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Abstract.  Two important problems in view integration are 
identifying and merging semantically equivalent but structurally 
different modelling constructs. One way to address this problem is to 
standardize the schemas to be integrated by applying a number of 
schema transformations to them. We formalize the notion of schema 
transformation in the context of a logic based modelling approach. 
We then introduce several transformations and show how they can 
be used in the view integration process. 

1 Introduction 

Database management systems have been available for more than two decades, 
mainly in the form of the hierarchical, network, and relational models. In the 
mid 1970s the development of semantic database models was initiated. These 
were introduced primarily as schema design tools, meaning that a schema 
should first be designed in a high level semantic model and then translated into 
one of the traditional models for implementation. One advantage of using 
semantic data models in this context is that it simplifies the integration of 
different user perspectives. I11 fact, one of the basic reasons for using a database 
approach instead of a file approach is that it makes it possible to define a 
coherent view of the data of an organization, which may then be used for 
serving a number of different user perspectives. 

Consequently, an important part of conceptual design is to integrate various 
conceptual schemas. We will refer to this activity by the term schema 
integration (or view integration), which is more precisely defined as "the 
activity of integrating the schemas of existing or proposed databases into a 
global, unified schema" [Batini86]. Research in the area of schema integration 
has been carried out since the beginning of the 1980s. A comprehensive survey of 
the area can be found in [Batini861. Most of the work has been performed in the 
context of the relational model, [Biskup86], the functional model [Motro87], or 
(some extended version of) the ER model, [Larson891, [Spaccapietra92]. The 
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prevalent approach in schema integration has been to derive, more or less 
automatically, an integrated schema from a set of integration assertions 
relating equivalent constructs in the views. The integration assertions typically 
describe set relationships (equality, inclusion etc.) between the extensions of 
related entity types or attributes, [Effe1841, [Spaccapietra921, [Johannesson91]. 

A limitation of most schema integration approaches found in the literature 
is that they provide only very simple types of integration assertions, which are 
incapable of expressing relationships between structurally different modelling 
constructs. As an example of two semantically equivalent but structurally 
different constructs, consider fig. 1.1 and fig. 1.2, where the gender of persons in 
the first schema is represented using an attribute and in the second schema by 
means of two subtypes. 

{ m , f } / ~  

Fig. 1.1 Fig. 1.2 
Another problem is that it is usually more difficult to identify relationships 
involving structurally different constructs than relationships between just two 
entity types or two attributes. One way to alleviate these problems is to 
transform the schemas to be integrated before making any integration 
assertions. The schemas should be transformed so that any relationship between 
them is expressible as a simple relationship between two entity types or two 
attributes. So, the goal is to try to standardize the schemas by transforming 
them into some "normal form" before integrating them. This approach can be 
compared to the standard schema integration process described in [Batini91], 
where it is assumed that the schemas shall be modified after they have been 
compared. The method suggested in this paper reverses comparison and 
modification by requiring that the schemas first be modified in order to 
facilitate the schema comparison. The main contribution of this paper is to 
outline how such an approach can be realized. To this end, we first formalize 
fundamental concepts pertaining to schema transformations, thereby taking into 
account static as well as dynamic aspects of a schema. We then present a number 
of basic schema transformations utilizing the framework proposed. In the next 
section, we briefly review related work on schema transformations. In section 3, 
we describe the modelling formalism to be used, which is based on concepts from 
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logic programming and deductive databases. In section 4, we introduce a number 
of schema transformations, and in section 5 we show, by means of an example, 
how they can be applied. In the final section, we summarize the results of the 
paper and suggest possibilities for further research. 

2 Related Research 

Most work on schema transformations has been carried out in the context of the 
relational model. All the first normal form transformations, the third, Boyce- 
Codd, the fourth, and projection normal form decompositions are examples of 
schema transformations, [Fagin79], [Uliman88]. A central concern in this work 
has been to prove that the schema transformations are Iossless (information 
preserving), and several notions of equivalence between relational schemas 
have been proposed, [Kobayashi86], [Hull86]. Informally, most of these 
proposals define two schemas as being equivalent if there exists a (simple) 
bijecfion between the instances of the schemas. Another important issue has 
been to show how to transform different types of rules and constraints associated 
with a relational schema, such as functional dependencies and inclusion 
dependencies, [Kobayashi86]. This work has been extended by research on 
transformations in the context of semantic data models, such as the ER model 
[Chen76], and extensions of the ER model [ElMasri85]. In this research, 
[Halpin90], [Hainaut91], also more general types of constraints have been taken 
into consideration, e.g. cardinality constraints and exclusion constraints. 

