
Schema Transformat ions as an Aid in V i e w
Integrat ion

PaulJohannesson

Department of Computer and Systems Sciences, Stockholm University
Electrum 230, S-164 40 Kista, Sweden

email: pajo@sisu.se

Abstract. Two important problems in view integration are
identifying and merging semantically equivalent but structurally
different modelling constructs. One way to address this problem is to
standardize the schemas to be integrated by applying a number of
schema transformations to them. We formalize the notion of schema
transformation in the context of a logic based modelling approach.
We then introduce several transformations and show how they can
be used in the view integration process.

1 Introduction

Database management systems have been available for more than two decades,
mainly in the form of the hierarchical, network, and relational models. In the
mid 1970s the development of semantic database models was initiated. These
were introduced primarily as schema design tools, meaning that a schema
should first be designed in a high level semantic model and then translated into
one of the traditional models for implementation. One advantage of using
semantic data models in this context is that it simplifies the integration of
different user perspectives. I11 fact, one of the basic reasons for using a database
approach instead of a file approach is that it makes it possible to define a
coherent view of the data of an organization, which may then be used for
serving a number of different user perspectives.

Consequently, an important part of conceptual design is to integrate various
conceptual schemas. We will refer to this activity by the term schema
integration (or view integration), which is more precisely defined as "the
activity of integrating the schemas of existing or proposed databases into a
global, unified schema" [Batini86]. Research in the area of schema integration
has been carried out since the beginning of the 1980s. A comprehensive survey of
the area can be found in [Batini861. Most of the work has been performed in the
context of the relational model, [Biskup86], the functional model [Motro87], or
(some extended version of) the ER model, [Larson891, [Spaccapietra92]. The

72

prevalent approach in schema integration has been to derive, more or less
automatically, an integrated schema from a set of integration assertions
relating equivalent constructs in the views. The integration assertions typically
describe set relationships (equality, inclusion etc.) between the extensions of
related entity types or attributes, [Effe1841, [Spaccapietra921, [Johannesson91].

A limitation of most schema integration approaches found in the literature
is that they provide only very simple types of integration assertions, which are
incapable of expressing relationships between structurally different modelling
constructs. As an example of two semantically equivalent but structurally
different constructs, consider fig. 1.1 and fig. 1.2, where the gender of persons in
the first schema is represented using an attribute and in the second schema by
means of two subtypes.

{ m , f } / ~

Fig. 1.1 Fig. 1.2
Another problem is that it is usually more difficult to identify relationships
involving structurally different constructs than relationships between just two
entity types or two attributes. One way to alleviate these problems is to
transform the schemas to be integrated before making any integration
assertions. The schemas should be transformed so that any relationship between
them is expressible as a simple relationship between two entity types or two
attributes. So, the goal is to try to standardize the schemas by transforming
them into some "normal form" before integrating them. This approach can be
compared to the standard schema integration process described in [Batini91],
where it is assumed that the schemas shall be modified after they have been
compared. The method suggested in this paper reverses comparison and
modification by requiring that the schemas first be modified in order to
facilitate the schema comparison. The main contribution of this paper is to
outline how such an approach can be realized. To this end, we first formalize
fundamental concepts pertaining to schema transformations, thereby taking into
account static as well as dynamic aspects of a schema. We then present a number
of basic schema transformations utilizing the framework proposed. In the next
section, we briefly review related work on schema transformations. In section 3,
we describe the modelling formalism to be used, which is based on concepts from

-?3

logic programming and deductive databases. In section 4, we introduce a number
of schema transformations, and in section 5 we show, by means of an example,
how they can be applied. In the final section, we summarize the results of the
paper and suggest possibilities for further research.

2 Related Research

Most work on schema transformations has been carried out in the context of the
relational model. All the first normal form transformations, the third, Boyce-
Codd, the fourth, and projection normal form decompositions are examples of
schema transformations, [Fagin79], [Uliman88]. A central concern in this work
has been to prove that the schema transformations are Iossless (information
preserving), and several notions of equivalence between relational schemas
have been proposed, [Kobayashi86], [Hull86]. Informally, most of these
proposals define two schemas as being equivalent if there exists a (simple)
bijecfion between the instances of the schemas. Another important issue has
been to show how to transform different types of rules and constraints associated
with a relational schema, such as functional dependencies and inclusion
dependencies, [Kobayashi86]. This work has been extended by research on
transformations in the context of semantic data models, such as the ER model
[Chen76], and extensions of the ER model [ElMasri85]. In this research,
[Halpin90], [Hainaut91], also more general types of constraints have been taken
into consideration, e.g. cardinality constraints and exclusion constraints.

An important difference between the approach taken in this paper and
previous work is that we use a logic based formalism of conceptual modelling as
a framework. This makes it possible to address more complex design issues
arising from the richer semantics of conceptual modelling approaches in contrast
to the relational model. Further, we also pay attention to the behaviour of a
UoD (Universe of Discourse). The schema transformations presented in the
paper are certainly not exhaustive, but we believe they are among the most
important arising in practical modelling situations. They also provide an
illustration of design problems no t occurring in the context of the relational
model by focussing on issues such as generalization, object identity, and
dynamics.

