U),

and an unlabeled arrow from the root labeled by {}
to the root of struc(U)

struc(< ll : U 1 , ' " ,l,~ : Un >) consists of a root, labeled by <>,
subtrees struc(U1),..., 8truc(U,~), and arrows, labeled l,,
one for each i E {1,. . . ,n}, from the root labeled by <>
to the root of struc(Ui).

Note that the tree representing the structure of a class depends on the hierarchy.
Furthermore, observe that the tree representing the structure of a recursive class is
infinite.

E x a m p l e 4. Let Cp be class 'Person' of Example 1. The tree representing the struc-
ture of class fiat(Up) is given by the following infinite tree:

Pcr~m / ~

nam/b / moihcr~/..

"'7""I"'\ / I t,
�9 () �9 : : i int int irll

59

17

In [7], a natural notion of subtyping is defined for record types: rl is a subtype of
type r2 if rl has at least the fields of r2. For example, <name:string,dob:Date> <
<name:string>, where <__ denotes the subtype relation. This notion of subtyping can
be extended to underlying types of classes:

type(C1) < type(C2) r struc*(C2) is a subtree of struc*(C1),
such that the root of the subtree is also the root of struc*(C1).

where struc*(Ci) is struc(Ci) with class names removed. The subtype relation can be
used to define structural equality of types, and, hence, structural equality of classes:

c~ = , , ~ o c2 r typ~(cl) =,,~o typ~(c~)
r typ~(c~) _< t~p~(c~) A typ~(C~) <_ typ~(Cx).

Although structural equality is an equivalence relation on classes, it is too coarse,
because attributes are considered only. In order to define a finer equivalence relation
on classes, methods have to be considered as well.

3.2 F u n c t i o n a l F o r m s

Every well-typed method has a functional form. The functional form of a method in a
class describes the way in which objects in the extensions of the class are manipulated
by the method. Let H he a well-defined class hierarchy and C be a class in f lat(H).
Furthermore, let re(P) = E be a method in class C. The functional form of re(P) = E
in class C, denoted by func(C, m), is defined as:

f=nc(c, m) = ~self : typeCC)~P. < al = e l , . . . , ak = ek >,

where {a l : T1,. �9 ak : Tk } are the attributes of C and expression el is the accumulated
effect of the assignments in E on attribute ai. The type of body(C, m) is type(C), as
should be the case, since re(P) = E is an update method. The formal definition of
functional forms can be found in Appendix C.

E x a m p l e 5. Let Cp be class 'Person' and C~ be class 'Employee' of Example 1.
The functional forms of method 'change' in class flat(Cp) and method 'change' in class
flatCC~) are given by:

func(flat(Cp),change) = ~self : ~-p~s : string.
<name=s, dob=self.dob,mother=self.mother> ,

func(flat(C,),change) = ,~self : %~s: string.
<name=s, dob=self.dob, mother=self.mother,

salary=self.salary, company=self.company>,

where ~'p is the underlying type of class flat(Cp) and re is the underlying type of class
f l a t (Q) . []

A natural notion of function equivalence is (extensional) equality. Two functions are
(extensionally) equal if they map the same combination of input values to the same
output value.

60

E x a m p l e 6. The following functions are extensionaUy equal:

~sel f : Tp)~i : int. (2 • i + sel f .dob.year) =
,~self : ~-p/~i : int. (i + i + sel f .dob.year) ,

where ~'1, is the underlying type of Example 3. []

Two functional forms are extensionally equal if they are pairwise equal for every at-
tribute:

~sel f : ~'~P. < al = e l , " . , a~ = e,, > =
I

)~self : T)~P t. < al = erl, ' ' ' , an = e , > r
Vi �9 {1 , . . . , n} [)~self : T,~P.ei =)~self : ~:~P'.e~].

For our language, allowing disjunction and conjunction for booleans, addition and
multiplication for integers, concatenation for strings, and insertion for sets, extensional
equality of functional forms is decidable [17].

4 C o m p a r i s o n o f C l a s s e s

In this section, we introduce a synthetic subclass order to compare classes on the basis
of syntactic and semantic similarity. The subclass order is defined in terms of a weak
subtype relation on underlying types of classes (using graph homomorphisms between
adapted trees) and a subfunction relation on functional forms of methods (using ex-
tensional equality for functional forms). In the following section, a join operator w.r.t.
the subclass order will be defined to factorise classes.