An important difference between the approach taken in this paper and 
previous work is that we use a logic based formalism of conceptual modelling as 
a framework. This makes it possible to address more complex design issues 
arising from the richer semantics of conceptual modelling approaches in contrast 
to the relational model. Further, we also pay attention to the behaviour of a 
UoD (Universe of Discourse). The schema transformations presented in the 
paper are certainly not exhaustive, but we believe they are among the most 
important arising in practical modelling situations. They also provide an 
illustration of design problems no t  occurring in the context of the relational 
model by focussing on issues such as generalization, object identity, and 
dynamics. 

3 C o n c e p t u a l  Schemas 

In this section, we give a formalization of some of the basic concepts in 
conceptual modelling. The formalization is based on concepts from the logic 
programming and deductive database areas, [Gallaire84], and it attempts to 
capture both static and dynamic modelling constructs. We first recall some basic 
definitions concerning first order languages. 

Let P, F, and C be three sets of symbols. A (first order) language based on 
<P,F,C>, written L(P,F,C) is defined on an alphabet consisting of connectives, 
quantifiers, punctuation symbols, variables, function symbols F, constants C, and 
predicate symbols P, where each predicate symbol has an arity. A (first order) 
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formula in a language L is defined as usual. A term is a constant or a variable. 
An atom is a formula of the form p(tl,...,tn), where p is a predicate symbol and 
tl, . . . , tn are terms. A literal is an atom or the negation of an atom. A ground 
formula is a formula without variables. For any language L(P,F,C) we assume 
that P contains a special symbol, "=", which is interpreted as the identity. A 
clause is a formula of the form VXl,...,Vxn(L1 v . . . v  Lm), where each Li is a 
literal and Xl,...,Xn are all the variables occurring in L1 V...v Lm. We will use 

the standard notation A1,...,A k ~- B 1 ..... B n to denote the clause VXl,...,Vxm(A 1 

v...v AkV ~BlV. . .v  ~Bn). A1 .... ,Ak is the head of the clause and B1 ..... B n its 
body. A definite clause is a clause of the form A ~- B1 ..... Bn, which contains 
precisely one atom in its consequent and each Bi is an atom. 

Since we intend to consider temporal aspects of a UoD, we assume fl~at all 
languages contain a set of special symbols used to denote points in time. We also 
assume that fl~ere is a total order, denoted by "< ' ,  defined over the points in 
time. 

The basic building blocks in all conceptual modelling approaches are objects 
(entities) and attributes. Objects are often grouped together into object types, 
such as Employee and Department. To represent that a given object belongs to a 
certain object type, we use a binary predicate, where the first argument  is a 
constant denoting the object, and the second argument denotes a point in time. As 
an example, consider employee(John,T7), which expresses that John is an 
employee at the point in time TT. To represent attribute values, we use ternary 
predicates. An example is owns(John,ABC123,T9), which expresses that John 
owns the car ABC123 at the point in time T9. 

In general, an integrity constraint is defined as any closed first order formula. 
In this paper, however, we only consider certain special cases of constraints, 
which frequently occur in conceptual modelling. A typing constraint is a formula 
of the form VxYyVt(A(x,y,t) ~ D(x,t)) or the form V xVyVt(A(x,y,t) ~ R(y,t)). 
A formula of the first form will be abbreviated "domain(A) = D' ,  and a formula 
of the second form as "range(A) = R". We also say that the domain of A is D and 
the range of A is R. Mapping constraints concern the cardinality of attributes 
and have one of the following four forms. The expression "the attribute A is 
single-valued" is an abbreviation of the formula VxV y'v'z~r t(A(x,y,t) A A(x,z,t) 

y = z). The expression "the attribute A is injective" is an abbreviation of the 
formula Vx'v'yVzVt(A(y,x,t) A A(z,x,t)-* y = z). An attribute which is both 
single-valued and injective is said to be 1-1. The expression "the attribute A is 
total" is an abbreviation of the formula VxV t(P(x,t) ~ ~yA(x,y,t)), where P is 
the domain  of A. An attribute which is not total is called partial. The 
expression "the attribute A is surjective" is an abbreviation of the formula 
VxVt(P(x,t) ~ .q'yA(y,x,t)), where P is the range of A. A generalization 
constrahlt is a formula of the form V'x'v" t(P(x,t) ~ Q(x,t)) and is abbreviated P c 
Q. We also say that P is a subtype of Q. The expression "the types P1 and P2 are 
disjoint" is an abbreviation of the formula -~-qx~t(Pl(x,t) A P2(x,t)). The 
expression "the type P has a finite extension" is an abbreviation of the formula 
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VxVt(P(x,t) ~ x = a I v ... v x = an), where al,...,a n are constants. Suppose that 
P1,...,Pn are common subtypes to a type Q, then the expression "P1,...,Pn are 
exhaustive w.r.t. Q" is an abbreviation of the formula V x u  t(Q(x,t) --~ Pl(x,t) v 
... V Pn(x,t)). 