3 C o n c e p t u a l Schemas

In this section, we give a formalization of some of the basic concepts in
conceptual modelling. The formalization is based on concepts from the logic
programming and deductive database areas, [Gallaire84], and it attempts to
capture both static and dynamic modelling constructs. We first recall some basic
definitions concerning first order languages.

Let P, F, and C be three sets of symbols. A (first order) language based on
<P,F,C>, written L(P,F,C) is defined on an alphabet consisting of connectives,
quantifiers, punctuation symbols, variables, function symbols F, constants C, and
predicate symbols P, where each predicate symbol has an arity. A (first order)

74

formula in a language L is defined as usual. A term is a constant or a variable.
An atom is a formula of the form p(tl,...,tn), where p is a predicate symbol and
tl, . . . , tn are terms. A literal is an atom or the negation of an atom. A ground
formula is a formula without variables. For any language L(P,F,C) we assume
that P contains a special symbol, "=", which is interpreted as the identity. A
clause is a formula of the form VXl,...,Vxn(L1 v . . . v Lm), where each Li is a
literal and Xl,...,Xn are all the variables occurring in L1 V...v Lm. We will use

the standard notation A1,...,A k ~- B 1 B n to denote the clause VXl,...,Vxm(A 1

v...v AkV ~BlV. . .v ~Bn). A1 ,Ak is the head of the clause and B1 B n its
body. A definite clause is a clause of the form A ~- B1 Bn, which contains
precisely one atom in its consequent and each Bi is an atom.

Since we intend to consider temporal aspects of a UoD, we assume fl~at all
languages contain a set of special symbols used to denote points in time. We also
assume that fl~ere is a total order, denoted by "< ' , defined over the points in
time.

The basic building blocks in all conceptual modelling approaches are objects
(entities) and attributes. Objects are often grouped together into object types,
such as Employee and Department. To represent that a given object belongs to a
certain object type, we use a binary predicate, where the first argument is a
constant denoting the object, and the second argument denotes a point in time. As
an example, consider employee(John,T7), which expresses that John is an
employee at the point in time TT. To represent attribute values, we use ternary
predicates. An example is owns(John,ABC123,T9), which expresses that John
owns the car ABC123 at the point in time T9.

In general, an integrity constraint is defined as any closed first order formula.
In this paper, however, we only consider certain special cases of constraints,
which frequently occur in conceptual modelling. A typing constraint is a formula
of the form VxYyVt(A(x,y,t) ~ D(x,t)) or the form V xVyVt(A(x,y,t) ~ R(y,t)).
A formula of the first form will be abbreviated "domain(A) = D' , and a formula
of the second form as "range(A) = R". We also say that the domain of A is D and
the range of A is R. Mapping constraints concern the cardinality of attributes
and have one of the following four forms. The expression "the attribute A is
single-valued" is an abbreviation of the formula VxV y'v'z~r t(A(x,y,t) A A(x,z,t)

y = z). The expression "the attribute A is injective" is an abbreviation of the
formula Vx'v'yVzVt(A(y,x,t) A A(z,x,t)-* y = z). An attribute which is both
single-valued and injective is said to be 1-1. The expression "the attribute A is
total" is an abbreviation of the formula VxV t(P(x,t) ~ ~yA(x,y,t)), where P is
the domain of A. An attribute which is not total is called partial. The
expression "the attribute A is surjective" is an abbreviation of the formula
VxVt(P(x,t) ~ .q'yA(y,x,t)), where P is the range of A. A generalization
constrahlt is a formula of the form V'x'v" t(P(x,t) ~ Q(x,t)) and is abbreviated P c
Q. We also say that P is a subtype of Q. The expression "the types P1 and P2 are
disjoint" is an abbreviation of the formula -~-qx~t(Pl(x,t) A P2(x,t)). The
expression "the type P has a finite extension" is an abbreviation of the formula

75

VxVt(P(x,t) ~ x = a I v ... v x = an), where al,...,a n are constants. Suppose that
P1,...,Pn are common subtypes to a type Q, then the expression "P1,...,Pn are
exhaustive w.r.t. Q" is an abbreviation of the formula V x u t(Q(x,t) --~ Pl(x,t) v
... V Pn(x,t)).

