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Abs t r ac t .  Validation of user requirements shouldstart as early as possi- 
ble in the development process. A conceptual model is a suitable medium 
for an early representation of functional requirements. Despite the user- 
oriented nature of many conceptual models, requirements error are dif- 
ficult to detect as the size and complexity of the model increases. Thus, 
the consequences of the specified requirements are difficult to judge only 
from inspecting the models. To improve the model comprehensibility, a 
conceptual model with executable properties can be transformed to an 
executable prototype that can be evaluated to detect potential miscon- 
ceptions expressed in the model. 
One major validation approach to improve the comprehensibility of com- 
plex models is based on and exploits the executability of conceptual mod- 
eling languages. A conceptual model can be interpreted as or transformed 
to an executable prototype. An executable prototype is particularly use- 
ful for validating the dynamic properties of the conceptual model. 
In this paper the executable properties of the PPP language are ex- 
ploited and a PPP model is transformed into an executable prototype 
in TEQUEL and C. The transformation strategy and execution mech- 
anisms of the approach are presented, and its potential for validating 
model behavior is discussed. 

1 Introduction 

Validation of user requirements has tradit ionally been concentrated on testing 
program code prior to system installation. However, experiences have shown tha t  
requirement errors detected at this stage are enormously expensive compared 
to earlier detection and correction [1]. Validation of user requirements should 
therefore s tar t  as early as possible. 

A conceptual model is a suitable medium for representing domain knowledge 
and functional requirements early in the development process. However, the first 
versions of a conceptual model seldom reflect the actual requirements. Since the 
model is a result of communicat ion processes among several parties involved 
in the project, misunderstandings and misconceptions may  cause ambiguous, 
invalid, redundant,  inconsistent, and/or  incomplete models [5]. Despite the user- 
oriented nature  of many  conceptual model, these obstacles are difficult to detect 
as the size and complexity of the model increases. Thus, the consequences of the 
specified requirements are difficult to judge only from inspecting the models. 
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One major validation approach to improve the comprehensibility of complex 
models is based on and exploits the executability of some conceptual modeling 
languages. A conceptual model can be interpreted as or transformed to an exe- 
cutable prototype. An executable prototype is particularly useful for validating 
the dynamic properties of the conceptual model. The prototype is a tangible 
product which can be exercised and searched for deficiencies and incompliance 
with user requirements. 

This paper will show how an integrated conceptual model is transformed into 
an executable prototype that can be used to validate the dynamic properties of 
the model. The paper very much builds on the work presented in [16], but the 
emphasis is on the validation potential of the work. The paper is organized as fol- 
lows: Section 2 presents the PPP modeling language along with a description of 
a problem domain. In Section 3 we describe the strategy for transforming a PPP 
model into an executable prototype which is made of statements in TEQUEL, 
C, and Prolog. Also, the execution strategy is presented. In Section 4 we show 
how the prototype is used to validate the model behavior, whereas its validation 
potential is discussed in Section 5. Related work and some tentative conclusions 
are offered in Sections 6 and 7, respectively. 

2 The Modeling Languages in PPP 

ppp1 (Phenomena, Processes, and Programs) is an experimental ICASE envi- 
ronment presented in [8]. The PPP environment is running on Sun work-station 
under Unix and Sunview and has been developed using BIM-Prolog as the major 
implementation language. 

The language used in the PPP environment is a visual language that is 
thoroughly defined in [13, 23]. The PPP language consists of four sub-languages 
which are grounded on well established languages and address different aspects 
of the functional requirements to an information system: 

- The PrM (Process Model) language is used to describe dynamic aspects. It 
is based on the traditional DFD language, with added constructs for better 
precision and increased expressiveness. As will be shown, it has some char- 
acteristics in common with Ward's Transformation Schema [31], and other 
languages like [17]. 

- The PhM (Phenomenon Model) language is an extension of the entity- 
relationship model, and includes many features of newer semantic data mod- 
els [25]. 

- The PLD (Process Life Description) language is used to specify process logic 
of bottom-level processes. It has many similarities with block-structured, 
program design languages [30]. 