The constraints above take only static aspects of a UoD into consideration, 
i.e. they describe what should hold true in each snapshot of the UoD. We now 
turn to dynamic integrity constraints, which describe how a UoD can evolve 
over time. The expression "A is domain-stable" is an abbreviation of the 
formula VxVyVsVt(D(x,s) A D(x,t) ^ A(x,y,s) A R(y,0 ^ s<t --* A(x,y,t)), where 
D is the domain of A. Intuitively, an attribute is domain stable if an object 
which acquires a value for the attribute keeps that value for its complete life 
time. The dual of domain-stability is range-stability: The expression "A is 
range-stable" is an abbreviation of the formula VxVyVsYt(R(x,s)^  R(x,t) a 
A(y,x,s) ^ D(y,t) ^ s<t ~ A(y,x,t)), where R is the range of A. Suppose that P is 
a subtype of Q, then the expression "P is a stable subtype of Q" is an 
abbreviation of the formula t,'xV t(P(x,t) ~ Vs(Q(x,s) -, P(x,s))). For an example 
of the concept of stable subtype, see section 4.5. 

A conceptual schema is usually informally defined as an implementation 
independent description of the contents in an information system. We here 
define a conceptual schema as a pair <L, IC>, where L is a language and IC is a 
set of integrity constraints of the form given above. All predicate symbols in L 
are assumed to be either binary or ternary, and for each ternary predicate 
symbol p, the existence of two constraints in IC specifying the domain and range 
of p is assumed. In the following, we shall call the binary predicate symbols 
"object types" and the ternary "attributes". We assume there exist a set of 
predicate symbols LP and a set of constant symbols LC (called lexical predicate 
and constant symbols), such that for any conceptual schema its language L is 
based on <P 13 LP, LC>, where P is a set of predicate symbols. 

The motive for introducing the lexical predicate symbols and constants is to 
capture the distinction between object identifiers (surrogates) and data values 
[Beeri89]. The point of this distinction is that in all interpretations, the data 
values are to denote the same objects, whereas object identifiers may denote 
different objects in different interpretations. As an example, the value "7" 
should always denote the natural number seven, while an object identifier 
"qz27" may denote an employee in one interpretation and a department in 
another. Usually, the values are integers, strings, booleans etc. 

In fig. 3.1, a graphical representation of a conceptual schema is shown. Note 
that the graph only depicts a part of the language of the schema and some 
integrity constraints. The graph shows that the schema contains five binary 
predicate symbols {person, man, woman, pet, string} and five ternary {ss#, name, 
sibling, possesses, married_to}, corresponding to object types and attributes, 
respectively. The only lexical predicate symbol occurring in this schema is 
"String", shown in the graph as a rectangle. The graph also shows a number of 
typing constraints, e.g. "domain(possesses) = PERSON" and "range(possesses) = 
PET". The generalization constraints MAN c: PERSON and WOMAN C: 
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PERSON are shown by arcs labelled ISA. There are also some additional 
integrity constraints, which are not shown graphically: married_to is single- 
valued and injective; possesses is injective and surjective; sibling is domain- 
stable and range-stable; ss# is total, single-valued, and injective; name is total 
and single-valued. 

Fig. 3.1 Example of a conceptual schema 

We now turn to the definition of an information base; informally an information 
base contains information about particular objects and associations between 
these. An information base for a conceptual schema CS = <L(P, LC), IC> is a pair 
<C, F>, where C is a finite set of constants, and F is a finite set of ground atoms 
whose predicate symbols belong to P and whose constants belong to LC U C. Note 
that an information base can be viewed as an interpretation of L over the 
Herbrand universe given by LC U C. We write IBcs  to denote the set of all 
information bases for CS. 

The role of integrity constraints is to state conditions that must hold true for 
each information base: Let CS = <L,IC> be a conceptual sdlema and IB = <C, F> 
an information base for CS. The information base IB violates the schema CS if 
some constraint in IC is not true in F. 

An example of a small information base for the schema in fig. 3.1 is the 
following. Note that the information base does not violate the schema 
supposing tl < t2. 

{man(pl,tl), person(pl,t l) ,  ss#(pl,'4511010098',tl), 
string('4511010098',tl), man(pl,t2), person(pl,t2), 
ss#(pl,'4511010098',t2), string('4511010098',t2), pet(el,t2), 
possesses(pl,el,t2)} 
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This representation is obviously not adequate for implementing real databases, 
but it does provide a convenient formal framework for analyzing schema 
transformation issues. 