The constraints above take only static aspects of a UoD into consideration,
i.e. they describe what should hold true in each snapshot of the UoD. We now
turn to dynamic integrity constraints, which describe how a UoD can evolve
over time. The expression "A is domain-stable" is an abbreviation of the
formula VxVyVsVt(D(x,s) A D(x,t) ^ A(x,y,s) A R(y,0 ^ s<t --* A(x,y,t)), where
D is the domain of A. Intuitively, an attribute is domain stable if an object
which acquires a value for the attribute keeps that value for its complete life
time. The dual of domain-stability is range-stability: The expression "A is
range-stable" is an abbreviation of the formula VxVyVsYt(R(x,s)^ R(x,t) a
A(y,x,s) ^ D(y,t) ^ s<t ~ A(y,x,t)), where R is the range of A. Suppose that P is
a subtype of Q, then the expression "P is a stable subtype of Q" is an
abbreviation of the formula t,'xV t(P(x,t) ~ Vs(Q(x,s) -, P(x,s))). For an example
of the concept of stable subtype, see section 4.5.

A conceptual schema is usually informally defined as an implementation
independent description of the contents in an information system. We here
define a conceptual schema as a pair <L, IC>, where L is a language and IC is a
set of integrity constraints of the form given above. All predicate symbols in L
are assumed to be either binary or ternary, and for each ternary predicate
symbol p, the existence of two constraints in IC specifying the domain and range
of p is assumed. In the following, we shall call the binary predicate symbols
"object types" and the ternary "attributes". We assume there exist a set of
predicate symbols LP and a set of constant symbols LC (called lexical predicate
and constant symbols), such that for any conceptual schema its language L is
based on <P 13 LP, LC>, where P is a set of predicate symbols.

The motive for introducing the lexical predicate symbols and constants is to
capture the distinction between object identifiers (surrogates) and data values
[Beeri89]. The point of this distinction is that in all interpretations, the data
values are to denote the same objects, whereas object identifiers may denote
different objects in different interpretations. As an example, the value "7"
should always denote the natural number seven, while an object identifier
"qz27" may denote an employee in one interpretation and a department in
another. Usually, the values are integers, strings, booleans etc.

In fig. 3.1, a graphical representation of a conceptual schema is shown. Note
that the graph only depicts a part of the language of the schema and some
integrity constraints. The graph shows that the schema contains five binary
predicate symbols {person, man, woman, pet, string} and five ternary {ss#, name,
sibling, possesses, married_to}, corresponding to object types and attributes,
respectively. The only lexical predicate symbol occurring in this schema is
"String", shown in the graph as a rectangle. The graph also shows a number of
typing constraints, e.g. "domain(possesses) = PERSON" and "range(possesses) =
PET". The generalization constraints MAN c: PERSON and WOMAN C:

76

PERSON are shown by arcs labelled ISA. There are also some additional
integrity constraints, which are not shown graphically: married_to is single-
valued and injective; possesses is injective and surjective; sibling is domain-
stable and range-stable; ss# is total, single-valued, and injective; name is total
and single-valued.

Fig. 3.1 Example of a conceptual schema

We now turn to the definition of an information base; informally an information
base contains information about particular objects and associations between
these. An information base for a conceptual schema CS = <L(P, LC), IC> is a pair
<C, F>, where C is a finite set of constants, and F is a finite set of ground atoms
whose predicate symbols belong to P and whose constants belong to LC U C. Note
that an information base can be viewed as an interpretation of L over the
Herbrand universe given by LC U C. We write IBcs to denote the set of all
information bases for CS.

The role of integrity constraints is to state conditions that must hold true for
each information base: Let CS = <L,IC> be a conceptual sdlema and IB = <C, F>
an information base for CS. The information base IB violates the schema CS if
some constraint in IC is not true in F.

An example of a small information base for the schema in fig. 3.1 is the
following. Note that the information base does not violate the schema
supposing tl < t2.

{man(pl,tl), person(pl,t l) , ss#(pl,'4511010098',tl),
string('4511010098',tl), man(pl,t2), person(pl,t2),
ss#(pl,'4511010098',t2), string('4511010098',t2), pet(el,t2),
possesses(pl,el,t2)}

77

This representation is obviously not adequate for implementing real databases,
but it does provide a convenient formal framework for analyzing schema
transformation issues.

4 Basic Schema T r a n s f o r m a t i o n s

In this section, we formalize the concept of schema transformation and present a
number of basic transformations. Let C be the set of all conceptual schemas. A
schema transformation is a function from C to C. We introduce a requirement
that a transformed schema shall fulfil w.r.t, the original schema. Informally,
the requirement says that the transformed schema shall be able to represent at
least as much information as the original one. We first have to introduce some
notation. If P is a set of definite clauses, then Mp denotes the least Herbrand
model for P. Let LI(P1,F1,C1) and L2(P2,F2,C2) be two languages such that L1 is
an expansion of L2, i.e. P2 c P1, F2 C F1, and C2 c C1. Let H be a Herbrand
interpretation of L1. The restriction of H to L2, denoted H I L2, is the subset of H
whose elements only involve predicate symbols from L2. Let M and N be two
Herbrand interpretations, and let M t and N t be the terms in M and N,
respectively. M and N are isomorphic, denoted by M --- N if there is a bijection oc:
Mt ~ Nt, and M' = N, where M' is obtained from M by substituting each term t in
M with co(t).