1 ppp is developed within the RHAPSODY-project (1989-1993) at the University of 
Trondheim and very much builds on and relates to the results of the DAISEE-project 
(1982-88). Furthermore, cooperation has taken place towards the ESPRIT-projects 
TEMPORA and IMSE. 
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- The UID (User Interface Description) language is used to describe static 
and dynamic aspects of user interfaces, based on the possibilities offered by 
graphical user interface technology. 

Although the languages cover different aspects, they are tightly integrated. 
Thus, transformations between different sub-models are enabled. 

In this paper, we will concentrate on the PrM language and the PLD lan- 
guage, since these are mainly used to express dynamic properties of a problem 
domain. For descriptions of PhM and UID, see [8, 26] and [13], respectively. 

The modeling constructs of PrM and PLD will be explained using a domain 
description from the "Swedish Post Case Study" [28]. Within the scope of this 
text,  we have concentrated on the business area "Management  of payment and 
invoicing" and an overall description of this area is given as follows: 

A registration clerk receives a delivery-note from a customer. The 
delivery-note contains information about the customer, which articles 
have been delivered, and the number of articles. The customer can either 
pay cash or he can use a credit agreement if  available. If he pay cash, a 
cash-receipt is given to the customer. Otherwise, an invoice is produced. 
The invoice contains the total amount of money attached to the delivery- 
note, and status values indicating whether the invoice have been sent, 
paid, or not. Each fifth day, invoices are sent to the customer with an 
administration fee of 10 NOK added and the sent status is updated. 
Furthermore, each week a reminder is sent to the customer based on 
sent, but unpaid, invoices. Also here, a reminder fee of 20 NOK is added 
to the total amount. Payment from customers are related to specific 
invoices which are deleted (marked paid) from the system. 

2.1 T h e  P r M  L a n g u a g e  

The PrM language is used to describe the overall dynamic aspects of the problem 
domain. A top level PrM model for our example is shown in Fig. 1 and modeling 
constructs that  differ from the traditional DFD language are labeled. 

P r o c e s s e s  have the same meaning here as in a DFD model, i.e. describing 
the business activities as transformation of input flows to output  flows. From our 
domain description, four activities can be identified and modeled as processes. 
Processes can be decomposed in the same manner as done in the DFD language. 
Since our example already shows a restricted part of the problem domain, a 
further decomposition is not necessary. 

Also, f lows and s t o r e s  have the same meaning as in a DFD. However, the 
PrM language allows flow contents to be specified as variables or attributes from 
the PhM model, with accompanying type information. A set of variables with 
type information is called i t ems .  Also, e x t e r n a l  a g e n t s  have the same seman- 
tics as external entities in DFD. The name difference has been made to emphasize 
the dynamic aspects of entities. In the top level model, the R e g i s t r a t i o n  c l e r k  
and the Customer are modeled as external agents. 
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Fig. 1. The PrM model of the Sweden Post 

T i m e r s  increase the temporal expressiveness of PrM and can either be used 
as clocks or delays. Clocks send output signals on a regular basis in order to 
monitor processes, whereas delays are used where output signals are sent some 
specified interval after an input signal has been received. Generally, input signals 
may start and stop timers. In Fig. 1, two timers (of clock type) are included to 
regularly send Invo ic ing_schedu le  and Reminder_schedule each 4th day and 
each week, respectively. 

Control flow is modeled by the use of t r i g g e r i n g  and t e r m i n a t i n g  proper- 
ties of data  flows. These properties determine when a process will start and stop 
its execution, respectively. If a process is passive and receives the right combina- 
tion of triggering flows, it will start executing. On the other hand, an active pro- 
cess terminates when a combination of terminating flows is sent. Non-triggering 
and non-terminating flows can be sent/received any time while the process is 
active. In the example, process P4 is activated if it receives the triggering input 
flow Reminder_schedule 2, and will terminate by sending the terminating flow 
Reminder to Customer. 

