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Abs t r ac t .  Tool integration in software development environments is a 
major problem, on one hand, for users of these environments, and on the 
other hand, for tool builders and suppliers. In this paper, we focus on 
persistent data integration, which is one of the two main points of tool 
integration. The purpose of this work is to provide a formal data model 
that includes most of the semantics of the data manipulated to answer 
problems raised by persistent data integration. To achieve this goal, we 
introduce a classical data model, and provide a set of operators which 
are given for the object transformation. We also provide an example de- 
scribing the transformation process. 

K e y w o r d s :  data integration, integrated software-engineering environ- 
ments ,  federated database management systems, recta-data, data het- 
erogenity, PCTE, CDIF. 

Introduct ion  

Tool and data  integration is a major  problem for both  users and suppliers of 
CASE tools. The information held by a tool is seldom compatible with the 
information that  is required by another tool. Moreover, users want to control 
tools of an environment and need to be able to move information between these 
tools. The main reason is that  users want to get efficient integrated systems. 

The integration problem can be approached from two standpoints: the first 
is the control dimension, which means giving the ability for several tools to com- 
municate.  The second is the data dimension, which means enabling a tool to 
access da ta  from another one. Data  integration is relevant only when the tools 
deal with common data. In [17], there exists a summary  of common questions 
to be answered in order to achieve data integration: "IIow work must  be done 
to make the da ta  used by one tool useful for the other ?", "How much data  
managed by a tool is duplicated in or can be derived from data  managed by the 
other ?", "How well do two tools cooperate to maintain the semantic constraints 
on the da ta  they process ?", "How much work must be done to make the data  
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generated by one tool usable by the other ?", "How well does a tool communi- 
cate changes it makes to the values of nonpersistent, common data so that other 
tools it is cooperating with may synchronize their values for the data ?". Data 
integration includes integration of persistent and nonpersistent data. We believe 
that nonpersistent data integration is relevant to control integration instead of 
data integration, so in this paper, we concentrate on persistent data integra- 
tion. We focus on some interest in integrated software-engineering environments 
(ISEE)([5, 3]) and information systems environments, during both design and 
operating phases. Our work is also relevant to federated database management 
systems (FDBMS)([15, 12, 11]) and we examine both a priori  and a posleriori  
views. Many problems about data exchange in SEE, or cooperating databases 
in FDBMS concern heterogeneity , i.e. differences in data semantics. Detecting 
semantic heterogeneity is a crucial problem. The main problems consists in hav- 
ing enough semantic and information to interpret data in a consistent way, and 
identifying and then solving semantic heterogeneity, such as differences in the 
definitions (meanings) of two data elements, or differences in the formats of the 
data elements (values, precision,...). 

In [15], there is a list of unsolved problems in FDBMS. An important point 
deals with the identification and representation of all semantics useful in various 
FDMBS. This also exists in ISEE, where a various number of platforms and 
various tools use different formats. Another point deals with the automation, 
as completely as possible, of a process that transforms data to make a tool use 
data of another one. This gives rise to questions concerning semantic integrity 
constraints, serializability, concurrency control and management. 

Persistent data integration is characterized by five points: 

(i) the data being managed, 
(ii) the representation and the naming of the data elements, 

(iii) the semantic interpretation, 
(iv) the syntactic and semantic constraints, 
(v) the implementation. 

The data represents data that each environment's tool can access. It is the 
"work area" we deal with. The implementation represents file or object struc- 
tures, concurrency control mechanisms and global environment integrity. Rep- 
resentation and semantic interpretation could be split into four different parts, 
which can be summarized as follows: 

- identical pieces of information are represented by different symbols, which 
makes up the synomyms  problem, 

- different pieces of information are represented by the same symbol, which 
makes up the h o m o n y m s  problem, 

- different aggregation or scale levels, 
- loss of information. 

Then, syntactic and semantic constraints are grouped into constraints that are 
used to manage and process data. 
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The purpose of this work is to provide a formal data model that  includes most 
of the semantics of the data used by one tool to enable another tool to "under- 
stand" these data. The formal model uses the notion of meta-level, commonly 
used in recent databases or repositories descriptions, and proposes to group at- 
tributes which describe the same data. Different levels of compatibility between 
two definitions of a data description are defined. The model has commonalities 
with object oriented data models. Its description is split into two parts: the first 
section is devoted to the introduction of definitions and propositions about com- 
patibility of two data objects. The second section describes the operators of the 
model, that  are given for the object transformation. A third section will show 
an example to illustrate the mechanisms. Then, we conclude by providing some 
problems not yet solved by the model. 

1 T h e  D a t a  M o d e l  

In this section, we describe the model we propose to use to deal with persistent 
data  integration. The model encompasses classical concepts to describe "flat" 
structures as well as composite structures. It also encompasses an object set 
concept that  enables grouping objects with "similar" descriptions into a set. Fi- 
nally, a role concept is introduced to include the fact that an element of two 
different objects has the same meaning. These concepts enable us to define three 
kinds of object compatibility. Furthermore, a notion of hierarchy of object deft- 
nitions is introduced. It enables ordering of object definitions on the "goodness 
of their descriptions" and deducing object definition compatibilities. A feature of 
object models is their richer semantics. This is important  to get enough seman- 
tics to provide as much automation as possible. We believe that such a model 

al lows for two tools to have information about syntax and semantic of shared 
data. It is the basics of our method to provide a tool with a mechanism to un- 
derstand and exchange data of another tool of the same class (i.e., tools which 
share some functionalities and data). 

1.1 O b j e c t s  

We assume the following sets: 

- let $ be an infinite set of symbols. This set is partitioned into disjoint subsets 
8~. These subsets contain symbols with identical role and meaning. Let $~ 
C S be such a subset where all the symbols belong to the role r. A data 
element ~ C $~ is a data element of r role. 
For example, the following elements belong to S: age, position, comment. 

- let T be the atomic type set (for example, integer, string, boolean, real). We 
use usual standard behaviors for these atomic types. We consider that  the 
equality between two types is a syntactic equality. 

- let 12 be the set of values belonging to T,  denoted {12 t I t E T}.  We assign 
a specific value to each type t C 7-, the null value, denoted n u l l  t which 
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describes the null value of type t E T (in our approach, null values are 
non-informative values) . Each type has a corresponding domain, namely 
~)integer, ~)string, JDboolean, and ~)real. 

The definitions we give below are very similar to the definitions which are 
admitted in an object-oriented data model or a the relational data model with 
nested relations ([10, 1]). Two concepts are commonly used for object definition. 
The first one is a "flat" structure where all the attributes are defined by an 
atomic type. The second one introduces composite structures where an attribute 
can be defined by an object definition. To introduce complex object definition, we 
classicaly use three type constructors given in [16] and [2]. These are commonly 
accepted as the tuple constructor, the union constructor, and the set constructor. 