4 Basic Schema T r a n s f o r m a t i o n s  

In this section, we formalize the concept of schema transformation and present a 
number of basic transformations. Let C be the set of all conceptual schemas. A 
schema transformation is a function from C to C. We introduce a requirement 
that a transformed schema shall fulfil w.r.t, the original schema. Informally, 
the requirement says that the transformed schema shall be able to represent at 
least as much information as the original one. We first have to introduce some 
notation. If P is a set of definite clauses, then Mp denotes the least Herbrand 
model for P. Let LI(P1,F1,C1) and L2(P2,F2,C2) be two languages such that L1 is 
an expansion of L2, i.e. P2 c P1, F2 C F1, and C2 c C1. Let H be a Herbrand 
interpretation of L1. The restriction of H to L2, denoted H I L2, is the subset of H 
whose elements only involve predicate symbols from L2. Let M and N be two 
Herbrand interpretations, and let M t and N t be the terms in M and N, 
respectively. M and N are isomorphic, denoted by M --- N if there is a bijection oc: 
Mt ~ Nt, and M' = N, where M' is obtained from M by substituting each term t in 
M with co(t). 

Let CS1 = <LI,ICI> and CS2 = <L2,IC2> be two conceptual schemas. CS1 
dominates CS2 if there exist a function � 9  IBcs 2 -~ IBcs 1 and a set D of definite 
clauses, such that the heads of the clauses in D are expressed in L2 and the 
bodies in L1, and 
(i) 4) is total and injective 
(ii) if IB2 does not violate CS2, then �9 (IB2) does not violate CS1 
(iii) for every information base IB2 = <C2,F2> of CS2, M~ (F2) U D I L2 ~ MF2. 

Informally, a schema CS1 dominates another schema CS2 if there exists a 
simple total mapping from the information bases of CS1 to the information 
bases of CS2. By "simple", in this context, we mean that the mapping can be 
defined by a set of definite clauses. We say that two schemas, CS1 and CS2, are 
equivalent if CS1 dominates CS2 and CS2 dominates CS1. 

In the following subsections, we present a number of basic schema 
transformations. We also prove that a schema produced by any of the 
transformations dominates the original schema. 

4.1 A Transformation for Partial Attributes 

Two equivalent schemas may differ in their use of subtypes. One way to 
standardize the use of subtypes is to require all attributes to be total. If an 
attribute in a schema is partial, the schema can be transformed by introducing a 
new subtype so that the attribute becomes total. An example is shown in fig. 4.1, 
where the type PERSON is the domain of a partial attribute salary. To make 
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the attribute total, we introduce a new subtype, EMPLOYEE, as shown in fig. 
4.2. 

I I i Num ~ 

s~_ lary ~ String J 

Number I 

Fig. 4.1 Fig. 4.2 

Transformation 1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains an attribute p, which is not total, i.e. "p is total" 
IC. Let q be the domain of p and let qs be a type not belonging to P. The 
transformation is given by: 

L(P,F,C) ~ L(P U {qsI,F,C) 
IC ~  ICU [p is total, domain(p) = qs, qs c ql - Idomain(p) = ql 

4.2 A T r a n s f o r m a t i o n  fo r  m - m  A t t r i b u t e s  

When modelling associations between objects, one often has a choice between 
two alternatives. Either the association can be represented by a single attribute, 
or an extra object used to connect the associated objects can be introduced. An 
example where the association is represented by a single attribute is given in 
fig. 4.3, where the fact that persons can own cars is modelled by an attribute 
o w n s .  An equivalent schema is shown in fig. 4.4, where the association between 
cars and persons is modelled with the help of an additional type 
OWNERSHIP. To standardize schemas in this respect, a restriction can be 
placed on the schemas that no m-m attributes (i.e. attributes which are neither 
single-valued nor injective) be allowed. If an m-m attribute occurs in a schema, 
it can be transformed by introducing a new object type. 
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Fig. 4,3 Fig. 4.4 

Transformation 2: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when CS contains an m-m attribute p with domain d and range e. Let 
q be a type and Pl,  P2 two attributes such that [q, Pl,  P21 fl P = ~ .  Let f denote a 
function symbol not belonging to F. The transformation is given by: 

L(P,F,C) ~ L(P U {q,Pl,P2} - [p},F U {f},C) 
IC ~ IC - {ic ~ IC I ic concerns p} U 

{domain(p1) = q, range(p1) = d,domain(p2) = q,range(p2) = e} U 
{Pl Is single-valued, total, and domain-stable} 13 

{P2 is single-valued, total, and domain-stable} 13 
{Pl is injective I p is single-valued} U 
{P2 is injective I p is injective} 13 