Let CS1 = <LI,ICI> and CS2 = <L2,IC2> be two conceptual schemas. CS1
dominates CS2 if there exist a function � 9 IBcs 2 -~ IBcs 1 and a set D of definite
clauses, such that the heads of the clauses in D are expressed in L2 and the
bodies in L1, and
(i) 4) is total and injective
(ii) if IB2 does not violate CS2, then �9 (IB2) does not violate CS1
(iii) for every information base IB2 = <C2,F2> of CS2, M~ (F2) U D I L2 ~ MF2.

Informally, a schema CS1 dominates another schema CS2 if there exists a
simple total mapping from the information bases of CS1 to the information
bases of CS2. By "simple", in this context, we mean that the mapping can be
defined by a set of definite clauses. We say that two schemas, CS1 and CS2, are
equivalent if CS1 dominates CS2 and CS2 dominates CS1.

In the following subsections, we present a number of basic schema
transformations. We also prove that a schema produced by any of the
transformations dominates the original schema.

4.1 A Transformation for Partial Attributes

Two equivalent schemas may differ in their use of subtypes. One way to
standardize the use of subtypes is to require all attributes to be total. If an
attribute in a schema is partial, the schema can be transformed by introducing a
new subtype so that the attribute becomes total. An example is shown in fig. 4.1,
where the type PERSON is the domain of a partial attribute salary. To make

78

the attribute total, we introduce a new subtype, EMPLOYEE, as shown in fig.
4.2.

I I i Num ~

s~_ lary ~ String J

Number I

Fig. 4.1 Fig. 4.2

Transformation 1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains an attribute p, which is not total, i.e. "p is total"
IC. Let q be the domain of p and let qs be a type not belonging to P. The
transformation is given by:

L(P,F,C) ~ L(P U {qsI,F,C)
IC ~ ICU [p is total, domain(p) = qs, qs c ql - Idomain(p) = ql

4.2 A T r a n s f o r m a t i o n fo r m - m A t t r i b u t e s

When modelling associations between objects, one often has a choice between
two alternatives. Either the association can be represented by a single attribute,
or an extra object used to connect the associated objects can be introduced. An
example where the association is represented by a single attribute is given in
fig. 4.3, where the fact that persons can own cars is modelled by an attribute
o w n s . An equivalent schema is shown in fig. 4.4, where the association between
cars and persons is modelled with the help of an additional type
OWNERSHIP. To standardize schemas in this respect, a restriction can be
placed on the schemas that no m-m attributes (i.e. attributes which are neither
single-valued nor injective) be allowed. If an m-m attribute occurs in a schema,
it can be transformed by introducing a new object type.

79

Fig. 4,3 Fig. 4.4

Transformation 2:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when CS contains an m-m attribute p with domain d and range e. Let
q be a type and Pl, P2 two attributes such that [q, Pl, P21 fl P = ~ . Let f denote a
function symbol not belonging to F. The transformation is given by:

L(P,F,C) ~ L(P U {q,Pl,P2} - [p},F U {f},C)
IC ~ IC - {ic ~ IC I ic concerns p} U

{domain(p1) = q, range(p1) = d,domain(p2) = q,range(p2) = e} U
{Pl Is single-valued, total, and domain-stable} 13

{P2 is single-valued, total, and domain-stable} 13
{Pl is injective I p is single-valued} U
{P2 is injective I p is injective} 13

[Pl is surjective I p is total} 13
{P2 is surjective I p is surjective} U

{Pl is range-stable I p is domain-stable} U

{P2 is range-stable I p is range-stable] IJ

4.3 A T r a n s f o r m a t i o n for Lexical At tr ibutes

A frequent cause for differences between schemas describing the same UoD is
that the same phenomenon can often be modelled by either a non-lexical object
type or by a lexical one. As an example, consider figures 4.5 and 4.6, which show
two equivalent schemas. In fig. 4.5, the fact that cars have colours is modelled
as an association between cars and strings, whereas in fig. 4.6, the same fact is
modelled as an association between cars and colour objects. To avoid
discrepancies of this type between schemas, one can request that lexical objects
should only be used as names for other objects, i.e. by requiring that every

80

attribute with a lexical type as range should be 1-1. If a schema contains an
attribute with a lexical type as range and which is not 1-1, then the schema can
be transformed by introducing a new object type, which becomes the range of
that attribute.