Tuple constructor is closely related to the record structure in PASCAL, and 
to the aggregation described in [16]. This constructor allows to construct more 
complicated types, and object definitions. The syntactic representation for the 
tuple constructor is given by a pair of square brackets ([.. .]). Following is a 
short example of such a complex object definition. A complex object definition 
could be [Name: string; Address:[Number: integer; Street: string; City: string]]. An 
instance of this object definition would be [Name = "Mart in";  Address =[number 
= 9; Street --- "Harbor Drive";  City = "San Diego"]. 

The union of type constructors is closely related to PASCAL's record variant 
structure, and to generalization of [16]. It is used so that objects of differents 
types can be view as generically the same. The syntactic representation for the 
union of a type constructor is given by a pair of angle brackets (( . . .}).  We 
now give an example: an object definition could be [Address: (Street Address: 
[Number: integer; Street: string]; PO-BOX: string)], and an instance would be 
[Address = {PO-BOX = "400")]. It is important to notice that  we impose two 
constraints to this constructor. The first one is called the disjoint property and 
means that  the intersection of all subtypes of a given master type is empty. The 
second one, called the total property, means that  the union of all subtypes of a 
given master type recovers this type. Formally speaking, we define the disjoint 
and total concepts as follows. Let's consider the following diagram: 

0/.. 
where A represents the union of types. The disjoint property means that  SiC/Sj = 
0 for i r j. The total property means that Uin___l Si = a .  

The third constructor is a set constructor, called the collection constructor. 
It allows to regroup a set of objects belonging to a given type. The syntactic 
representation of this constructor is given by a pair of curled brackets ({. . .  }). In 
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the following example, we describe the semantic corresponding to this construc- 
tor. Suppose we have a text block formed by a set of lines. We write [Text_Block: 
{Line: string}]. An instance of this object definition would be [Text_Block = 
{"This is a", "simple example", "of the set constructor"}]. 

In [9], we could find an extended version of the model, described as the Format 
model, which subsumes the relational model and some parts of the hierarchical 
model. It also provides a convenient way to represent types and objects by trees 
and subtrees. 

D e f i n i t i o n  1 An object definition F, either atomic object definition or com- 
plex object definition, denoted F = [g~ :tl;. . .  ; g~, :tn] (n >_ 1), is recursively con- 
structed as follows: 

- t r ,  ~ S~, ,  (1 < i < ~), 
- ti C T (ti is an atomic type) or 

ti is a complex type (constructed by recursive application of the aggregation, 
generalization or collection constructors), (1 < i < n). 

In the rest of the text, we will call a simple object an object defined by 
an atomic definition and a composite object an object defined by a complex 
definition. Example 1 shows two simple objects. 

D e f i n i t i o n  2 An object, defined by F and denoted OF, is given by [s "'"/  

gr~ =V~] (n >_ 1) where: 

- ~ r i  e 3ri, ( 1 ( i < :  n), 
- vi E ]2t~ or vi = nullt~,  (/ < i < n). 

1.2 O b j e c t  set  

In this section, we introduce the object set concept. Such a set contains two 
components which are a unique object definition, and an object set where objects 
are consistent with the set definition. Each object of an object set correspond to 
the given definition. 

D e f i n i t i o n  3 An object set, denoted DF, is defined as: 

DF = {F, oi, . . . ,  oN} where every oi is an object defined by F (i <_ n, F unique). 

The object set represents data to be managed. It is an ensemble of instances 
refering to the definition of the object set. This definition takes advantage of 
the separation between the definition of the objects and the entities themselves. 
This approach is widely used in object oriented databases and recent database 
models, where a meta-level is introduced to give more information about data. 
It represents a dictionary of object descriptions. For our purpose, it provides two 
distinct levels with distinct goals: the first level gives semantic of data, while the 
second concerns object's instances. 



98 

E x a m p l e  1 Let F = [text: string;xposition: integer; yposition: integer] be an 
object definition, ol and o2 are two objects defined by F: 

ol = [ tex t= "sample";  xposition= 150; yposi t ion= i50],  
02 = [text  = " longe r  one";  xposition = 0; yposition = 0]. 

These two objects are considered as simple objects. A more complex object 
definition could be given by: 

Ft=[Position: Ix:integer; y: integer]; Text_block:{Line: string}] 

An instance of _~ (considered as a composite object), denoted o3 is defined as: 

03 = [Position= [x=lS0 ; y=lS0J ; Text_block={Line="A much 
more" ; L ine="complex  example"}] 

This way to describe objects is very clear and self explanatory. However, it 
becomes complicated and too cumbersome when an object contains a lot of 
elements. So we suggest to shorten the object writing as follows: 

03 = ['[lS0; lS0"] ; {"A much more"; "complex example"}3 

Nevertheless, we notice the importance of the description and the meaning of 
each symbol of an object o. It is important to know that  the first value lS0 
refers to the x position, and value [150, lS0] refers to Position. So we must 
keep in mind that  semantic is related to a symbol defined in an object. There 
are two issues: first, to keep the symbol's semantic in the object itself, second, 
to provide the F definition outside the object o, and for all objects refering to 
the definition. This is used for the object set concept. 

1.3 D o m a i n  a n d  degree  

We will define a way to get all the symbols existing in a given object definition. 
Next, we will describe the way to access object's values. 

D e f i n i t i o n  4 We assume an object definition F. We write Dora(F)  the set of  
all the symbols of  the definition F, and we recursively define D o m ( F )  as: 

- i f f  = [grl:tl], then Dom(F) = {g~l}, 
- i f F  = [s  

or F = {g~l : h ; . . .  ;~r~ :t~}, 
or F = (g~: t l ; . . . ;g~  : t , ) ,  then D o m ( F )  = {g~, E F, 1 < i < n} 

We notice that Dora(F)  and Dora(oF)  contain the same elements.  

We now assume an instance of F given by the object oF. Then we write oF(f~) 
the corresponding value of s 
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E x a m p l e  2 If we consider the object ol of the first example, we have: 
- D o m ( o l ) =  {text, xposition, yposition), 
- ol (text) = "sample",  
- ol(xposit ion) = 180 and ol(yposition) = lSO. 

For the 03 object, we write: 

- Dora(03) = {Posit ion,  x, y, Text_block, Line},  
- 03(Position) = [150; 150], 
- 03(Posit ion(x))  = lSO, 
- o 3 ( T e x t _ b l o c k )  = {"A much , , ore" ,"compJ.ex  example"} .  

Notice that  it is not possible to access a particular element of a set. 

D e f i n i t i o n  5 Given oF an object defined by F, we call degree of OF, denoted 
deg(oF)  or ~ D o m ( F ) ,  the cardinal of oF, i.e. the cardinal of domain D o m ( F ) .  

E x a m p l e  3 
- deg(ol)  = 3. 
- d e g ( r  = 5. 