To define logical relationships between input flows and output flows, PrM 
offers i n p u t  p o r t s  and o u t p u t  po r t s ,  respectively. There are three basic kinds 
of ports corresponding to the three logical connectives: conjunction (AND), dis- 
junction (OR), and exclusive disjunction (XOR). From the example model in 
Fig. 1, we see that  the input port of P1 is an AND port with four input flows 
which are all received during execution. The output port of P1 is of XOR type 
and means that  P1 either sends a Cash_receipt  to the Customer or (exclusively) 

2 Marked with a 'T'. 
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store an invoice in D4: Invoices  by sending Store_invoice. An OR port is not 
used in the example, but is symbolized with an "arc". 

Moreover, a port may be conditional, repeating, or both in any combination. 
A conditional port reflects a situation where flows are sent or received depending 
on some condition. A repeating port means that flows may be received or sent a 
number of times during a single execution of a process. In Fig. 1 the output port 
of P2 is repeating which is indicated by a unbroken line. A conditional port is not 
shown in the model, but is depicted by a dashed line. Also, composite ports can be 
formed by placing ports inside each other. For instance, the input port of P2 cor- 
responds to the logical expression AND(Invoicing_schedule,R-hND3(Invoice_ 
in~o) ). 

Now, we can describe a single execution of process P2 as follows: The process 
is activated by receiving the flow Invoicing_~chedule from timer 4 day. Then 
it repeatedly receives Invo ice . in fo  from D4 : Invoices.  All invoices which have 
not been sent or paid earlier are sent to the Customer and stored in D4: Invoices  
with updated status information (defined by Update_invoice). 

For more detailed descriptions of PrM, see [8, 23]. 

2.2 The  PLD language  

The PLD language is used to specify process logic of bottom-level processes. The 
processes that have associated PLD models will be denoted automatic processes, 
whereas processes that emulate human tasks will be called manual processes. 
Constructs for assignments, iteration, and choices are defined. In addition, two 
constructs for receiving and sending data provide interprocess communication 
and communication with users and databases. 

Fig. 2 shows the process interface of process P2:Invoic ing reflected in a 
PLD model. The different modeling constructs of the PLD language is labeled. 
The initial PLD model is automatically generated from the PrM model in Fig. 1. 
Roughly speaking, the items are inherited in the PLD models. Also, the ports 
and triggering/terminating flow properties define the overall structure and the 
ordering of the PLD model, respectively. It should be noted that the item infor- 
mation is not shown in the PLD model in Fig. 2, whereas the "dashed" boxes 
containing statements written in "courier" are manually filled in by the developer 
in order to complete the model. 

The flow of control of a PLD model is downwards and from left to right. The 
s t a r t  cons t ruc t  simply marks the start of the PLD model. First, the process 
receives Invoicing_schedule. The receive cons t ruc t  identifies the data flow 
and the sender. In addition, though not shown in the figure, it contains the item 
information. 

A loop cons t ruc t  follows, to indicate that data from D4:Invoices is re- 
peatly received during the execution. A loop construct may either correspond 
to a WHILE-loop (as in the example model) or a FOR-loop of traditional pro- 
gramming languages. 

3 A short-hand notation of repeating-AND. 
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Fig. 2. A PLD model corresponding to the process interface of P2 

To check whether an invoice already has been sent or not, a choice  con- 
s t r u c t  is used. The choice construct is composed of one se lec t ion  c o n s t r u c t  
which marks the choice situation, and one or more a l t e r n a t i v e  c o n s t r u c t s ,  one 
for each alternative to be evaluated. Each alternative contains an expression. If 
this expression evaluates to true, the block below the alternative construct will 
be executed. In the example, only one alternative is evaluated. For the case that  
an invoice has not been sent before (sent  = 0), the amount is updated using 
the a s s i g n m e n t  c o n s t r u c t .  Moreover, Update_invoice and Invo ice  are sent 
to D4: Invo ices  and Customer, respectively. The s e n d  c o n s t r u c t  identifies the 
data flow and the receiver. In addition, though not shown in the figure, it con- 
tains the item information. 