In order to define the subclass order, a number of properties are introduced for
graph homomorphisms. A graph homomorphism ~o fi'om graph G1 to graph G2 is said
to preserve labels if:

1. (n e nodes (G1) A label(n) = l) ~ label(~o(n)) = l

2. (p �9 a ow (G1) ^ label(p) = l) label((p)) = t,

where nodes (G1) and arrows(G1) denote the set of nodes of G1 and the set of arrows
of G1, respectively, and label(q) denotes the label of node or arrow q. And, for this
paper, a graph homomorphism qo from tree G1 to tree G2 is a tree homomorphism if it
maps the root of G1 to the root of G2. For example, the identity graph homomorphism
from a tree onto itself is a tree homomorphism.

Now let H be a well-defined class hierarchy. Let C1 and C2 be classes in f l a t (H) .
The following two properties will be used to relate an attribute al : T1 in C1 to an
at tr ibute A2 : T~ in C2, such that type(T2) is a weak subtype of type(T1). A graph
homomorphism ~ from 8truc(C1) to s truc(C2) is faithful with respect to classes if it
maps classes to classes, i.e., if for every node n in s truc(C1) , the following holds:

label(n) �9 C N => label(~o(n)) �9 C N .

E x a m p l e 8. Let Cp be class 'Person' and C~ be class 'Employee' of Example 1. Any
graph homomorphism from s t ruc(f la t (Cp)) to s t ruc(f la t (Ce)) that maps nodes labeled
'Person' to nodes labeled 'Employee' or 'Person' and nodes labeled 'Date ' to nodes
labeled 'Date ' is faithful w.r.t, classes. []

61

A graph homomorphism ~o from struc(C1) to strut(C2) is faithful with respect to
attributes if it maps attributes in one class to attributes in another class consistently,
i.e., if for every node nl in struc(C1) with outgoing arrow Pl and every node n 2 in
struc(C1) with outgoing arrow p~., the following holds:

(label(n1) = label(n2) e CN A label(p1) = label(pz)A
label(~(nx)) = label(~(nz))) ~ tabet(~(p~)) = label(~(p2)).

E x a m p l e 9. Let Cp be class 'Person' and Ce be class 'Employee' of Example 1. The
tree homomorphism ~2 from struc(flat(Cp)) to strue(flat(C,)) that preserves labels,
except the lah~l of the root, is faithful w.r.t, attributes. If all arrows labeled 'day'
are mapped to arrows labeled 'month' , then the graph homomorphism is still faithful
w.r.t, attributes. However, if only one of the arrows labeled 'day' is mapped to an
arrow labeled 'month' , then the graph homomorphism is not faithful any more. []

The following property will be used to relate a method ml(P1) = E1 in C1 to a method
m2(P2) = E2 in C2, such that func(C2, m2) is a subfunction of func(C1, mr).

Let ~ be an injective graph homomorphism from struc(Cl) to struc(C2) that pre-
serves labels, except class names and attribute names, and is faithful w.r.t, to classes
and faithful w.r.t, attributes. If such a graph homomorphism exists, then we say that
type(C2) is a weak subtype of type(el).

Let n be a node in struc(C1), such that label(u) is the name of class C and
label(v(n)) is the name of class C' = (c', A', M r) in fiat(H). For every method
re(P) = E in C, define func(C, m)[qo] to be the functional form of its imaginary coun-
terpart in C':

/~ue(C, m)[V] = f ~ e (C ' , m),

w h e r e

! I C~ = (c,~, A , {re(P) = E[~]}),

' is a unique class name depending on c' and m, and E[~] is obtained from E where c m
as follows: if rl . . - rp is a path in 8truc(C1) starting at node n, then every occurrence
of term label(r1).....label(rp) in E is replaced by label(cp(rl)).....tabel(v(rp)).

If re(P) = E is a method in C, m'(P') = E' is a method in C', and rune(C, m)[v] =
func(C', m'), then we say that func(C', rn') is a subfunction of fuuc(C, m), because
type(C') is a weak subtype of type(C) and body(C', m') manipulates objects in the
same way as body(C, m).