1.4 Ro les  

We have seen the importance of the semantical information of each part of an 
object. We describe in this section another concept: the role. Intuitively, it spec- 
ifies that  an element has the same meaning in two different definitions. For 
instance, consider two object definitions F1 = [color: string; x: integer; y: integer; 
text: string] and F2 = [description: string; xpos: integer; ypos: integer]. The two 
definitions share some parts devoted to the same "role": text and description, 
x and zpos, and y and ypos. The role concept means that  same semantic inter- 
pretation is related to a data element in two different definitions. Furthermore, 
the definition of F2 is included in the definition of F1 (what could be written 
Dom(F2) C_ Dom(F1)). Consequently, a transformation can make F2 compatible 
with F1 (and conversely if we authorize some loss of information). There exists 
a way to establishe this kind of correspondence among data element's roles. 

The data  model we propose relies on the role concept. The symbol set S is 
divided into subsets as shown in the definition part. For instance, we regroup in 
the 8r subset all the symbols of the role r in the set 8. We distinguish between: 

- t h e  r o l e  c o n c e p t :  it consists of a set of data elements that  share some 
properties (basically at the semantic level, i.e., identical meaning), 

- a d a t a  t y p e :  it consists of a set of data elements with operations associated 
with, 
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- a value:  value of a data element of role r and of type t. 

There are at least two distinct type definitions: 

- types as sets [4], 
- types as algebras [7, 8]. 

The first definition has a historical origin, while the second appeared around 
1975. Definition of role is represented by the notion of "types as sets", which 
serves to classify data elements whereas our notion of type describes the repre- 
sentation of a data element and operators among them. The notion of role seems 
to approach the notion of abstract data types where some semantic is related 
to the types. Roles are classes of data sets, while types are complex and include 
operators. 

The next definition proposes to represent the concept in the object model, 
using the object 's definition. We first introduce the binary predicate symbol ~m 
which can be interpreted as follows: gr~m3r, holds iff r is semantically identical 
to r', which stands for semantic equality between two elements of the set 8. 

D e f i n i t i o n  6 Let F1 and F2 be two object definitions. We suppose given ~r E 
Dom(F1), and 3r' E Dom(F2). We say that gr et Jr' are compatible, denoted 
gr -z 3~', if  and only if," 

rSe__rnr / 

Compatibili ty is not restricted to a one-to-one correspondence between two 
elements (or symbols) of two definitions. We can extend the binary relation _= 
by providing a new context. For instance, such a representation can exist: 

Zr ~ Ux (3,.~), iff rSe---mr ' with r '  = U ( r i , . . . ,  rj) (i <_ x < Z 

With such a representation, we can introduce the composition of symbols. 
There is no constraint on types, the only conditions we retain are the description 
and the role. Exemaple 4 illustrates definition 6. 

D e f i n i t i o n  7 Consider F = [grl : t l ;  . . .  ,'gr~ : tn] (n > 1) and an associated object 
oF = [Zrl = vl; ...;gr= = vn], we define gr.~ (m > n) as follows: 

- grin ~ nullx~, (m > n% 
- F(gr,,) = undef inedType,  

- o ( g ~ )  = nullF(~r.~). 

Various nullH~m, undef inedType  or n u l l F ( ~ )  represents an undefined role, 

an undefined type or an undefined value (e.g., n u l l  value). There are undefined 
values which could be used to inform or complete a definition. Definition 9 allows 
to extend a given definition to match another one, and to provide a way to get a 
one-to-one correspondence between each symbol of the two definitions. In such 
a situation, we allow for the completion and the extension of a definition F of 
an object oF, only with null values. For example, F1 = [color: string; x: integer; 
y: integer; text: string] and F2 = [description: string; xpos: integer; ypos: integer] 
match if we rewrite F2 into: 
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Example  4 Let us analyze the objects ol and o~ used in example 1. The 
following properties hold: 

- text - description, 
- x ~ xpos, 
- y _~ ypos. 

Consider another example, where F1 = [Name:string;FirstName:string] and F2 
= [FulIName:stdng], then the following property holds: 

F u l l N a m e -  (Name, FirstName) 

Then, if we apply the definition 8 to F1 = [BirthDate:date] and F2 = [Birth- 
Date:string], we get: 

BirthDateF1 - BirthDateF2 

F2 = [color: nullstring; description: string; xpos: integer; ypos: integer] 

Concerning compatibility, the next four properties are used to describe mul- 
tiple levels of compatibility between two object definitions. We introduce three 
levels: general, partial and total compatibility (propositions 1 to 3 below). Propo- 
sition 4 defines all the authorized states when two definitions are compatible. 
This property helps us later obtain all the operators given by the model. 

In order to define general compatibility, we do not make any assumption on 
the types of the data elements of the two definitions F1 and F2. 

Proposition 1 (Genera l  compa t ib i l i ty  of  definitions) 
Given two object definitions F1 and F2, Ft and ['2 are generally compatible, 
denoted F1 ~ F2, i~" 

- Dora(F1) n Dom(F2) 7~ O, 

- Vf-r E Dora(F1) ['] Dom(F2), 32r e Dora(F2) (respectively Uz(2r~)) such that 
=- j r  ( respec t ive ly  --  Ux 

[] 

In the next proposition, we suppose that every type of common elements are 
syntacticaly equal, and we introduce the partial compatibility of two given object 
definitions. Therefore, we proceed to define equality between two types. We write 
that t = t' iff t is syntactically equal to t'. We use the general compatibility 
proposition to enforce the compatibility of various elements of the definitions. 

Proposition 2 (Partial compatibility of definitions) 
Given two object definitions F1 and F2, F1 and F2 are partially compatible, 
denoted F1 "~ F2, iff: 

- FI ~ F2, 
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- F1(#r) : F2Or) (or Fl(s  = Ux F2(2r~)), what can be writ ten t~, ---- t3, (or 
t~. = t , , ,  foreach x such that s - U= (J~x)). 

[] 

Then, we characterize the total compatibility property, which is the best 
achievable property about compatibility of two object definitions. There exists 
a one-to-one correspondence between each element of the definitions. 

P r o p o s i t i o n  3 (Total  compat ib i l i ty  of  defini t ions)  
I f  we consider two object definitions F1 and F2, F1 and Fv. are totally compatible, 
denoted F1 ~, F2, iff: 

- D o n ( F 1 )  = Dom(r2 ) ,  
- Vgr E Dom(F1)  and Jr, C Dom(F2) ,  we have gr =- Jr' and Fl(~r)  : F2(Jr,), 

i.e., t ~  --- t~ , .  

[] 

Our goal is to provide mechanisms to get a complete compatibility between 
two object definitions F1 and F2, in order to transform objects in regard to their 
definitions and their compatibility. Our method to build such a transformation 
proceeds step by step, to finally obtain a complete compatibility between two 
definitions that represent the same data. In order to make an inventory of all 
existing cases, we introduce proposition 4. We also provide an example which 
handle all the existing cases described in the proposition. 