[Pl is surjective I p is total} 13 
{P2 is surjective I p is surjective} U 

{Pl is range-stable I p is domain-stable} U 

{P2 is range-stable I p is range-stable] IJ 

4.3 A T r a n s f o r m a t i o n  for Lexical  At tr ibutes  

A frequent cause for differences between schemas describing the same UoD is 
that the same phenomenon can often be modelled by either a non-lexical object 
type or by a lexical one. As an example, consider figures 4.5 and 4.6, which show 
two equivalent schemas. In fig. 4.5, the fact that cars have colours is modelled 
as an association between cars and strings, whereas in fig. 4.6, the same fact is 
modelled as an association between cars and colour objects. To avoid 
discrepancies of this type between schemas, one can request that lexical objects 
should only be used as names for other objects, i.e. by requiring that every 
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attribute with a lexical type as range should be 1-1. If a schema contains an 
attribute with a lexical type as range and which is not 1-1, then the schema can 
be transformed by introducing a new object type, which becomes the range of 
that attribute. 

•co•n 
String I 

0 

I I 

~ String I 

~ c_ id  

I col 

Fig.  4.5 Fig.  4.6 

Transformation 3: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains an attribute p, which has a lexical type It as range 
and which is not 1-1. Let q be a type and q_id an attribute such that {q, q_id} FI 
P = O. Let f ~ F be a function symbol. Let R = {rl,...,r n} C P be the set of all 
attributes with It as range. Let R' = {rl',...,rn'l be a set of attributes such that R' 

CI P = t~. The transformation is given by: 

L(P,F,C) ~ L(P O {q,q_id} O R' - R,FU {f},C) 
IC ~ IC - {ic z IC I ic concerns an attribute in R} U 

{domain(q id) = q, range(q_id) = It} U 
{q_id is single-valued, injective, total, and surjective} U 
{range(ri0 = q I ri r R} U 
{ri' is single-valued (injective, total, surjective, domain-stable, range- 
stable) I 
ri r R, ri is single-valued (injective, total, surjective, domain-stable, 
range-stable)} 

4.4 A Transformation for Attributes with Fixed Ranges 

It is possible to use attributes for classifying objects into different categories. 
This can be done when the range of the attribute contains a small, fixed number 
of values. An example is shown in fig. 4.7, where persons are classified into two 
different groups, based on sex. An equivalent schema is given in fig. 4.8, where 
the attribute sex has been replaced by two subtypes to PERSON. To avoid 
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discrepancies of this type between schemas, one can require that attributes with 
ranges, that have a small, finite extension not be allowed. If a schema should 
contain such an attribute, it could be transformed by introducing a number  of 
subtypes to the domain of the attribute. These subtypes should correspond to the 
values of the range of the attribute. 

Gender has a finite 
extension: {m,f} I Gender I 

Fig. 4.7 Fig. 4.8 

Transformation 4: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains an attribute p with domain d and range It, where It 
is a iexical type with a finite extension {al,...,an}. Further, suppose that p is 
domain-stable, but  neither injective, surjective, nor range-stable. Let Q = 
{ql,...,qn} be a set of n types such that P f'l Q = ~.  The transformation is given by: 

L(P,F,C) ~ L(P U Q - {p}, F,C) 
IC ~ IC - {ic ~ IC I ic concerns p} O 

{qic d I qie Q}O 
{ql ..... qn  are exhaustive w.r.t, d I p is total} U 

{qi and qj are disjoint I qi, qj s Q, i ~ j, p is single-valued} U 
{qi is a stable subtype of d I qi r Q} 

4.5 A T r a n s f o r m a t i o n  f o r  Stable  S u b t y p e s  

Another cause for discrepancies between schemas describing the same UoD is 
that sometimes a certain phenomenon can be modelled as either a subtype of a 
given object type or as a type associated via an attribute to the given type. As an 
example, consider figures 4.9 and 4.10. In fig. 4.9, the fact that persons can be 
employed by companies is modelled by the use of a subtype EMPLOYEE. In fig. 
4.10, the same fact is modelled by a type EMPLOYMENT and a one-to-one 
attribute of. It can be noted that being an employee is not an intrinsic property of 
a person. Instead, being an employee can be regarded as a role played by a 
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person in relation to a company; a person can start and stop being an employee. 
Note that a person must remain a person during his complete life-time, whereas 
he may become and stop being an employee several times during his life-time. In 
other words, EMPLOYEE is not a stable subtype of PERSON. To standardize 
schemas, we could require that only stable subtypes should be allowed. If a 
schema contains a non-stable subtype, we could replace the ISA-relation by a 1- 
1 attribute as described in the following transformation. 