•co•n
String I

0

I I

~ String I

~ c_ id

I col

Fig. 4.5 Fig. 4.6

Transformation 3:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains an attribute p, which has a lexical type It as range
and which is not 1-1. Let q be a type and q_id an attribute such that {q, q_id} FI
P = O. Let f ~ F be a function symbol. Let R = {rl,...,r n} C P be the set of all
attributes with It as range. Let R' = {rl',...,rn'l be a set of attributes such that R'

CI P = t~. The transformation is given by:

L(P,F,C) ~ L(P O {q,q_id} O R' - R,FU {f},C)
IC ~ IC - {ic z IC I ic concerns an attribute in R} U

{domain(q id) = q, range(q_id) = It} U
{q_id is single-valued, injective, total, and surjective} U
{range(ri0 = q I ri r R} U
{ri' is single-valued (injective, total, surjective, domain-stable, range-
stable) I
ri r R, ri is single-valued (injective, total, surjective, domain-stable,
range-stable)}

4.4 A Transformation for Attributes with Fixed Ranges

It is possible to use attributes for classifying objects into different categories.
This can be done when the range of the attribute contains a small, fixed number
of values. An example is shown in fig. 4.7, where persons are classified into two
different groups, based on sex. An equivalent schema is given in fig. 4.8, where
the attribute sex has been replaced by two subtypes to PERSON. To avoid

81

discrepancies of this type between schemas, one can require that attributes with
ranges, that have a small, finite extension not be allowed. If a schema should
contain such an attribute, it could be transformed by introducing a number of
subtypes to the domain of the attribute. These subtypes should correspond to the
values of the range of the attribute.

Gender has a finite
extension: {m,f} I Gender I

Fig. 4.7 Fig. 4.8

Transformation 4:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains an attribute p with domain d and range It, where It
is a iexical type with a finite extension {al,...,an}. Further, suppose that p is
domain-stable, but neither injective, surjective, nor range-stable. Let Q =
{ql,...,qn} be a set of n types such that P f'l Q = ~. The transformation is given by:

L(P,F,C) ~ L(P U Q - {p}, F,C)
IC ~ IC - {ic ~ IC I ic concerns p} O

{qic d I qie Q}O
{ql qn are exhaustive w.r.t, d I p is total} U

{qi and qj are disjoint I qi, qj s Q, i ~ j, p is single-valued} U
{qi is a stable subtype of d I qi r Q}

4.5 A T r a n s f o r m a t i o n f o r Stable S u b t y p e s

Another cause for discrepancies between schemas describing the same UoD is
that sometimes a certain phenomenon can be modelled as either a subtype of a
given object type or as a type associated via an attribute to the given type. As an
example, consider figures 4.9 and 4.10. In fig. 4.9, the fact that persons can be
employed by companies is modelled by the use of a subtype EMPLOYEE. In fig.
4.10, the same fact is modelled by a type EMPLOYMENT and a one-to-one
attribute of. It can be noted that being an employee is not an intrinsic property of
a person. Instead, being an employee can be regarded as a role played by a

82

person in relation to a company; a person can start and stop being an employee.
Note that a person must remain a person during his complete life-time, whereas
he may become and stop being an employee several times during his life-time. In
other words, EMPLOYEE is not a stable subtype of PERSON. To standardize
schemas, we could require that only stable subtypes should be allowed. If a
schema contains a non-stable subtype, we could replace the ISA-relation by a 1-
1 attribute as described in the following transformation.

Fig. 4.9 Fig . 4 .10

T r a n s f o r m a t i o n 5:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains two types q and qs such that q c qs, but q is not a
stable subtype of qs. Let q' ~ P be a type. Let R = [r I ,r n} be the set of all
attributes with q as domain. Let R' = (rl',...,rn'} be a set of attributes such that

R'A P = 0 . Let {Sl Sm} be the set of supertypes of q. Let T = (tl,...,tm} be a set

of at tr ibutes such that T n P = ~3. Let f ~ F be a function symbol. The
transformation is given by:

L(P,F,C) ~ L(P U R'U TU (q') - R - (q), FU (f), C)
IC ~ IC - {ic ~ IC I ic concerns q or an attribute in R} U

{domain(ri') = q' t ri ~ R} U

(range(rf) = ui I r i r R, range(ri) = ui} U

{domain(t i) = q' I t i r T} U

{range(ti) = si I t i e T} U
{ti is single-valued, injective, and total I ti r T) U
{r i' is single-valued (injective, total, surjective, domain-stable, range-
stable) I
ri~ R, ri is single-valued (injective, total, surjective, domain-stable,
range-stable)}

83

4.6 A Trans format ion for Lattice Structure

If two types are not disjoint, it may be useful to introduce a common subtype,
whose extension is the intersection of the extensions of the two types. As an
example, consider f igures 4.11 and 4.12, where a sub type
AMPHIBIOUS_VEHICLE of the types CAR and BOAT is introduced. We could
then require that whenever there are two types which are not disjoint, they
should have a common subtype.

A

Fig. 4.11 Fig. 4.12

Transformation 6:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains two types p and q, which are not disjoint. Let r ~ P be
a type. The transformation is given by:

L(P,F,C) ~ L(P U {rI,F,C)
IC~ICLI I rc p, r c ql

Proposition 4.1: For transformations 1 - 4 above, the transformed schema is
equivalent to the original schema. For transformations 5 - 6 above, the
transformed schema dominates the original schema.