P r o p o s i t i o n  4 
Given two object definitions respectively defined as F1-- [~1 : t l ;  . . .  ;gr~: t,~] (n >__ 
s) and ~2 = [Jr,: t'~;... ,'Jr~ t ' ]  (~ > s). Ifer, ~ Dom(r~) and Jr~ e Dom(~) ,  
and gr~ - 3rs, we can say that one of these s tatements  is satisfied: 

6) r~Or,) 

- F~Orj) (types are syntactically equals), 
7 s F2(3rj) (types are not equals), 
-- uI~defLnedType (the element does not exist), 

--undefLnedType (the element does not exist), 

--U~F~Or=) (composition of several elements), 
= U~Fl(~r=) (eomposition of several elements). 

[] 

Example  5 
1) F1 = [date: string] and F2 = [date: string], 
2) F1 = [length: string] and F2 = [length: integer], 
3) F1 = [length: string; checked: boolean] and F2 = [length: string], (cases 3 

and 4) 
4) F1 -- [day: string; month: string; year: string] and F2 -- [date: string], (cases 

5 and 6) 
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1.5 H i e r a r c h y  

Intuitively, the idea that  elements of a definition are ordered in terms of their 
"goodness of descriptions" is already quoted in [13]. But what does it mean? We 
think that  two definitions could be ordered, and therefore, we can deduce when 
a definition can be compatible with another one. 

Let s be a set, and __ an order on ~ (we call (s  a preordered set). Two 
elements x,y E E are consistent if there exists z E E such that x ~ z and y ~ z. 
We use such a structure (E, _) to represent the notion of inclusion of a definition 
in another one. Consider two definitions F1 and F2. We say that  F1 _ F2 iff F1 
is included in F~.. 

P r o p o s i t i o n  5 ( O r d e r i n g  on  f lat  de f in i t ion)  
The information ordering -4 on flat definition types is the simplest relation sat- 
isfying: 

[gr, :tl ;... ;s :tn] -4 /gr~ : t l ; . . .  ;tr, :tn;... ;gem :tin]. 

[] 

If we consider Fl=[text: string] and F2=[tezi: string; xpos: integer; ypos: in- 
teger], we say that  the structure represented by F2 "contains" the structure 
represented by F1. This intuitive notion is now formalized by a partial order. 

P r o p o s i t i o n  6 
Given Fl=[gr~:tl;...,'g~:t,] and F2=[g~:tl;...;gr=:tn,'...;g~.~:tm]. F1 and F2 
satisfy: 

{ I ~_ F2 

F1 ~ F2 
[] 

Then, we can deduce from definition 9 and proposition 6 that,  considering 
. . . . .  �9 . t  / F1 = [&l: tl; ;tr,:  tn] and F2 = brl: tl; .,Jr=. hi, we have: 

F1 _ F2 iff tn = undefinedType 
s --3r~ or 

o r  

We now have an order for every object definition, and can interpret this 
ordering of "goodness of description". For example, F1 = [text: string ; xpos: 
nullinteger;  ypos: nullinteger ] and F= = [text: string; xpos: integer; ypos: integer] 
can be ordered as follows: 

F1 ~F2 

Moreover, we have: 

= [ tex t :  string] ~ F2 
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2 O p e r a t o r s  

In the previous section, we described the concepts of the data model. However, 
we believe a data model is not sufficient to allow for data exchange and data 
sharing. It only enables object description. To make a tool use the objects of 
another tool, it is sometimes necessary to transform the object of the latter, 
i.e. to make the objects fully compatible. In this framework, the data  model is 
provided with a set of atomic operators that are used to make totally compatible 
two generally or partially compatible object definitions. Thus, the transformation 
cycle consists in: 

analyzing the level of compatibility of the two object definitions, 
making totally compatible the two object definitions, 
transforming the object instances. 

We introduce in this section rewritten expressions of definitions. It allows 
for the restructuration both of the definitions and the instances. Each rewrit- 
ten expression is an "atomic" rewritten expression. It means that  a complete 
transformation can be represented by a set of rewritten expressions, and that  
each step of a transformation is represented by such an expression. This view 
allows us to provide clear and simple rewritten rules, with no huge complexity. 
It also makes the study of properties attached to expressions easier, for instance 
composition support. 

We first present rewritten rules that  define accepted transformations upon 
definitions. These rules are divided into two parts: structural rewritten rules and 
content rewritten rules. Then, we introduce operators derived from these rules. 

2.1 Structural Rewritten Rules 

We discuss here rewritten expressions acting on structures. We have to take 
into account that  it should be possible to transform instances. So we establish 
a difference between "structural" rewritten expressions and "content" rewritten 
expressions. 

We first present what we call Structural Rewrite Rules (SRR). At this level, 
we only show how such a rule acts. We do not provide any information on how it 
is possible to effectively transform structures and instances. Some of these SlUR 
are already quoted in [2]. 

Rule 1 Given the following definition: 
[s tl; . . . ;  gi- l :  ti-1; ~i:[gk: t~; . . . ;  ~k+,~: t~+~]; s ti+l; . . . ;  ~ :  t ,]  

It could be rewritten as: 
[~1: tl; . . . ;  ~i -1 :  ti-1; ~k: tk; . . . ;  f-k+m: tk+rn; ~i-t-1: t i + l ;  ' '  "; ~n: tn] 

Rule 2 Given the following definition: 
[(el: tl;  . . . ;~i--1:  ti--1; ~i:{~k: t/c; . . . ;~k+rn:  tk-l-rn); ~i-1-1: t i+l;  . . - ;  ~n: tn}] 

It could be rewritten as: 
[(~1: tl; . . . ;  ~i-1: ti-1; ~k: t~; . . .  ;s tk+m; ~i+1: ti+l; ---; gn: tn)] 
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R u l e  3 Consider the following definition: 
[~1: tl; . . . ;ei :(~k: t k ; . . . ; e k + m :  tk+m}; . . . ; en :  tn] 

It could be rewritten as: 
[([gl: tl; . . . ;  g~: t~; . . . ;  e. :  t,~]; . . . ;  [el: t l ; . . . ;  e~+~: tk+~; . . . ;  t~: t,])] 

R u l e  4 Consider the definition: 
. . .  ; ) } ]  

It could be rewritten as: 
[[{el:t1 }; . . . ;  {~n:tn}]] 

R u l e  5 Consider the definition: 
[~1: h ;  . . . ;  ~k: tk; . . . ;  g~: tn] 

It could be rewritten as: 
[~1: tl; . . . ;  3k: tk; . . . ;  ~n: tn] 

P r o p e r t i e s  As underlined above, these rules are atomic. The following exam- 
ple shows how we can combine some of these rules. Suppose the two following 
definitions: F = [BirthDate: date] and F ~ = [Birth:[day: integer; month: integer; 
year: integer]]. We apply the following rules: 

r = rewrite(date: date -+ date: integer) 
r = rewrite(date: integer ~ date:[day: integer; month: integer; year: integer]) 

= rewrite(BirthDate --4 Birth) 

and deduce: 
F' = ~( r162 and F = ~ - 1 ( r 1 6 2  

2.2 C o n t e n t  R e w r i t t e n  R u l e s  

We now present some rewritten rules, called Content Rewrite Rules (CRR), that 
are necessary to take into account some differences based on types, degrees or 
scale expression of attributes. 