Now associate with every node n in strue(C1), such that label(n) is the name of
class C = (c, A, M) in fiat(H), the set of functional forms corresponding to C:

funcs(n) = {func(C, re) Ira(P) = E e M}.

Graph homomorphism ~ is faithful with respect to methods if it maps methods in one
class to methods in another class consistently, i.e., if for every node n in struc(Cx),
such that label(n) E CN, the following holds:

vf~ e f ~ e , (u) 3A e f~uc,(~(u)) : fl[~] = Y2.

62

E x a m p l e 10. Let Gp be class 'Person', G, be class 'Employee', and Ca be class
'Date' of Example 1. The tree homomorphism from struc(flat(Cv)) to strue(flat(C~))
that preserves labels, except the label of the root, is faithful w.r.t, methods, because
class Ca has no methods and class Cp has only one method ('change'), whose imaginary
counterpart in Ce corresponds to method 'change' in C,. []

Finally, we define a synthetic subclass relation on flattened classes as follows: C1 is a
subclass of C2, denoted by C1 __ G2, if every attribute in C2 corresponds to a unique
attribute in C1 whose type is a weak subtype and every method in (72 corresponds
to a method in C1 whose functional form is a subfunction, such that, whenever an
attribute plays a role in a method, the corresponding attribute plays the same role
in the corresponding method, i.e., if there is an injective tree homomorphism from
struc(C2) to struc(C1) that

1.a. preserves labels of nodes, except class names
b. is faithful with respect to classes

2.a. preserves labels of arrows, except attribute names
b. is faithful with respect to attributes

3. is faithful with respect to methods.

In [17], it is proven that the subclass relation is reflexive and transitive. Of course,
other subclass relations could have been chosen. The motivation for choosing this
subclass order is that classes should not be compared by the name and the type of
their attributes (i.e., syntactic) only, but also by the meaning of their attributes (i.e.,
semantic). The chosen subclass order compares classes by the following characteristics:
the structure of the objects in their extensions (requirement 1 and 2) and the way
these objects are manipulated (requirement 3). These characteristics can be regarded
as abstract semantics for classes, where classes are semantically equal if the objects in
their extensions have the same structure and are manipulated in the same way. Since
abstract semantics are used to compare classes, rather than real world semantics, the
subclass order is called synthetic.

E x a m p l e 11. Let Cp be class 'Person' and Ce be class 'Employee' of Example 1.
Then flat(C~) is a subclass of flat(Cp). []

E x a m p l e 12. The following well-defined class hierarchy is a part of the definition of
a drawing tool:

Class Square
A t t r i b u t e s

xAeft_up:int
yAeft_up:int
width:int

M e t h o d s
set (x:int, y:int) =

xAeft_up := x; yAeft_up := y
translate (delta_x:int, delta_y:int) =

xAeft_up := x_left_up + delta~x;
yAeft_up := y/eft_up + delta_y

63

Endc las s
Class Rectangle
A t t r i b u t e s

x_left_up:int
y_left_up:int
width_x:int
width_y:int

M e t h o d s
set (x:int, y:int) =

x_left_up := x; y_left_up := y
translate (delta_x:int, delta_y:int) =

x Jeff_up := x_left_up + delta_x;
y_left_up := y_left_up + delta_y

rotate = y_left_up := y_left_up + width_x;
width_x := width_y - width_x;
width_y := width_y - width_x;
width_x := width~x + width_y

Endclass .

The designer has chosen to model squares by the coordinates of the leftupper corner
and the width, and rectangles by the coordinates of the leftupper corner and the width
in both directions. According to the subclass order on flattened classes: flat(Cr) "<
flat(C~). This does not mean that every rectangle is a square. It only means that every
description of a rectangle, as given by the designer, can be regarded as a description
of a square, viz., by neglecting the width in one of the two directions. []

5 Integration of Class Hierarchies

In this section, we describe integration of class hierarchies. First, we define class
equivalence using the subclass order and factorisation of classes using a join operator
w.r.t, the subclass order. Subsequently, we define a normalisation procedure, which
identifies and factorises the classes in a class hierarchy until all classes have been
factorised.