3 T r a n s f o r m i n g  P P P  m o d e l s  i n t o  T E Q U E L / C  

In PPP, transformations form an integral part of the development process. They 
are actively used as the system is being modeled, to speed up the modeling pro- 
cess while preserving the consistency between different sub-models. The transfor- 
mation from a PrM model to an initial PLD framework has already been shown 
in Fig. 2. Similarly, transformations generate programs on the basis of different 
parts of a PPP model. So far, these transformations are mainly restricted to the 
construction of prototypes. The most important transformations implemented in 
the PPP tool are: (1) from UID models to C/Moti f  ([13]), (2) from PLD models 
to Ada ([8, 19]), (3) from PPP models to Simula/Demos ([9]), and (4) from PPP 
models to TEQUEL/C ([16]). 

In this section we will take a closer look at the generation of TEQUEL/C 
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code. The main structure of the transformation strategy will be outlined and 
selected transformation rules will be included to the extent they shed light on 
the process. The interested reader is referred to [15, 18] for a more complete 
documentation and evaluation of the code generation process. First, however, a 
brief introduction to TEQUEL. 

3.1 T E Q U E L  

TEQUEL is a programming language with temporal semantics and has been 
developed at Imperial College, London [24]. The underlying execution platform 
for TEQUEL is called the Rule Manager [27]. Roughly speaking, a TEQUEL 
specification is a set of rules on the form [16]: 

formula about the future <= formula about the past 

These rules are evaluated with respect to a particular state in a temporal database, 
yielding a number of formulae about the future which must be made true, if not 
already true. The formula about the past is expressed in TQL, Temporal Query 
Language, whereas the formula about the future is expressed in TAL, Temporal 
Action Language [24]. 

In this work TEQUEL has served two main purposes. First, it has been used 
as a target platform for the transformed PPP models. Secondly, it has been used 
to exploit the temporal semantics of the PPP language. 

3.2 The  Trans fo rma t ion  S t r a t e g y  

The overall strategy for transforming PPP models to C/TEQUEL programs 
is indicated in Fig. 3. From a PPP model, which is internally represented as 
Prolog facts, three separate parts are generated: (1) A TEQUEL part, (2) a C 
part, and (3) a Interface part which acts as an interface between the C part and 
the TEQUEL part. Each part is generated based on a transformation schema 
that exploits different parts of the PPP model. Some selected transformation 
rules are shown in the figure and is explained in the sequel. We have adopted 
the graphical notation for such rules from Broy [3]. 

The  T E Q U E L  P a r t  contains the temporal statements based on the informa- 
tion given in the PrM model and the eventual database schema created from 
the PhM model. For prototyping purposes, this schema is represented as 
Prolog facts. The TEQUEL program consists of the following parts: (1) a 
declare part which converts information from the environment into a form 
that is manageable by the Rule Manager, (2) a never part that consists of 
constraints expressed in the conceptual model, (3) a query part that consists 
of derivation rules, and (4) a rule part which consists of action rules [24]. 
The current version of the code generator mainly exploits the declare and 
the rule parts. Generally, rules which can be interpreted from the PPP model 
are transformed into TEQUEL rules that appear in the rule part. The effect 
of the TAL statement is specified in the declare part. 
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Trans fo rma t ion  rule  a shows how a triggering flow and the triggered pro- 
cess is transformed into a TEQUEL rule. The TQL statement says that when 
flow, containing item, appeared in the previous state, the TAL statement, 
process( i tem) ,  follows. The effect of the TAL statement is declared as an 
action that calls the C function cProcess (see below). Item can be sent from 
an agent, a timer or from another process, simulating both external events, 
temporal events and internal events, respectively. 

T rans fo rma t ion  rule  b shows the implementation of a delay. The rule 
that is produced says that if item is received a certain time ago (specified in 
the temporal expression Ticks), item is forwarded in flow unless the timer 
has been turned off in the meantime (receiving the off_:flow). If flow is 
triggering a process, a rule like the one shown in t r a n s f o r m a t i o n  rule  a 
will also be produced. 