R u l e  6 Consider the following definition: 
[gl: tl; . . . ;  gk: t~; . . . ; *~ :  t~] 

It could be rewritten as: 
[~1: tl; ' ~k: t '" ' fn :  tn] 

R u l e  7 Consider the following definition: 
[g1: tl; . . . ;  tk: tk; . . . ; t ~ :  t~] 

It could be replaced by: 
[~1: tl; . . . ;~k :  t~; . . . ;~n :  tn; tn+l: tn+l] 
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R u l e  8 Consider the following definition: 

[ g l : t l ; - - - ; g k : t ~ ; . . . ; g k + l : t k + l ;  . . . ; g n : t n ]  
If gk and gk+l are linked by a calculus relation, named r then we could rewrite 
the definition as: 

[ ~ l : h ; . . . ; g ~ : t k ; . . . ;  r  

R u l e  9 Assume the following definition: 
[g~: tl;  . . . ;  g~: t~; . . . ;  ~.: t~] 

It could be rewritten as: 
[gl: h ; . . . ;  r t k ; . . . ;  g~: t~] 

R u l e  10 Assume the following definition: 

[gl: tl;  . . .  ; gk-~: tk-2; gk-l:tk-1; gk: tk; gk+l: tk+l; . . .  ; g~: t~] 
It could be rewritten as: 

[tl: t l ; . . . ;  tb-2: tk-2; e~: t~; tk+l: t k + l ; . . . ;  gn: tn] 

2.3 T h e  operators 

We introduce in this section ten operators derived from the rules previously 
defined. For each operator, we present the rule it corresponds to, and a brief 
overview. 

FOLD and U N F O L D  operators 
These two operators implement the first rule. The rule 1 says that if there exists 
a nested construction, then this construction can be "flattened". Conversely, a 
flat structure can be rewrite to become a nested structure. So these two operators 
act upon structures. 

Example: A typical example of use of such operators is based upon names. 
Let's assume F = [Name: [LastName: string; ['irstName: string]]. Then, we say 
that  the UNFOLD operator transforms F into U as: 

./;r ---- UNFOLD(If, Name) = [LastName: string; FirstName: string] 

C O M P O S E  and U N C O M P O S E  operators 
Rule 2 says that  it is possible to "uncompose" the union of attributes already 
enclosed into a union. Conversely, it says that  it is possible to compose several 
attributes that  can be view generically the same in an union. This is the goal of 
the COMPOSE and UNCOMPOSE operators. 

Example: Given F = [Locality: (BirthCity: string; BirthCountry: string)], the 
UNCOMPOSE operator transforms F into N as: 

F / ~- UNCOMPOSE(F, Locality) = [Locality: string] 
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D I S T R I B U T E  a n d  U N D I S T R I B U T E  o p e r a t o r s  
The third rule says that  it is possible to "rise" the union constructor through a 
definition. The application of this rule gives the DISTRIBUTE and UNDISTRIBUTE 
operators. Each attribute of a union is "distribute" through the given definition. 

Example: Given F = [Name: string; BirthDate: date; Locality: (BirthCity: 
string; BirthCountry: string)], the definition can be transformed into a definition 
n a m e d / ~  defined as: 

F I ---- DISTRIBUTE(F,  Locality) = [([Name: string; BirthDate: date; BirthCity: 
string]; [Name: string; BirthDate: date; BirthCountry: string]}] 

S E T  a n d  U N S E T  o p e r a t o r s  
The fourth rule takes into account sets of union of attributes. It separates the 
union into several sets. Therefore, SET and UNSET operators rise the union con- 
structor through the collection constructor. 

Example: Let's still consider the definition F given by F = [SisterBrother: 
{(SisterName: string; BrotherName: string}}]. Then the UNSET operator is de- 
cribed as: 

/ff = UNSET(F,  SisterBrother) = [SisterBrother:[{SisterName: string; 
BrotherName: string}]] 

R E N A M E  o p e r a t o r  
This operator implements the last structural rule, rule 5. It allows to rename an 
at tr ibute of a definition, in order to make attributes names more meaningful or 
identical to other attributes having the same meaning. 

Example: A definition F = [Birth: date] could be replaced by the new defini- 
tion T~: 

/~ = RENAME(F, Birth, BirthDate) = [BirthDate: date] 

C A S T  operator 
The CAST operator modifies an attribute's type of role r to make it compatible 
with another attr ibute of the same role (Rule 6). It means that this operator 
could transform (i.e. cast) the type t into a type t', with all the modifications 
that  may be induced on the objects defined by the given definition. 

Example: Given F = [task: string; ~ length: string; code: integer]. The CAST 

operator transforms this definition into F such as: 

F ~ = CAsT(F, length, integer) = [task: string; length: integer; code: integer] 

At the object level, an object o = [task= "Design";  length= "6"; code= 10] is 
converted into o ~ such that  0 / = [task= "Design";  length= 6; code= 10]. 

C O M P L E T E  and SKIP operators 
COMPLETE allows a one-to-one correspondence between two definitions. It is 
a way to add some attributes to a definition in order to have two definitions 
with the same degree. Therefore, with such an operator, it is easy to provide 
a complete compatibility between two definitions with different degrees. At the 
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object level, null values of the at t r ibute 's  type are given to instances introduced 
in an object. SKIP allows to cut some attr ibutes from a definition. These two 
operators realize the rule 7. 

Example: If  we suppose two definitions F and F ~, respectively F = [task: string; 
length: integer] and F = [task: string; length: integer; Programmer's~ame: string]. 
Then, COMPLETE is defined as: 

~- COMPLETE(F, Programmer's~ame, string) = 
[task: string; length: integer; Programmer's~ame: string] 

and F = SKIP(F  t, Programmer's_Name) 

At the object level, using the COMPLETE operator,  we have, if o=[task = 
"Des ign" ;  length = 10], then o I = [task = "Design" ;  length = 10; Program- 
mer's_Name = ""]. 

F O R M A T  o p e r a t o r  
The FOR.MAT operator includes differences on aggregation levels. It  implements 
the rule 8. It  is an easy way to transform the relation between two connected 
at tr ibutes and allows for a representation t ransformation of a piece of informa- 
tion. 