Proof Sketch: Let S be a conceptual schema and Si the schema obtained by
applying transformation i to S. In accordance with the definition of dominance
in the beginning of section 4, we give functions 4~i: IB S -~ IBsi and ~I'i: IBsi -~ IB S
and corresponding sets of definite clauses D i and E i.

84

T r a n s f o r m a t i o n 1:
�9 I(IB) = IBU Iqs(a,t) I-~bp(a,b, t)~ IB}
D1 = O
' t ' I(IB) = I B - {qs(a,t) I qs (a , t) c IB}
E1 = {qs(a,t):- p(a,b,t)}
T r a n s f o r m a t i o n 2:
~2(IB) = IB - {p(a,b,t) I p(a,b,t) ~ IB) 13 Iq(f (a ,b) , t) , p l (f (a ,b) ,a , t) , p2(f (a ,b , t) ,b)
I p(a,b,t) ~ IB}

D2 = Ip(x,y,t) :- q(f(x,y),t)}

�9 2(IB) = IB - {q(a,t) I q (a , t) ~ IB} - {pl (a ,b , t) I p l (a ,b , t) ~ IB} - I p 2 (a , b , t)
Ip2(a,b,t) c IB} U {p(a,b,t) I Hs(pl(s ,a , t) r IB, p2(s,b,t) ~ IB)

E2 = {q(f(x,y), t) :- p(x,y,t), p l (f (x ,y) , x, t) :- p(x,y,t), p2(f(x,y), y, t) :- p(x,y,t)}
T r a n s f o r m a t i o n 3:
�9 3(IB) = IB - {ri(a,b,t) I ri(a,b,t) ~ IB, ri ~ R} U {ri'(a,f(b),t) I ri(a,b,t) ~ IB, ri r R}

13 {q(f(a),t), q_id(f(a) , a, t) I lt(a,t) ~ IB}
D3 = {ri(x,y,t):- ri '(x,f(y),t) I ri r R}
~t'3(IB) = I B - {ri '(a,b,t) I r i ' (a , b , t) ~ IB, r i ' ~ R ') - {q(a,b) I q (a , b) ~ IB} -

{q_ id (a ,b , t) I q _ i d (a , b , t) ~ IB)13 {ri(a,b, t) I .~ s(r i ' (a ,s , t) ~ IB, q (s , t) ~ IB,

q_id(s ,b, t) G IB, ri ' ~ R')
E3 = {ri'(x,f(y),t):- ri(x,y,t), q(f(x),t):- It(x), q_id(f(x),x):- It(x)}
T r a n s f o r m a t i o n 4:
e~4(IB) = IB - {p(a,b,t)) I p(a,b,t)) ~ IB} U Iqi(a,t) I p(a,ai , t) r IB}

D4 = Ip(x, ai,t):- qi(x,t) I qi r Q)

�9 4(IB) = IB - Iqi(a,t) I qi(a,t) �9 IB, q i r Q} U [p(a,ai, t) I qi(a, t) ~ IB, q i~ Q}
E4 = {qi(x,t):- p(x,ai,t)}
T r a n s f o r m a t i o n 5:
r = IB - {q(a,t) I q(a,t) ~ IB} -

{ri(a,b,t) I ri(a,b,t) ~ IB, r i ~ R} 13
{q'(f(a),t) 1 q(a,t) ~ IB} U
{ti(f(a),a,t) I q(a,t) ~ IB, t i~ T} U

Iri '(f(a),b,t) I r i ~ R, ri(a,b,t) ~ IB}
D 5 = {q(x):- q'(f(x),t)} 13 {ri(x,y,t):- ri '(f(x),y,t) I r i G R)
T r a n s f o r m a t i o n 6:
eP6(IB) = IB 13 {r(a,t) I p(a, t) ~ IB, q(a.t) G IB)

D6=O

In the a p p e n d i x be low, we give the inverses of the schema t rans fo rmat ions
presented in this section.

85

5 An Example

In this section, we show, by means of an example, how the transformations
introduced above can be applied. Our point of departure is the schema depicted
in fig. 5.1, which can be used to represent information about people living in
Ancient Greece. People are assumed to live at addresses and to be citizens in
countries. The attribute sex is used to represent the gender of a person, and the
boolean attribute human specifies if a person is a human or an immortal. The
figures following fig. 5.1 show how the original schema is successively
transformed.