The  C P a r t  corresponds to the internal behavior of the processes which are 
described by the PLD language. The procedural semantics of the PLD lan- 
guage makes a transformation to C straightforward, giving one C function 
for each PLD model. Selection constructs, iterative constructs, and assign- 
ment constructs have the traditional semantics and are transformed into the 
corresponding C statements. 
As mentioned above, an action initiates a C function. A major part of the 
C part is devoted to transfer of data and control to and from the Rule 
Manager. All items that are contained in triggering input flows to processes 
are transferred to the function as parameters. 

Furthermore, non-triggering flows between automatic processes correspond 
to data transfer between C functions. The actual transfer is implemented 
as a queue buffer. T rans fo rma t ion  rule  c shows how a send construct 
produces an item that is put into the end of the buffer. The reception of 
item is shown in t r a n s f o r m a t i o n  rule  d. Moreover, the rule illustrates 
the handling of a triggering, repetitive flow. The first item is passed to the 
TEQUEL part in order to trigger the process proces-~. The item is received 
through the parameters of the C function. The remaining items is retrieved 
from the buffer structure. 

Non-triggering flows from agents/manual processes to automatic processes 
and vice versa are interpreted as communicatiofi between the end-user and 
the system. Consequently, input and output routines are generated. 

Flows from stores to processes are interpreted as queries, whereas flows from 
processes to stores work either as insert-, update-, or delete-statements de- 
pending on detailed specifications in the PLD model. 

The  In te r face  Pa r t  takes care of the communication between the C part and 
the TEQUEL part by (1) statements which link created C functions to their 
counterparts in the TEQUEL part, (2) predicates which enable the sending of 
triggering flows to an event list used by the Rule Manager, and (3) predicates 
which enable the C program to access the temporal database. There are four 
kinds of accesses: queries, deletes, updates, and inserts. T rans fo rma t ion  
rule  e shows how a flow from a store to a process is interpreted as a single 
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query and transformed into a Prolog predicate. The item is defined by parts 
of the PhM model and is reflected in the predicate structure. 

During the transformation process, lexical and syntactical analysis of the 
PPP model are performed [18]. Also, the model is checked for internal consis- 
tency. Fig. 3 illustrates how process P2's PLD model and the P2's interface to 
other parts of the PrM model have passed these checks and are transformed into 
the prototype code. 

Before code is generated, the user must decide the length of a tick, the dura- 
tion of the smallest time interval. To simulate our example, "day" is a suitable 
tick unit. 

3.3 Internal View of the Execut ion 

The Rule Manager controls the execution. The execution sequence of the pro- 
gram is conceptually related to triggering flows of the PrM model. In Fig. 4 
we show the execution sequence with respect to the periodic property of clock 
4 Day. We have divided the execution period into the following steps that are 
labeled in the figure: 

1. The clock 4 day will be activated on every fourth tick (day). When this oc- 
curs, the temporal event invoie ingschedule(1)  is asserted in the TEQUEL 
part. 

2. This event will trigger the rule with action part invoic ing(Xl) .  This part 
is recognized as an action in the declare part of the TEQUEL part. On the 
conceptual level this step corresponds to the triggering of P2 : Invoicing.  

3. The action is a call to the C function c invoic ing  which corresponds to the 
PLD model shown in Fig. 2. Now, the execution follows the logic of the C 
part. All items on the input flows are received. Since the flow invo ice in fo  
is a query, the items are retrieved through the Interface part. 

4. The C function produces output data to agent Customer. Here, the infor- 
mation about the invoice is shown by writing out plain text according to 
the definition in the send construct. 

5. In order to update the database D4 : Invoices,  a predicate upda te invo ice /3  
is called. Since there is no logical "update-concept" in the temporal model, 
the old tuple has to be deleted and the new tuple including the changes has 
to be inserted. 

6. After 4 new ticks step 1 to 5 are repeated. 

This internal execution sequence is hidden from the user of the system. The 
user view of the execution is explained in the next section. 