Example: We introduce a definition on t ime to spend for a given task. Con- 
sider F = [task: string; start_date: date; duration: integer]. If we want a new defi- 
nition which gives the duration of the given task with two attributes: start_date 
and end_date, we write: 

/~ = FORMAT(F, duration, end_date, date, start_dale Jr duration) = 
[task: string; start_date: date; end_date: date] 

S C A L E  o p e r a t o r  
This operator modifies the format  of an attribute,  e.g., a numerical value unit. 
Therefore, it solves the problem which can arise when two attr ibutes are ex- 
pressed in differents units. It  is the application operator of rule 9. This operator  
can lead to a modification of the type of the considered attr ibute.  

Example: On the t ime example described above, we now assume a duration 
expressed in hours, and another expressed in minutes. We have the following 
definition F: F = [duration_in_hours: integer]. We can apply the SCALE operator  
to t ransform this at t r ibute in: U = [duration_in_minutes: integer], and write: 

/ = SCALE(F, duration_in_hours, duration_in_minutes, integer, x * 60) = 
[duration_in_minutes: integer] 

G R O U P  a n d  U N G R O U P  o p e r a t o r s  
The UNGR.OUP and GROUP operators are related to the last rule. It allows for 
splitting or composition of one or several attributes.  The COMPOSE operator  
solves the usual case when several at tr ibutes are grouped into a unique one in 
the target  definition. Conversely, the UNGROUP solves the opposite problem. 

Example: Consider a trivia example. We introduce a date at t r ibute saved as a 
string on one hand, and as three separate strings on the other hand. So, we have 
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the definition F given by F = [start_date: string]. We would like to obtain such a 
definition: [* = [start_date_day: string; start_date_month: string; start_date_year: 
string]. We write: 

F ~ = UNGROuP(F, start_date,(start_date_day,start_date_month,start_date_year))= 
[start_date_day: string; start_date_month: string; start_date_year: string] 

At the object level, considering an object o = [start_date= "1/8 /1992"] ,  and 
using the UNGROUP operator, we have a new object o' = [start_date_day = "1"; 
start_date_month = "8"; start_date_year = "1992"]. 

3 An example 

In this section, we illustrate on a short example the problems of data exchange 
between two tools. We first describe the context, and then give an example on 
the exchange of two figures that  contain text data. 

We assume that  two tools named respectively A and B need to share some 
data. Both tools manage their own data, and we assume that  one of them needs 
data  from the other one. Assume that  A needs to access B's data and respectively, 
B needs to access A's data. The process which enable the transformation of the 
data  can be split into 3 main steps: 

(i) get both A's and B's data definitions, as explained in Section 1 of the model. 
These definitions include the semantic of the data and will help in transform- 
ing the data, 

(i 0 point out the differences between definitions, by analyzing roles and types. As 
a result, we are able to describe differences between the two data's definitions 
(e.g. semantic differences, removed attributes, added attributes, type of an 
attribute),  

(iii) make the definitions compatible in order to transform data. There are two 
sub-steps: 

�9 compatibility of the definitions, 
�9 application on the data. 

After this general description of the process, we are going to describe each 
step in details. Before, we assume the following elements: the tool A stores its 
object text data as: 

text ( 'black', 1 6 5 , 0 , 2 , 0 , 5 , 1 , 2 , 0 , 0 , 1 6 2 , 5 8 , 0 , 0 , 2 4 , 5 , 0 , 0 , 0 ,  
0, ["Sample f i g u r e " ]  ) .  

While the second tool, B, stores its data as: 

4 0 16 24 0 -I 0 0.000 2 24 189 164 30 Sample figure 
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text ( -> TEXT object 
"black', -> color 
16f, -> x draw origin 

O, -> y draw origin 

2, -> font number 
0, -> font style (0,1,2 or 3) 

5, -> font size 
i, -> number of lines 
2, -> text justify (0,1, or 2) 
O, -> text rotate 
O, -> pen pattern 
162, -> line length 

58, -> line width 
O, - >  object identifier 
0, -> font DPI 

24p -> ascendant 
5, - >  descendant 
O, -> fill pattern 

O, -> text vertical spacing 
O, -> rotation 
O, -> locked 
["Sample figure.]).-> text 

(a) 

Fig.  1. TEXT object attributes - Tool A 

[object : string/ 

color : string : "#'1 

x : integer/ 
y : integer/ 

fontiD : integer/ 

style : integer : $(0,1,2,3)/ 

fontSize : integer; 
lines~Tu~ber : integer; 
justify : integer : $(0,1,2); 

textRot : integer; 
textPattern : integer/ 

lineLength : integer/ 

lineWidth : integer/ 

obJeotID : integer/ 

fontDPI : integer; 

asoent : integer/ 
descent : integer/ 
fillPattern : integer/ 

vertSpacing : integer; 
rotation : integer; 

looked : integer/ 

]text : string : ["#']; 

(b) 

Figures l(a) and 2(a) give values on the left side of the figure, and A's and 
B's data semantics on the right side. This is not the definition of the data, but 
only the semantic attached to each value. Figures l(b) and 2(b) provide for each 
attribute the role name and its respective type. For instance, in figure l(b), we 
notice the attribute x of type integer which corresponds to the x d r a w  o r ig in  of 
the text. With figures l(b) and 2(b), we retrieve object definitions introduced in 
the model in the first section. At this point, we assume that  we get two object 
definitions, called FA and Fs .  

The second step concerns the matching of the definitions in order to provide 
a set of differences between them. To achieve this step, we use the hierarchy 
property proposed in section 1.4. It gives an order of inclusion between the two 
definitions. By analyzing them, we get the following: 

- c o m m o n  a t t r i b u t e s :  object, justify, fontlD, fontSize, textPattern, color, 
style, lineWidth, lineLength, x, y, text, rotation, fontDPI, 

- a t t r i b u t e s  in  FA miss ing  in FB: linesNumber, objectID, ascent, descent, 
filIPattern, vertSpaciug, locked, 

- a t t r i b u t e s  in  FB mis s ing  in FA: none. 