5 .1 F a c t o r i s a t i o n o f C l a s s e s

Let ~ be the set of well-defined class hierarchies and

~'7~ = {flat(H)] H e tg}

be the set of well-defined flattened class hierarchies. Let H be a well-defined class
hierarchy and F be its flattened form. For every class D = (d, A, M) in F, let sups(D)
be the set of syntactic superclasses of D:

sups(D) = {(d(A,,M,), A', M') I A' C A A M' C MA
F U {(d(A,,M,), A', M')} e ~-7-/}.

where d(A,M) : d and every other d(A,,M,) is a unique class name depending on A t and
M ~. The set of classes that can be constructed from F, denoted by SF, consists of the
syntactic superclasses of all classes in F:

64

8F = {C 6 sups(D) l D 6 F}.

And, for every class D = (d, A, M) in SF - F, let sups(D) be the set of syntactic
superclasses of D:

sups(D) = {(d', A', M') C SF] A' C_ A A M' C M}.

The subclass order _-4 on SF, as defined in Section 4, induces an equivalence relation
on SF, as follows:

C1 -~ C2 ,~, C1 ~_ C2 ^ C2 ~_ CI.

If C 6 S f is a class, then [C] = {C' 6 SF I C' ~ C} represents all classes which are
equivalent to C. The universe of classes modulo equivalence is given by:

= {[ell c e sF}.

The subclass order on ,9F induces a subclass relation on ,~F:

c,.

It follows that the subclass relation on SF is a partial order, because the subclass order
on SF is reflexive and transitive.

Factorisation of classes is defined in terms of a join operator w.r.t, the subclass
order. For every pair of classes in ,Of, the join operator defines the set of least common
superclasses. Let C1 and C2 be a pair of classes in SF. The set

sups(el,c2) = {01 6 sups(C1) 13D2 6 sups(C2): D1 --- 92}

can, up to equivalence, be regarded as the set of common superclasses of C1 and C2.
Define a binary operator IIF o n t.~ F as follows:

[C1] t-IF [C~.] = {[C] I C 6 sups(C1, C2)] VD 6 sups(C1, C2) : O ~ C =~ C ~- D}.

Then [C1] tAR [C2] is the set of least common superclasses of [6'1] and [C2]. Hence, tAF
can be regarded as a kind of join operator.

Let D, and D2 be classes in H. Every element [C] of the set of least common
superclasses of [flat(D1)] and [flat(D2)] gives, up to equivalence, one possibility to
factorise D~ and D2: choose a member (d, A, M) of [C], define a new class D =
(d, 0, A, M), and redefine D1 and D2 to be subclasses of D. (It can be necessary to
replace attributes in DI and D2 (and, hence, rename attributes in methods in other
classes that refer to D1 and D~) and rename methods in D1 and D~ in order to make
D a syntactic superclass of both flat(D1) and flat(D2)).

E x a m p l e 13. Let Hd be the class hierarchy of Example 12. Furthermore, let C, be
class 'Square' and Cr be class 'Rectangle' in H~. The set of least common superclasses
of (78 and Cr is given by:

1 =

Hence, there is, up to equivalence, only one least common superclass, and, up to
equivalence, only one possibility to factorise C~.

Now, let the designer choose a class from [flat(C,)]. The class chosen is equiv-
alent to C~. If C~ is chosen, then there are still several (equivalent) possibilities to
factorise Cr, because there are several possible homomorphisms from struc(flat(C~))
to struc(flat(Cr)). The first possibility to factorise Cr is:

65

Class Rectangle Isa Square
At t r ibu tes

width_y:int
Me thods

rotate = y_left_up := y_left_up + width;
width := width_y - width;
width_y := width_y- width;
width := width + width_y

Endelass.

Note that attribute 'width_x' has been renamed to 'width'. The second (equivalent)
possibility to factorise Cr is:

Class Rectangle Isa Square
At t r ibu tes

width_x:int
Me thods

rotate = yleft_up := y_left_up + width_x;
width_x := width - width_x;
width .'= width - width_x;
width_x := width_x + width

Endclass.