4 U s e r  V i e w  o f  t h e  E x e c u t i o n  a n d  V a l i d a t i o n  

User involvement during the execution is central for model validation. In connec- 
tion with the work presented here, we have identified three major tasks where 
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F "~'"am.: ~ "  ~5;am.); 4 
$ 

BI M_Pr d og_termirkate_callO; 

Invoice 

I 

- -  Interface 
:-extem Ioad([cinvoidng..] ,r 6w~e~oo6to']). 
:-extem predicate(cinvoicin g(intog or:l)). 
j~voicoinfo(X1 ,...X6):- 

~rhals(Now), 
Previous is Now - 1 

3 invoic~X1 ,..X6,$t~'t,Eno'), 
Start. ,< Pre~ous, 
End >. Pr~ous. 

I~l~Xtemat einvoice( X t ,X2,X4):. 
p<xaQu~y(inv~X1 ~XS,...X12)), 

I, 
temper aAseerl(not{invoiceCX 1 ,X8, .. ,Xt 2)),now), 
temper aAsserl(invoieo( X 1 ,X2,X9,X4,Xt 1 ,Xt2),r~w). 

Fig.4. Execution sequence of parts of the generated programs 

the user can participate: (1) setting up the execution session, (2) viewing the 
execution trace, and (3) inspecting the temporal database. The tasks are briefly 
explained in the sequel. 

4.1 Se t t ing  up the  Execu t ion  Session 

An execution session is set up by defining the test data. That is, the initial 
database content and the external events which are invoked during execution. 
Both aspects should reflect the situation in the problem domain. 

Assuming that the initial database content is as indicated in Fig. 5a. For 
simplicity reasons, we have only loaded the database with one customer, John, 
who lives in Trondheim. John has a c r e d i t  agreement stating that payment 
should be issued within 5 days. Also, the post services are limited to sending 
l e t t e r s .  Such a service costs 5 NOK. 

Here, we define the execution to last for 10 ticks (days). During that period 
the user invokes the external events that are shown in Fig. 5b. At day 3, John 



[ customer(John,Trondheim) 
agreements(John,credit,5) ! 

M articles(letter,5) . . ~  

(a) 
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(b) 

Fig, 5. The test data for the execution session. 

delivers a de l ive ryno te  stating that he has sent 10 l e t t e r s .  The deliverynote 
(and later the invoice) is identified by a number 1. If John receives both an 
invoice and a reminder, it can be deduced that the total fee has accumulated to 
80 NOK at day 8. A natural consequence is that John pays invoice 1 at day 9, 
which corresponds to the second external event given in Fig. 5b. 

4.2 Viewing the  Execu t ion  Trace 
The Rule Manager executes the generated prototype on the basis of the initial 
database content and the external events. Here, the Rule Manager uses a textual 
interface for user communication. The execution trace shows the situation at each 
tick and allows for invoking external events. 

In Fig. 6, parts of the execution trace (.day 3 to day 5) of our example are 
shown. At day 3, the external event de l i ve ryno t e  is invoked. No more in- 
formation is available at this day. At day 4, the timer 4 day sends the signal 
invoicingschedule. Also, an invoice corresponding to the deliverynote issued 
in the previous is produced. 

From the domain description in Section 2, the following statement is ex- 
tracted: 

...Each fifth day, invoices are sent .... 

The model developed so far has assumed that invoices are been sent each 
fourth day. If such an error hadn't been detected by only inspecting the model, 
the execution trace has clearly revealed the error. 

The next day (5), process P2 : Invoic ing is activated and new invoices, among 
them the one associated with John's deliverynote, are sent to the customer. The 
content of the invoice is shown in order to give realistic response to the user. 

4.3 Inspecting the Temporal Database 
In addition to the execution trace, the Rule Manager provides a temporal database 
throughout the execution. Roughly speaking, the content of this database rep- 
resents the historic view of the execution. By inspecting the temporal database, 
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Rule Manager- Tick 3 

External events: deliverynote(1,John,letter,10) 
Temporal events: _ 
Actions: --- 

Tick 4 

External events: - -  
Temporal events: invo ic ingschedule (1 )  
Actions: produceinvoice(1,John,letter,10) 

Tick 5 

External events: - -  

Temporal events: - -  
Actions: invoicing(l)  

Message to agents: 

invoice no: 1 due date: 8 
name: - John sen~  1 
amount: 60 paid: 0 

Fig. 6. Parts of an execution trace of our example. 

it can be learnt within what time period the collected execution information has 
been valid. 