Then, the third and last step concerns the definitions and objects transfor- 
mations. To make the definitions fully compatible, we have to apply the following 
sequence of operators (we now assume that  tool B wants to access A's data so 
the transformation will translate A's data in B's format). 
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4 -> object type (TEXT) 

0 -> text Justify (0, I ou 2) 
16 -> font 
24 -> f o n ~  size 
0 -> pen pattern 
-I -> color 
0 -> fontDPI 

0 . 0 0 0  - >  angle 
2 -> text style (1, 2, 4, 8 ou 16) 

24 -> width 
189 -> length 
164 -> x draw origin 

3 0  - >  y draw origin 

Sample figure -> text (a) 

[obJeat : integer; 
Jumtify t integer : $(o,i,2)i 
fontID : integer} 

fontSize : integer} 
textPattern ~ integer} 
color : integer} 
fontDPi : integer} 
rotation : real; 
style : integer : $(1,2,4,8,16); 
lineWidth : integer; 

lineLeng~h : integer; 

x : integer; 
y : integer; 
text : string] ~ )  

Fig.  2. TEXT object attributes - Tool B 

First of all, we take into account common attributes. By ordering the defi- 
nition FA and skipping unused attributes (those which are not in the common 
set of attributes described above), and obtain a new definition called ~A defined 
by: 

F A = [object:string; justify:integer; fontID:integer;fontSize:integer; 
textPattern:integer; color:string; fontDPI:integer; rotation:integer; 

style:integer; line Width:integer; lineLength:integer; x:integer; 
y:integer; text:string] 

Next, we are going to make the two definitions totally compatible (as ex- 
plained in Proposition 3). To achieve this goal, we will apply the following se- 
quence of operators: 

O b j e c t  a t t r i b u t e  t r a n s f o r m a t i o n :  
SCALEF,A._.FB( FA, object, object, integer, ~') = [object: integer; justify: inte- 
ger; fontID: integer;fontSize: integer; textPattern: integer; color: string; font- 
DPI: integer; rotation: integer; style: integer; lineWidth: integer; lineLength: 
integer; x: integer; y: integer; text: string] 
where 9 v is defined by: 

f :  string_value *-+ integer_value, 
and the following translation table: 

Tool  A - S t r i n g  va lue  
~oval ' 

'poly' 
'polygon' 

' text'  
' a r c '  

Tool  B - I n t e g e r  va lue  
1 
2 
3 
4 
5 

At the object level, we obtain the new object: 
o = [object= 4; justify= 2; fontID= 2;fontSize= 5; textPattern= 1; color=- 
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'black'; fontDPI= 0; rotation= 0; style= 0; line Width= 58; lineLength= 162; 
x= 165; y= 0; text= 'Sample figure'] 

- F o n t I D  a t t r i b u t e  t r a n s f o r m a t i o n :  
SCALEF,A.~FB( F~A, fontID, fontID, integer, ~) = [object: integer; justify: in- 
teger; fontID: :nteger;fontSize: integer; textPattern: integer; color: string; font- 
DPI: integer; rotation: integer; style: integer; line Width: integer; lineLength: 
integer; x: integer; y: integer; text: string] 
where ~ is defined as follows: 

~: integer_value --+ integer_value * 8. 
At the object level, we obtain: 
o = [object= 4; justify= 2; fontID= 16;fontSize= 5; textPattern= 1; color= 
'black'; fontDPI= 0; rotation= 0; style= 0; line Width= 58; lineLength= 162; 
x= 165; y= 0; text= 'Sample figure'] 

- Fon tS ize  a t t r i b u t e  t r a n s f o r m a t i o n :  
SCALEF~_+FB ( U A,fontSize, fontSizc, integer, 7-/) = [object: integer; justify :in- 
teger; fontID: integer;fontSize: integer; textPattern: integer; color: string; font- 
DPI: integer; rotation: integer; style: integer; line Width: integer; lineLength: 
integer; x: integer; y: integer; text: string] 
where 7-/is defined by: 

7/: integer_value +-+ integer_value, 
and the following translation table: 

Tool  A - I n t e g e r  va lue  
0 
1 
2 
3 
4 
5 
6 

At the object level, we have: 

Tool  B - I n t e g e r  va lue  
8 
10 
12 
14 
18 
20 
24 

o = [object= 4; justify= 2; fontID= 16;fontSize= 20; textPattern= 1; color= 
'black'; fontDPI= 0; rotation= 0; style= 0; lineWidth= 58; lineLength= 162; 
x=- 165; y= 0; text= 'Sample figure'] 

- Color  a t t r i b u t e  t r a n s f o r m a t i o n :  
SCALEF,A__.FB ( UA, color, color, integer, :Z) = [object: integer; justify: integer; 
fontID: integer;fontSize: integer; textPattern: integer; color: integer; fontDPI: 
integer; rotation: integer; style: integer;line Width: integer; lineLength: integer; 
x: integer; y: integer; text: string] 
where :T is defined by: 

:Z: string_value +-+ integer_value, 
and the following translation table: 

Tool  A - S t r i n g  va lue  Tool  B - I n t e g e r  va lue  
'black' -1 
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At the object level, we obtain the new object: 
o = [object= 4; justify= 2; fontID= 16;fontSize= 20; textPattern= 1; color= 
-1; fontDPI= 0; rotation= 0; style= 0; lineWidth= 58; lineLength= 162; x=- 
165; y= 0; text= 'Sample figure'] 

- R o t a t i o n  a t t r i b u t e  t y p e  cast:  
CASTF,a..+Fs(UA, rotation, real) = [object: integer; justify: integer; fontID: 
integer;fontSize: integer; texlPattern: integer; color: integer; fontDPI: integer; 
rotation: r e a l ;  style: integer; line Width: integer; lineLength: integer; x: integer; 
y: integer; text: string] 
At the object level, we have: 
o = [object= 4; justify= 2; fontID= 16;fontSize= 20; textPattern= 1; color= 
-1; fontDPI= 0; rotation= 0.000; style= 0; lineWidth= 58; lineLength= 162; 

t65; y= 0; text= 'Sample figure'] 
- S t y l e  a t t r i b u t e  t r a n s f o r m a t i o n :  

SCALEF,a__.Fs( UA, style, style, integer, f l)  = [object: integer; justify: integer; 
fontID: integer;fontSize: integer; textPattern: integer; color: string; fontDPI: 
integer; rotation: integer; style: integer; line Width: integer; lineLength: integer; 
x: integer; y: integer; text: string] 
where f l  is defined as follows: 

f l  : flo = l 
,7} = ~ - 1 . 2  

At the object level, we have: 
o = [object= 4; justify= 2; foniID= 16;fontSize= 20; textPattern= 1; color= 
-1; fontDPI= 0; rotation= 0.000; style= 1; line Width= 58; lineLength= 162; 
x= 165; y= 0; text= 'Sample figure'] 

This sequence of operators gives a new object compatible with B's format. 
By now, the o object can be accessed by tool B. Several comments can be made 
regarding this example: 

- first of all, we only show the A to B data translation. There is no problem 
to do the opposite translation, but it takes longer. We give here some of 
the operators that should be use to do this. The COMPLETE operator should 
be used to make the B's definition totally compatible with A's. Some of 
the S C A L E  operators we give in the above exaznple are conserved in the 
translation. In fact, only functions not using translation tables have to be 
changed, while bijectives functions (those with translation tables) can be 
preserved. 