Fig.  4.9 Fig .  4 .10 

T r a n s f o r m a t i o n  5: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains two types q and qs such that q c qs, but  q is not a 
stable subtype of qs. Let q' ~ P be a type. Let R = [r I .... ,r n} be the set of all 
attributes with q as domain. Let R' = (rl',...,rn'} be a set of attributes such that 

R'A P = 0 .  Let {Sl ..... Sm} be the set of supertypes of q. Let T = (tl,...,tm} be a set 

of at tr ibutes such that T n P = ~3. Let f ~ F be a function symbol.  The 
transformation is given by: 

L(P,F,C) ~ L(P U R'U TU (q') - R - (q), FU (f),  C) 
IC ~ IC - {ic ~ IC I ic concerns q or an attribute in R} U 

{domain(ri') = q' t ri ~ R} U 

(range(rf) = ui I r i r  R, range(ri) = ui} U 

{domain(t i) = q' I t i r  T} U 

{range(ti) = si I t i e  T} U 
{ti is single-valued, injective, and total I ti r T) U 
{r i' is single-valued (injective, total, surjective, domain-stable, range- 
stable) I 
ri~ R, ri  is single-valued (injective, total, surjective, domain-stable, 
range-stable)} 



83 

4.6 A Trans format ion  for Lattice Structure 

If two types are not disjoint, it may be useful to introduce a common subtype, 
whose extension is the intersection of the extensions of the two types. As an 
example,  consider  f igures  4.11 and 4.12, where  a sub type  
AMPHIBIOUS_VEHICLE of the types CAR and BOAT is introduced. We could 
then require that whenever there are two types which are not disjoint, they 
should have a common subtype. 

A 

Fig. 4.11 Fig. 4.12 

Transformation 6: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains two types p and q, which are not disjoint. Let r ~ P be 
a type. The transformation is given by: 

L(P,F,C) ~ L(P U {rI,F,C) 
IC~ICLI I rc  p, r c  ql 

Proposition 4.1: For transformations 1 - 4 above, the transformed schema is 
equivalent to the original schema. For transformations 5 - 6 above, the 
transformed schema dominates the original schema. 

Proof Sketch: Let S be a conceptual schema and Si the schema obtained by 
applying transformation i to S. In accordance with the definition of dominance 
in the beginning of section 4, we give functions 4~i: IB S -~ IBsi and ~I'i: IBsi -~ IB S 
and corresponding sets of definite clauses D i and E i. 
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T r a n s f o r m a t i o n  1: 
�9 I(IB) = IBU Iqs(a,t) I-~bp(a,b, t )~ IB} 
D1 = O 
' t ' I(IB) = I B -  {qs(a,t) I qs (a , t ) c  IB} 
E1 = {qs(a,t):- p(a,b,t)} 
T r a n s f o r m a t i o n  2: 
~2(IB) = IB - {p(a,b,t) I p(a,b,t) ~ IB) 13 Iq( f (a ,b) , t ) ,  p l ( f (a ,b ) ,a , t ) ,  p2( f (a ,b , t ) ,b )  
I p(a,b,t) ~ IB} 

D2 = Ip(x,y,t) :- q(f(x,y),t)} 

�9 2(IB) = IB - {q(a,t) I q ( a , t ) ~  IB} - {pl (a ,b , t )  I p l (a ,b , t )  ~ IB} - I p 2 ( a , b , t )  
Ip2(a,b,t) c IB} U {p(a,b,t) I Hs(pl(s ,a , t )  r IB, p2(s,b,t) ~ IB) 

E2 = {q(f(x,y), t) :- p(x,y,t), p l ( f (x ,y) ,  x, t) :- p(x,y,t), p2(f(x,y),  y, t) :- p(x,y,t)} 
T r a n s f o r m a t i o n  3: 
�9 3(IB) = IB - {ri(a,b,t) I ri(a,b,t) ~ IB, ri  ~ R} U {ri'(a,f(b),t) I ri(a,b,t) ~ IB, ri  r R} 

13 {q(f(a),t), q_id(f(a) ,  a, t) I lt(a,t) ~ IB} 
D3 = {ri(x,y,t):- ri '(x,f(y),t) I ri  r R} 
~t'3(IB) = I B -  {ri '(a,b,t)  I r i ' ( a , b , t ) ~  IB, r i ' ~  R ' ) -  {q(a,b) I q ( a , b ) ~  IB} - 

{q_ id (a ,b , t )  I q _ i d ( a , b , t )  ~ IB)13 {ri(a,b, t )  I .~ s(r i ' (a ,s , t )  ~ IB, q ( s , t ) ~  IB, 

q_id(s ,b, t )  G IB, ri '  ~ R') 
E3 = {ri'(x,f(y),t):- ri(x,y,t),  q(f(x),t):- It(x), q_id(f(x),x):-  It(x)} 
T r a n s f o r m a t i o n  4: 
e~4(IB) = IB - {p(a,b,t)) I p(a,b,t))  ~ IB} U Iqi(a,t)  I p(a,ai , t )  r IB} 