String'[I Siring I citizen_in is single..valued and partial
' ~ lives_at is m-m

G e n d e r " ~ citizen in ~ " ,] sex is single-valued, total, and domain-stable
t ~ ~ s e x ~ human is single-valued, total,

lives_a i and domain-stable
Gender has a finite extension: {re,l}
Boolean has a finite extension: {I,I}

Fig. 5.1 The original schema

I String I
l i v ~ liv~

I

Fig. 5.2 The schema after applying transformation 1 (partial attributes)

86

I String I

f ~ citizen in

Fig. 5.3 The schema after applying transformation 2 (m-m attributes)

aname
~ - - - ~ ~t.o~ I

~ ~ ~ - - ~ sex I~ Gender
~ . ._ j ,n.a~.oo,-.r

String

Fig. 5.4 The schema after applying transformation 3 (lexical attributes)

87

a_name

- - " 2
String I

Fig. 5.5 The schema after applying transformation 5 (stable subtypes)

Fig. 5.6 The schema after applying transformation 4 (attributes with fixed
ranges)

88

ADDRESS

at

LNING

a name

inhabitan

String I (. CITIZEN-

PERSON

in

String

Lname

ISA / ,I ~ ISA ~ ISA

DEITY / HUMAN

ISA

ISA V ~ / I , ~ . ~ lISA

833 } { GODDESS } (MAN ~ (WOMAN

Fig. 5.7 The schema after applying transformation 6 (lattice structure)

As can be seen from the example above, the transformations do not necessarily
produce a schema which is more "natural" or intuitively appealing than the
original one. However, the schema produced is more standardized in the sense
that it reifies as many phenomena of the UoD as possible, i.e. for every
phenomenon to be modelled, the schema uses as many object types as possible.
For example, the fact that persons can be citizens in countries was modelled in
the original schema by means of a single attribute, while in the final schema
two object types, CITIZENSHIP and COUNTRY, have been added.
Standardizing schemas in this way supports the schema integration process.
Since a larger number of the correspondences between the schemas will be simple
relationships between two object types or two attributes, it is easier to identify
and express relationships between different schemas,

6 C o n c l u d i n g R e m a r k s

In this paper, we have discussed how schema transformations can be used to
standardize schemas, and we have indicated how this standardization can

89

facilitate the view integration process. We have proposed a formal framework
for the representation of conceptual schemas based on notions from logic
programming and deductive databases. We have also formalized the notion of a
schema transformation, and we have presented a number of schema
transformations using the framework proposed.

A common property of the schema transformations presented in this paper is
that they transform a given schema into a schema satisfying some constraint.
For example, the transformation of section 4.1 produces a schema in which a
given attribute has to be total. Generating schemas which satisfy certain
constraints is typical for most schema transformations found in the literature,
e.g. the well-known transformations used for normalization in relational
database design produce schemas with certain restrictions on the functional
dependencies in the schema. Another characteristic of most of the
transformations given in this paper is that they expand the language of the
original schema by introducing additional object types and/or attributes. This
property makes the transformations useful for applications other than just view
integration, e.g. in constructing a natural language interface to a database, the
transformations can be used to systematically explore alternative ways of
expression and to discover terms not present in the database schema.

The schema transformations proposed in this paper are not meant to be
exhaustive, and a direction for future work is to identify additional
transformations.. A promising approach here seems to be to investigate
transformations that create schemas satisfying dynamic constraints. For
example, one could require that destructive updates be forbidden in the
transformed schema, which would amount to creating a temporal deductive
schema based on an operational schema.

R e f e r e n c e s

[Batini86] C. Batini, M. Lenzerini and S. B. Navathe, "A Comparative
Analysis of Methodologies for Database Schema Integration", ACM Computing
Surveys, vol. 18, no. 4, pp. 323-364, 1986.

[Batini91] C. Batini, S. Ceri, and S. Navathe, Conceptual Database Design,
Benjamin/Cummings, 1991

[Beeri89] C. Beeri, "Formal Models for Object Oriented Databases", in First
International Conference on Deductive and Object Oriented Databases, Ed. W.
Kim, pp. 405-430, Kyoto, North-Holland, 1989.

[Biskup86] J. Biskup and B. Convent, "A Formal View Integration Method", in
International Conference on the Management of Data, Washington, ACM, 1986.

[Chen76] P. P. Chen, "The Entity-Relationship Model - Toward a Unified View
of Data", ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

90

[Effe1841 W. Effelsberg and M. V. Mannino, "Attribute Equivalence in Global
Schema Design for Heterogenous Distributed Databases", Information Systems,
vol. 9, no. 3/4, pp. 237-240, 1984.

[EIMasri85] R. EIMasri, J. Weeldryer and A. Hevner, "The Category Concept:
An Extension to the Entity-Relationship Model", Data and Knowledge
Engineering, vol. 1, no. 1, 1985.

[Fagin79] R. Fagin, "Normal Forms and Relational Database Operators", in
ACM SIGMOD, pp. 153-160, 1979.

[Gallaire84] H. Gallaire, J. Minker and J. M. Nicholas, "Logic and Databases: A
Deductive Approach", ACM Computing Surveys, vol. 16, no. 2, 1984.

[Hainaut91] J.-L. Hain0ut, "Entity Generating Schema Transformations", in
10th International Conference on Entity-Relationship Approach, San Francisco,
1991.

[Halpin90] T. Halpin, "A Fact-oriented Approach to Schema Transformations",
in Mathematical Foundations of Database Systems, Springer, 1990.