- in figures 1(5) and 2(5), there is some syntactical information. For instance, 
we can notice the color attribute describes as: color: integer: ' # ' .  This def- 
inition indicates to the parser that the color attribute, known as a string 
attribute, is between two simple quotes. With such a method, we skip un- 
necessary information. 
We have also introduced a way to describe default values of an attribute. 
This was done with the $ character. Between the parenthesis, we give default 
values of the attribute. 
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finally, we would like to emphasize that there exists a important  step that  
comes before all those described in this section. It concerns the need of having 
a unique notation of attributes of the same role. Our method supposes this 
unicity. A way to have this unicity is to take CDIF ([6]) semantic about 
at tr ibute of text in a figure. Of course, definitions are rather poor against tool 
definitions, but it is quite normal because it gives only significant attributes. 
We do not want to take the entire CDIF format, for the reasons explained 
in the following section, but only the semantic related to attributes. This 
allows to unify attribute 's  roles, and for instance to call the style attr ibute 
in a common manner (e.g. FONTSTYLE) .  The TEXT object definition in 
CDIF is presented in figure 3. 

pic_tb 

cdif_body 

pt 

inst num 
! - 

i symbol_name 

font_style 

cdif_textbody 

cdif_graDh_body 

string 

legal_char 

integer 

(UNBOUNDEDTEXT odif_body pt inst_nuz~ 
symbolname font_style) 

(BODY cdif_text_body cdif_graph body) 

(PT integer integer) 

( INSTANCENUMBER integer) 

(SYMBOLNARE string) 

(FONTSTYLE string) 

(TEXTBODY ({string})) 

( GRAPHBODY ) 

"{I egal_char} " 

abcdef ghi j klmnopqrstuvwxyz 
ABCDEFGHIJXLMNOPQRSTUVWXYZ 
0123456789 
l@#$~& * () ---+, [1 {}.;, ~ ]I?., >< 

0 to (2"'16)-I 

Fig.  3. TEXT object attributes - CDIF 

4 C o m m e n t s  

We have introduced a data model to conceptually characterize objects and 
their definitions, where each object can be transformed by some operators. Our 
method for transforming data elements can be used both in a priori and a posteri- 
ori views. First, the model should be compatible with each tool without changing 
its internal data  format. Then, for each data element definition, we construct a 
mapping that  translates a definition into another for every situation. Finally, a 
set of operators allow us to build a translation procedure. 
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Let's make a few comments in regard of other methods. We believe that  a 
common data format (like CDIF) does not solve all the problems. Such a solution 
implies that  each tool changes its internal data format to manage a commonly 
accepted format. Such a process is advantageous in an a priori situation, but 
has drawbacks in an a posteriori case (for instance, if the tool vendor does not 
want to change the tool format). So, integration could be difficult in such cases. 
With our model, each tool keeps its own data format and the translation is 
vendor independent. We believe this is well suited for an a posleriori situation 
and for moving a set of tools to a fine integrated system. Another strong point 
is the ability to control data without creating and managing a new common 
format. The format definition step is often very long, because of getting each 
participant an agreement on each part of the data format. The consensus steep 
may be long, and is only a priori oriented. As emphasized before, our model 
allows for working in both a posteriori and a priori situations. So, it is useful 
to integrate old tools with new tools or to provide a way to change a tool in 
order to allow environment's evolution. These two ways of implementing data 
integration clearly complement each other, as they cover different steps of data  
integration problem solving. 

We have seen in our model how each tool continues to manage its data  and 
how there exists an "on the fly" translation when another tool wants to access 
these data. This characteristic provides simplicity and efficiency (data irredun- 
dancy). The identification and the representation of data elements, and the se- 
mantic interpretation are already made, and so, data translation and integration 
process are quite easy. Moreover, some level of automation is allowed. Our model 
presents solutions on current problems described before: the synonyms and the 
homonyms problems are dealt with (definition of each object, compatibility lev- 
els, GROUP and UNGROUP operators) but not entirely solved, we also suggest 
a solution to the loss of information problem (COMPLETE operator), and then 
take into account the different level of scale problem (FORMAT operator). We 
provide answers about syntactic constraints, but all the syntactic and semantic 
constraints part needs further research. Then, the approach offers a preferred 
extensibility and evolution path. It allows continued operation of existing appli- 
cations to remain unchanged. Moreover, we feel that  our approach makes changes 
and modification processes faster 1 than the adoption of a common data format 
as suggested by the work around CDIF, for instance. 

An essential part of future research devoted to several unsolved problems, 
will be as described below. There exists at least two kinds of improvements: 
first, we distinguish model improvements (quoted with o), and then we present 
implementation improvements (quoted with .):  

o the "semantic constraints" problem. If a tool has to manage data produced 
by another tool, it must respect semantic constraints related by the owner 
tool. For instance, when a tool A considers a constraint saying that  the value 

1 More work has to be done on the common data format and on changing tools internal 
data format on the other hand. 
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of an attribute z is smaller than the value of an attribute y, another tool 
B which has to manage A's data should ensure this constraint. So we must 
provide in our model such a property to enforce semantic constraints, 

o the "world representation" problem. We need to investigate all the possible 
cases of usual semantic that  can occur. In particular, we have to account 
for specific cases. A starting point to solve this problem could be to get 
evolutions of CDIF format to provide classes of common attr ibute sets, 

�9 the "getting representation" problem. Each tool must provide its data  format  
in a common manner. It is important  for the definitions to be described with 
the same model, so it can be useful to provide a frame to enforce tools to 
use the same symbol semantic description. Analyzis and comparison steps 
will be easier if we can use a complete and a common semantic description, 

�9 the data integrity problem. We must provide a consistency implementation 
mechanism to ensure the global consistency criteria. One of the main prob- 
lem is to track multiple data updates, in various format, and to provide a 
mechanism which respects the semantic constraints of the proprietary tool. 
Our approach currently does not support concurrent access to data by var- 
ious tools. A transaction mechanism may be needed. But, for the moment,  
we consider that  these problems are implementation dependent and we do 
not deal with them in the model. 

As said before, this model needs further improvements. Rather than the 
classical tool oriented view, we think that  a data  oriented view will be a great 
challenge to solve some conflicting situations such as homonymy and synonymy 
problems. "One data file, various tools able to manage these data" scheme is 
preferred to the classical "one tool, one data formal' scheme. To provide this 
control, we will introduce a group (or class) concept ([14]), where various tools 
with the same functionalities are regrouped into classes. Each tool in a class is 
closely related to other tools in the same class. For each class, there exists a 
common data  semantic which allows for a high automation of the translation 
process. The new scheme can be describe as: "given data, give me a list of au- 
thorized tools I could use to manage these data with maximum automation". Our 
main effort is currently to find an efficient way to solve some of these problems 
(in adding new pieces of information in the model itself, i.e. constraints). 

From a practical point of view, there exists an ongoing UNIX 2 implementa- 
tion, which will be implemented on a PCTE [5] platform. 
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