Of course, the designer could choose not to factorise, or to factorise only partially. For
example, the designer could decide to define a new class with attributes 'xJeft_up' an
'y_left_up' and methods 'set' and 'translate', and redefine classes 'Square' and 'Rect-
angle' to be subclasses of the new class. Partial factorisation is described in [17]. []

5 .2 N o r m a l i s a t i o n o f C l a s s H i e r a r c h i e s

In this subsection, we define a normalisation procedure, which identifies and factorises
the classes in a class hierarchy until all classes have been factorised. First, we introduce
a subhierarchy relation on flattened class hierarchies. Let 5rT-/F be the universe of ctass
hierarchies which consist of classes in F and superelasses of classes in F:

~rl'/F = {f0 E .~'7-/I F0 C SF}.

For every class hierarchy F0 e ~'7-/r, let F0 = {[C] I C e F0} be the class hierarchy
modulo equivalence. The universe of class hierarchies modulo equivalence (w.r.t. F)
denoted by ~'7/F, is defined as:

5v'~F = {/~0 I F0 e ~'7/f}.

The subhierarchy relation on class hierarchies modulo equivalence, denoted by "~, is
defined as a superset order on the classes in the class hierarchies:

Note that the subhierarchy relation resembles the subclass relation: subhierarchy F1 is
a refinement of superhierarchy/~2. Since ~"~F is finite and meets (unions) exist w.r.t.
___, (~'7-/F, ~) is a complete lattice [10].

66

Normal!sation.._.of class hierarchies is defined using factorisation of classes. A class
hierarchy F0 E ~'7-/F is in normal form if it is closed under joins:

[c1] e P' ^ [c2] e P' ~ [cl] u r [c~] c P,.

Note that we use C, because [CI]I--IF [(72] yields a set. So, normal forms are the fixpoints
in .FT-/F of ~(X) = X U U{Y1 t.lF 1:2] 1:1, ~ e X}.

The normal form of F, denoted by nf(F),is.the greatest subhierarchy of ~0 that is
in normal form, i.e., the greatest fixpoint in (hv'I-/F, -~) of the function ~F, defined as:

~OF(X) =/" U X U U{Yx UF Yu I Y,, Y= e x} .

In [17], it is proven that the normal form of F is characterised by:

~f(~) = U { ~ (0) I i e ~v}

It follows that the normal form of a class hierarchy can be computed by a simple fixpoint
iteration, starting from the empty set, using the join operator w.r.t, the subclass order
to factorise classes. This iteration procedure to normalise flattened class hierarchy
/0 gives a way to normalise non-flattened class hierarchy H, as follows. Let N be the
smallest natural number such that qoFN(0) = nf(F). Compute a sequence H 0 , ' ' ' , HN+I
of non-flattened class hierarchies, where H0 = 0 and Ht = H, as follows:

initialise Hi+l by Hi
for every pair of classes D1 and D2 in Hi \ Hi-1

let the designer choose a class [C] from [flat(Dr)] t-IF [flat(D2)]
let the designer choose a member (d, A, M) of [C]
add D = (d,O,A,M) to g
redefine D1 and D2 to be subclasses of D.

The resulting non-flattened class hierarchy HN+I is characterised by:

nf(~') -~ flat(H""-N+1) ~ F,

up to renaming of attributes and methods.

E x a m p l e 14. Let Ha be the class hierarchy of Example 12. Then flat(Hd) is already
in normal form, and we can normalise Ha in one step obtaining the class hierarchy
consisting of class 'Square' of Example 12 and of class 'Rectangle' of Example 13. []

The normalisation procedure leads to a natural framework for integration of two class
hierarchies H1 and H2: define H0 to be the union of H1 and H2 and normalise H0. If
class D1 E H1 and D2 C H~ have the same ham% then it is necessary to choose a new
name for one of the classes, e.g., for D1, and to replace all occurrences of the old name
in H1 by the new name.

E x a m p l e 15. Let Ha be the class hierarchy of Example 12 and Hp be the class
hierarchy consisting of the following class:

Class Point
A t t r i b u t e s

x_co:int

67

y_co:int
M e t h o d s

reset (x:int, y:int) =
x_co := x; y_co := y

translate (delta_x:int, delta_y:int) =
x_co := x_co + delta_x;
y_co := y_co + delta_y

Endelass.

If we integrate Ha and Hp, we obtain something like the class hierarchy consisting of
class 'Point', class 'Rectangle' of Example 13, and the following class:

Class Square I sa Point
A t t r i bu t e s

width:int
Endclass.