D4 = Ip(x, ai,t):- qi(x,t) I qi  r Q) 

�9 4(IB) = IB - Iqi(a,t)  I qi(a,t)  �9 IB, q i r  Q} U [p(a,ai, t) I qi(a, t)  ~ IB, q i~  Q} 
E4 = {qi(x,t):- p(x,ai,t)} 
T r a n s f o r m a t i o n  5: 
r = IB - {q(a,t) I q(a,t) ~ IB} - 

{ri(a,b,t) I ri(a,b,t) ~ IB, r i  ~ R} 13 
{q'(f(a),t) 1 q(a,t) ~ IB} U 
{ti(f(a),a,t) I q(a,t) ~ IB, t i~  T} U 

Iri '(f(a),b,t) I r i  ~ R, ri(a,b,t) ~ IB} 
D 5 = {q(x):- q'(f(x),t)} 13 {ri(x,y,t):- ri '(f(x),y,t)  I r i  G R) 
T r a n s f o r m a t i o n  6: 
eP6(IB) = IB 13 {r(a,t) I p(a, t)  ~ IB, q(a.t)  G IB) 

D6=O 

In the a p p e n d i x  be low,  we  give the inverses  of the schema t rans fo rmat ions  
presented  in this section. 
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5 An Example 

In this section, we show, by means of an example, how the transformations 
introduced above can be applied. Our point of departure is the schema depicted 
in fig. 5.1, which can be used to represent information about people living in 
Ancient Greece. People are assumed to live at addresses and to be citizens in 
countries. The attribute sex is used to represent the gender of a person, and the 
boolean attribute human specifies if a person is a human or an immortal. The 
figures following fig. 5.1 show how the original schema is successively 
transformed. 

String'[ I Siring I citizen_in is single..valued and partial 
' ~ lives_at is m-m 

G e n d e r " ~  citizen in ~ "  , ] sex is single-valued, total, and domain-stable 
t ~  ~ s e x  ~ human is single-valued, total, 

lives_a i and domain-stable 
Gender has a finite extension: {re,l} 
Boolean has a finite extension: {I,I} 

Fig. 5.1 The original schema 

I String I 
l i v ~  liv~ 

I 

Fig. 5.2 The schema after applying transformation 1 (partial attributes) 



86 

I String I 

f ~ citizen in 

Fig. 5.3 The schema after applying transformation 2 (m-m attributes) 

aname 
~ - - - ~  ~t.o~ I 

~ ~ ~ - - ~  sex I~ Gender 
~ . ._ j  ,n.a~.oo,-.r 

String 

Fig. 5.4 The schema after applying transformation 3 (lexical attributes) 
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a_name 

- -  " 2  
String I 

Fig. 5.5 The schema after applying transformation 5 (stable subtypes) 

Fig. 5.6 The schema after applying transformation 4 (attributes with fixed 
ranges) 
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ADDRESS 

at 

LNING 

a name 

inhabitan 

String I ( . . . . .  CITIZEN- 

PERSON 

in 

String 

Lname 

ISA / ,I ~ ISA ~ ISA 

DEITY / HUMAN 

ISA 

ISA V ~ /  I , ~ . ~  lISA 

833 } { GODDESS } ( MAN ~ ( WOMAN 

Fig. 5.7 The schema after applying transformation 6 (lattice structure) 

As can be seen from the example above, the transformations do not necessarily 
produce a schema which is more "natural" or intuitively appealing than the 
original one. However, the schema produced is more standardized in the sense 
that it reifies as many phenomena of the UoD as possible, i.e. for every 
phenomenon to be modelled, the schema uses as many object types as possible. 
For example, the fact that persons can be citizens in countries was modelled in 
the original schema by means of a single attribute, while in the final schema 
two object types, CITIZENSHIP and COUNTRY, have been added.  
Standardizing schemas in this way supports the schema integration process. 
Since a larger number of the correspondences between the schemas will be simple 
relationships between two object types or two attributes, it is easier to identify 
and express relationships between different schemas, 

6 C o n c l u d i n g  R e m a r k s  

In this paper, we have discussed how schema transformations can be used to 
standardize schemas, and we have indicated how this standardization can 
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facilitate the view integration process. We have proposed a formal framework 
for the representation of conceptual schemas based on notions from logic 
programming and deductive databases. We have also formalized the notion of a 
schema transformation, and we have presented a number of schema 
transformations using the framework proposed. 