In Fig. 7, we have shown some of the tuples of the temporal database after 
executing the Swedish Post example. Each tuple is time-stamped with a start- 
time and an end-time indicated in which time period of the execution the tuple 
was valid. The initial database from Fig. 5a is recorded in the tuples 1 to 3. 
These tuples are persistent which is indicated by start-time and end-time being 
0 and 999994, respectively. 

Furthermore, the temporal database records external, temporal, and internal 
events where the start-time and end-time collapses into a time-period of one tick. 
An external event is recorded with the happened tuple 4, whereas a temporal 
event is indicated in tuple 8. 

Tuple 7, 10, 13, and 18 illustrate how the invoice tuple is recorded and 
modified in the database. The day after the deliverynote was entered the system, 
a corresponding invoice was produced. Tuple 7 states that John has to pay 50 
NOK for the invoice at day 4. The due_date is 8 and the invoice has neither 

4 This is the convention for persistent data. 
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1. customer(John,Trondheim,0,99999) [ 10. invoice(1,60,8,1,0,John,5,7) I 
2. agreements(John,credit,5,0,99999) [ U. reminderschedule(1,7,7) 
3. articles(letter,5,0,99999) [ 12. producereminder(1,8,8) J 
4. happened(deliverynote(1,John,letter,10),3,3) [ 13. invoice(1,80,8,1,0,John,8,9) 
5. deliverynote(1,John,letter,10,3,3) i 14. happened(payment(I,80),9,9) t 
6. produceinvoice(l,John,letter,lO,4,4) ] 15. payment(I,80,9,9) J 
7. invoice(1,50,8,0,O,John,4,4) i 16. registerpayment(1,80,10,10) 
8. invoicingschedule(1,4,4) [ 17. payments(I,80,10,99999) ]~ 
9. invoicing(I,d,S) " 18 invoice 1 80 8 1 1 ohn 10 99999 

Fig. 7. Parts of the temporal database after execution of the model 

been sent (0) nor paid (0). Tuple 10 records the information after the invoice 
has been sent. Here, the amount has been accumulated to 60 NOK, whereas the 
sent-status is 1. This information is valid from day 5 to day 7. In Tuple 13, when 
a reminder has been sent, the amount has been accumulated to 80. Finally, after 
John has paid the invoice at day 9, tuple 18 records the payment; paid-status is 
set to 1. 

The inspection of the temporal database also show how the error in the model 
can be revealed. 

5 D i s c u s s i o n  

The chosen approach enables the user to validate model behavior based on exe- 
cuting the generated prototype. How well validation can be supported depends 
on several factors. Here, we will discuss the validation potential with respect to 
(1) the modeling language, (2) the underlying method, (3) the tool support, and 
(4) the execution flexibility. The former two factors depends mainly on the PPP 
environment, whereas the last is dependent on the Rule Manager. The third fac- 
tor is affected by both environments. In the sequel we will briefly discuss these 
factors with respect to the current status and devise possible improvements. 

The  mode l ing  languages  In PPP, the internal logic of automated processes is 
specified by PLD models. Detailed specifications may hamper the validation 
process if rapidness is a central requirement. In TEMPORA, process logic 
may be specified as business rules using the External Rule Language (ERL) 
[27]. Moreover, this language is used for specifying constraints on the data 
model. A translator from ERL to TEQUEL is currently being developed at 
Imperial College. ERL will therefore be an interesting alternative to the PLD 
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language, since the business rules are expected to be captured regardless of 
design considerations. If the process logic is completely specified by ERL, the 
generated code will consists of only the TEQUEL part. Such an approach is 
expected to be more in accordance with rapid prototyping than the current 
approach. 