[Hull86] R. Hull, "Relative Information Capacity of Simple Relational
Database Schemata", SIAM Journal of Computing, vol. 15, no. 3, pp. 856-886,
1986.

[Johannesson91] P. Johannesson, "A Logic Based Approach to Schema
Integration", in lOth International Conference on Entity-Relationship
Approach, Ed. T. Teorey, San Fransisco, North-Holland, 1991.

[Kobayashi86] I. Kobayashi, "Losslessness and Semantic Correctness of
Database Schema Transformations", Information Systems, vol. 11, no. 1, 1986.

[Larson89] J. A. Larson, S. Navathe and R. EIMasri, "A Theory of Attribute
Equivalence in Databases with Apllications to Schema Integration", IEEE
Transactions on Software Engineering, vol. 15, no. 4, pp. 449-463, 1989.

[Motro87] A. Motro, "Superviews: Virtual Integration of Multiple Databases",
IEEE Transactions on Software Engineering, vol. 13, no. 7, pp. 785-798, 1987.

[Spaccapietra92] S. Spaccapietra, C. Parent and Y. Dupont, "Model Independent
Assertions for Integration of Heterogeneous Schemas", The VLDB Journal, vol. 1,
no. 2, pp. 81-126, 1992.

[Ullman88] J. Ullman, Principles of Database and Knowledge-base Systems,
Computer Press, 1988.

91

APPENDIX, Inverse Transformations

Transformation 1"1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains two types q and qs such that qs c q and qs is not
the range of any attribute. Let P = {Pl Pn} be the set of all attributes whose
domains are qs. The transformation is ~ven by:

L(P,F,C) ~ L(P - {qs},F,C)
I C ~ IC U (domain(pi) = q I Pi ~ P} - {icr IC I ic concerns qs} - {Pi is total I Pi
i'1

Transformation 2"1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when CS contains a type q that is the domain of exactly two
attributes P l and P2 which are single-valued, total, and domain-stable. The
range of P l is d, and the range of P2 is e, and both d and e are non-lexical object
types. Let p be an attribute such that p ~ P. The transformation is given by:

L(P,F,C) ~ L(P U {p] - {q,Pl,P2}, F, C)
IC ~4 IC - {icr IC I ic concerns q, Pl, or P2} U

{domain(p) = d, range(p) = e} U
{p is single-valued I P l is injective] U
{p is injective I P2 is injective} U

[p is total I P l is surjective} U
[p is surjective I P2 is surjective} U
{p is domain-stable I P l is range-stable} U
{p is range-stable I P2 is range-stable}

Transformation 3"1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains a type q that is the domain of exactly one attribute
q_id, whose range is a lexical type It, and q_id is single-valued, injective, total,
and surjective. Let R = {rl,...,r n] c P be the set of all attributes with q as range.
The transformation is given by:

L(P,F,C) ~ L(P - {q,q_id}, F, C)
IC .-~ IC - {ic G IC I ic concerns q or q_id} U

{range(ri) = It I ri ~ R}

02

Transformat ion 4"1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains a type d and a set Q = {ql,...,qn}, where each qi is a
stable subtype of d and no qi is the domain or range of any attribute. Let It be a
lexical type with a finite extension {al an}, and let p be a new attribute. The
transformation is given by:

L(P,F,C) ~ L(P U {p, lt} - Q, F, C)
IC ~ IC - {ic ~ IC [ic concerns qi I qi ~ Q } U

{p is total I q l qn are exhaustive w.r.t, d} U

{p is single-valued I qi and qj are disjoint, qi, qj ~ Q, i ~ j} U
{p is domain-stable}

Transformat ion 5-1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains a type q that is the domain of at least one attribute
that is single-valued, injective, and total. Let R = {rl r n} be the set of all
attributes with q as domain. Let T = {t 1 tm} be the subset of R which contains
those attributes that are single-valued, injective, and total. Let R' = {rl',...,rn'}

be a set of attributes such that R' N P = ~ , and let q' be an attribute such that q'
P. The transformation is given by:

L(P,F,C) ~ L(P - R - {q] U R' U {q'}, F, C)
IC ~ IC - {icr IC I ic concerns q or an attribute in R} U

[domain(ri') = q' I r i ~ R - T} U

[range(ri') = ui I ri c R - T, range(ri) = ui} U

Iq' C si I ti ~ T, range(ti) = si}
{ri' is single-valued (injective, total, surjective, domain-stable, range-
stable) I
ri ~ R - T, ri is single-valued (injective, total, surjective, domain-stable,
range-stable)}

Transformat ion 6"1:
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is
applicable when P contains a type r and two types p and q such that r c p and r
c q, and r is nei ther the domain nor the range of any at tr ibute. The
transformation is given by:

L(P,F,C) ~ L(P- {rl,F,C)
I C ~ IC- [r e p, r c qJ