A more natural solution would be to aggregate the coordinates of the left upper corner
class 'Square' and class 'Rectangle' of Example 12 into a new attribute 'left_up:Point'.

~his is the subject of future research. D

6 Conclusion

This paper develops a formal approach to integrate class hierarchies on the basis of
syntactic and semantic similarity of classes, based on a synthetic subclass order, which
induces an equivalence relation on classes. The result is a natural framework for inte-
gration of class hierarchies, where classes are identified using the equivalence relation
and factorised using a join operator w.r.t, the subclass order.

In contrast with existing literature [5, 6, 9], both attributes and methods are used to
compare classes and behaviour of methods is used to compare attributes. The benefit
is a more semantic approach to support view integration and schema normalisation
in object-oriented databases, and schema integration in general, e.g., in multidatabase
systems.

Future research will include more sophisticated subclass orders and join operators
to cope with extensions of the datamodel (e.g., variant types, attribute specialisation,
and retrieval methods) and aggregation of attributes.

Acknowledgement

Special thanks to Carel van den Berg and Leonie van der Voort for their constructive
and stimulating criticism while this research was carried out. Also many thanks to
Martin Kersten for his useful comments on earlier versions of this paper.

7 Bibliography

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

68

[2] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive
conceptual language. ACM Trans. on Database Systems, 10(2):230-260, 1985.

[3] H. Balsters, R. de By, and R. Zicari. Sets and constraints in an object-oriented
data model. Technical report INF90-75, University of Twente, Enschede, The
Netherlands, 1990.

[4] H. BaJsters and C. de Vreeze. A formal theory of sets in object-oriented contexts.
Technical report INF90-74, University of Twente, Enschede, The Netherlands,
1990.

[5] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys, pages 323-364, 1987.

[6] P. Bergstein and K. Lieberherr. Incremental class dictionary learning and opti-
mization. In Proc. European Conf. on Object-Oriented Programming, LNCS 512,
pages 377-395. Springer-Verlag, Berlin, 1991.

[7] L. Cardelli. A semantics of multiple inheritance. In Proc. Int. Syrup. on Semantics
of Datatypes, LNCS 173, pages 51-67. Springer-Verlag, Berlin, 1984.

[8] C. de Vreeze. Formalization of inheritance of methods in an object-oriented data
model. Technical report INF90-76, University of Twente, Enschede, The Nether-
lands, 1990.

[9] P. Fankhanser, M. Kracker, and E. Neuhold. Semantic vs. structural resemblance
of classes. ACM SIGMOD Record, 20(4):59-63, 1991.

[10] G. Graetzer. General Lattice Theory. Academic Press, New York, NY, 1978.

[11] S. Hong, G. van den Goor, and S. Brinkkemper. A comparison of object-oriented
analysis and design methodologies. In Proc. Computing Science in the Netherlands,
pages 120-131. Stichting Mathematisch Centrum, Amsterdam, The Netherlands,
1992.

[12] M. Kersten. Goblin: a DBPL designed for advanced database applications. In
Proe. Int. Conf. on Database and Expert Systems Applications, pages 345-349.
Springer-Verlag, Wien, 1991.

[13] C. Koster. On infinite modes. ACM SIGPLAN Notices, 4(3):109-112, 1969.

[14] C. L~cluse and P. Richard. The 02 database programming language. In Proc. Int.
Conf. on Very Large Databases, pages 411-422. Morgan Kanfmann, Palo Alto,
CA, 1989.

[15] T. Olle, J. Hagelstein, I. MacDonald, C. Rolland, H. Sol, F. van Assche, and
A. Verrijn Stuart (Eds.). Information Systems Methodologies - A Framework for
Understanding. Addison-Wesley, Reading, MA, 1988.

[16] T. Teorey and J. Fry. Design of Database Structures. Prentice Hall, Englewood
Cliffs~ N J, 1982.

[17] C. Thieme and A. Siebes. Schema integration in object-oriented databases. Report
CS-R93xx, CWI, Amsterdam, The Netherlands, 1993.