A common property of the schema transformations presented in this paper is 
that they transform a given schema into a schema satisfying some constraint. 
For example, the transformation of section 4.1 produces a schema in which a 
given attribute has to be total. Generating schemas which satisfy certain 
constraints is typical for most schema transformations found in the literature, 
e.g. the well-known transformations used for normalization in relational 
database design produce schemas with certain restrictions on the functional 
dependencies in the schema. Another characteristic of most of the 
transformations given in this paper is that they expand the language of the 
original schema by introducing additional object types and/or  attributes. This 
property makes the transformations useful for applications other than just view 
integration, e.g. in constructing a natural language interface to a database, the 
transformations can be used to systematically explore alternative ways of 
expression and to discover terms not present in the database schema. 

The schema transformations proposed in this paper are not meant to be 
exhaustive, and a direction for future work is to identify additional 
transformations.. A promising approach here seems to be to investigate 
transformations that create schemas satisfying dynamic constraints. For 
example, one could require that destructive updates be forbidden in the 
transformed schema, which would amount to creating a temporal deductive 
schema based on an operational schema. 
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APPENDIX, Inverse Transformations 

Transformation 1"1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains two types q and qs such that qs c q and qs is not 
the range of any attribute. Let P = {Pl ..... Pn} be the set of all attributes whose 
domains are qs. The transformation is ~ven  by: 

L(P,F,C) ~ L(P - {qs},F,C) 
I C ~  IC U (domain(pi) = q I Pi ~ P} - {icr IC I ic concerns qs} - {Pi is total I Pi 
i'1 

Transformation 2"1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when CS contains a type q that is the domain of exactly two 
attributes P l  and P2 which are single-valued, total, and domain-stable. The 
range of P l  is d, and the range of P2 is e, and both d and e are non-lexical object 
types. Let p be an attribute such that p ~ P. The transformation is given by: 

L(P,F,C) ~ L(P U {p] - {q,Pl,P2}, F, C) 
IC ~4 IC - {icr IC I ic concerns q, Pl, or P2} U 

{domain(p) = d, range(p) = e} U 
{p is single-valued I P l  is injective] U 
{p is injective I P2 is injective} U 

[p is total I P l  is surjective} U 
[p is surjective I P2 is surjective} U 
{p is domain-stable I P l  is range-stable} U 
{p is range-stable I P2 is range-stable} 

Transformation 3"1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains a type q that is the domain of exactly one attribute 
q_id, whose range is a lexical type It, and q_id is single-valued, injective, total, 
and surjective. Let R = {rl,...,r n] c P be the set of all attributes with q as range. 
The transformation is given by: 

L(P,F,C) ~ L(P - {q,q_id}, F, C) 
IC .-~ IC - {ic G IC I ic concerns q or q_id} U 

{range(ri) = It I ri ~ R} 
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Transformat ion  4"1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains a type d and a set Q = {ql,...,qn}, where each qi is a 
stable subtype of d and no qi is the domain or range of any attribute. Let It be a 
lexical type with a finite extension {al ..... an}, and let p be a new attribute. The 
transformation is given by: 

L(P,F,C) ~ L(P U {p, lt} - Q, F, C) 
IC ~ IC - {ic ~ IC [ ic concerns qi I qi ~ Q } U 

{p is total I q l  ..... qn  are exhaustive w.r.t, d} U 

{p is single-valued I qi and qj are disjoint, qi, qj ~ Q, i ~ j} U 
{p is domain-stable} 

Transformat ion  5-1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains a type q that is the domain of at least one attribute 
that is single-valued, injective, and total. Let R = {rl ..... r n} be the set of all 
attributes with q as domain. Let T = {t 1 ..... tm} be the subset of R which contains 
those attributes that are single-valued, injective, and total. Let R' = {rl',...,rn'} 

be a set of attributes such that R' N P = ~ ,  and let q' be an attribute such that q' 
P. The transformation is given by: 

L(P,F,C) ~ L(P - R - {q] U R' U {q'}, F, C) 
IC ~ IC - {icr IC I ic concerns q or an attribute in R} U 

[domain(ri') = q' I r i ~ R - T} U 

[range(ri') = ui I ri c R - T, range(ri) = ui} U 

Iq' C si I ti ~ T, range(ti) = si} 
{ri' is single-valued (injective, total, surjective, domain-stable, range- 
stable) I 
ri ~ R -  T, ri  is single-valued (injective, total, surjective, domain-stable, 
range-stable)} 

Transformat ion  6"1: 
Let CS = <L(P,F,C),IC> be a conceptual schema. The transformation below is 
applicable when P contains a type r and two types p and q such that r c p and r 
c q,  and r is nei ther  the domain  nor  the range of any at tr ibute.  The 
transformation is given by: 

L(P,F,C) ~ L(P-  {rl,F,C) 
I C ~  IC- [ r e  p, r c  qJ 