69

A Syntax Definition of Class Hierarchies

This appendix gives the syntax definition of class hierarchies. For that purpose, five
disjoint sets are postulated: a set C N of class names, a set A N of attr ibute names, a
set M N of method names, a set L of labels, and a set Cons of constants of type 'bool ' ,
' int ' , and 'string'. These sets are generated by the nonterminals CN, AN, MN, L, and
Cons, respectively. Class hierarchies are the sentences of the following BNF-grammar,
where the plus sign (+) denotes a finite, nonempty, repetition, square brackets (N)
denote an option, and the vertical bar (I) denotes a choice:

Hierarchy ::= Class +
Class ::= 'C las s ' CN [' I s a ' CN +]

[' A t t r i b u t e s ' Att +]
[' M e t h o d s ' Meth +]
' E n d c l a s s '

Att ::= AN ': ' Type
Type ::= BasWype I ' { ' Type '}' I ' < ' FieldList ' > ' 1 CN
BasType ::= 'bool ' I ' int ' I 'string'
FieldList ::= Field I Field ' , ' FieldList
Field ::= L ': ' Type
Meth ::= MN [' (' ParList ') '] ' = ' AsnList
ParList ::= Par I P a r ' , ' ParList
Par ::= L ': ' BasType
AsnList ::= Assign I Assign '; ' AsnList
Assign ::= AN ' := ' Source I ' i n se r t (' Source ' , ' AN ') '
Source ::= Term I Term ' + ' Source I Term ' • Source I

Term 'V' Source I Term 'A' Source
Term ::= Cons I Sel
Sel ::= L I AN I L ' . ' Sel I AN '. ' Sel

An assignment of the form ' inser t (e , V)' should be read as 'V := V U {e}'.

B Definition of Well-typed Methods

This appendix defines well-typed methods. For that purpose, the definition of struc
Subsection 3.1 is pre-supposed. Let H be a class hierarchy, such that classes have
a unique name, classes only refer to classes which belong to the class hierarchy, and
attr ibutes and methods have a unique name within their class. Furthermore, let C be
a class in H and m (P) = E be a method in C. The source tl Ol " '" on $~-bl (rt > 0) of
an assignment in E is well-typed if:

1. every term ti is a constant in Cons, or a parameter in P, or (the labeling of) a
path in strut(flat(C)), starting at the root

2. one of the following holds:

* n = 0, i.e., there are no operators, or

�9 every term ti is of type bool and every operator oj is V (disjunction) or A
(conjunction), or

70

�9 every term ti is of type int and every operator oj is + (addition) or x
(multiplication), or

�9 every term ti is of type string and every operator oj is + (concatenation).

An assignment in E is well-typed if its source an destination are well-typed and their
types are equal:

1. if the assignment is of the form a := s, then the assignment is well-defined if:

(a) a : T is an at t r ibute in C for some T,

(b) s is well-typed and has type type(T);

2. if the assignment is of the form inse r t (s , a), then the assignment is well-defined
if:

(a) a : {T} is an at t r ibute in C for some T,

(b) s is well-typed and has type type(T).

Finally, method m (P) = E is well-typed if every assignment in E is well-typed.

C D e f i n i t i o n o f F u n c t i o n a l F o r m s

This appendix defines functional forms. For that purpose, let H be a well-defined class
hierarchy. Furthermore, let C be a class in f i a t (H) and re (P) = E be a method in
class C. If {al : T 1 , " . , at, : Tt`} are the at tr ibutes of class C, then the functional form
of re (P) = E in C, denoted by func(C, m) is defined as:

func(C, m) = Aself : type(C)AP.body(C, m) ,

where

body(C, m) = eval(E)(< al = se l f . a1 , . . . , ak = self .ak :>),

where

eval(L1; n2)(a) = eval(L2)(eval(L1)(cr)),
e~at(a, := s) (< al = e l , " ' , al: = et` >) =

< al = e l , ' - ' , a , -1 = e i -1 , al = 8[a lke~ , . ", at`\el:],

ai+l ---- ei+l, "" " ,ak --~ et` >,
eva l (inser t (s , a i)) (< al = e l , . . . , at` = et` >) =

< el = e l , ' " , a i _ l ---- e i - l , a i : ei U { s [a l \ e l , . . . , a t ` \ e t `] } ,
ai+l : ei+l , �9 �9 �9 al: : el: >.

The expression s[a\e] is the expression that results when every term a in s is replaced
by e and every term a . r l r , ~ in s is replaced by e . r l . . . ".rr~.