The UID language can be used to specify the user interface for window 
applications. By exploiting UID within the frame of this work, the external 
events and execution results can be related to a generated window. As such, 
the execution can be presented in a way that is more like the one the user will 
meet in the final application. By combining this facility with the execution 
approach discussed in this paper, multi-modal validation is enabled, showing 
the same situation through several viewpoints. 

The  M e t h o d  The PPP method devises a depth-first strategy for investigating 
specific parts of the domain [8]. Thus, the model do not need to be completely 
specified prior to creating a prototype. Processes and flows between stores 
and processes are given different interpretation according to the detail of 
the model. For instance, if a process is empty, it is interpreted as a manual 
process. In this way we can validate separate parts of the model at different 
times according to the level of detail. 

Tool s u p p o r t  In the current version of the tools, the PPP tool and the Rule 
Manager are loosely coupled. The validation is therefore carried by remotely 
comparing the model behavior with the execution trace. By data integration 
[29], the tools will interpret the underlying data structure equally. Such an 
integration could have interesting effects on the validation support. First, 
one could envisage that the Rule Manager would be an integral part of 
the PPP tool and is directly invoked from PPP, whenever an execution 
is appropriate. Secondly, faster generation of the executable code can be 
achieved by retransforming only those parts of the model that are modified. 
Finally, animation [11] of the model can be provided by directly feeding 
the execution trace and the temporal database into the model. For instance, 
events and actions could be shown by highlighting the actual PrM construct. 
Moreover, external events can be enterered in a pop-up window and temporal 
results of the execution could be accessed by clicking one the relevant PrM 
constructs. 

Independently of data integration, the presentation of execution traces and 
the temporal database can directly be improved by new versions of the Rule 
Manager. From providing a textual user interface as described in this pa- 
per, the new versions have adopted a graphical interface under X windows. 
Thus, a more flexible and user-friendly execution mechanisms could be sup- 
ported by upgrading the PPP tool correspondingly, obtaining presentation 
integration [29] of the tools. 

Execu t ion  f lexibil i ty The current version of the Rule Manager exploits step- 
by-step execution and batch execution [11]. When using step-by-step execu- 
tion, as shown in Fig. 6, break points are included at each tick in order to 
suspend the execution. Then, the user can interactively participate in the ex- 
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ecution by invoking external events. Moreover, he can investigate the state of 
the temporal database. Batch execution is realised by loading the temporal 
database with initial persistent data plus the events that shall happen dur- 
ing the execution. It is also possible to combine these two execution types. 
Some parts of the execution can be run in a step-by-step fashion and other 
parts in batch. 
Also, the code generator provides a flexible way of specifying the "execution 
speed" or the tick-length. For instance, to simulate various real-time situa- 
tions, a time granularity of a tenth of a second may be appropriate, whereas 
a granularity of one day was suitable in the Sweden Post example. Finally, 
the execution can be triggered to run for as many ticks as wanted. 
Improvements of execution flexibility is dependent on future versions of the 
Rule Manager. This discussion, however, is outside the scope of this paper. 

6 R e l a t e d  W o r k  

The work presented in this paper emphasizes on validating the dynamic proper- 
ties of the conceptual model by execution. The need for this is also acknowledged 
by other researchers, arguing that users find it easier to comprehend the model 
dynamics by execution, than by studying a document incorporating a sometimes 
unfamiliar and complex notation. If the users work in close cooperation with the 
developers, useful feedback can be given, improving the quality of the models 
[6, 7, 21]. Furthermore, executability provides developers a mean for model de- 
bugging [12]. This is not discussed in this paper, but can also be supported by 
our system. 

Many prototyping tools have been developed for reducing the risks attached 
to information systems development. Usually, the prototyping language is spe- 
cific and thus distinct from the development language [20]. This means that the 
designer must manipulate several languages for specification. We share the point 
raised in [20] about the inefficiency of such an approach, and proposes a scheme 
where the same set of languages are used both for prototyping and development. 

The majority of executable modeling languages like TEMPORA ([21]) and 
Statecharts ([10]) are mainly declarative. However, some languages provides pro- 
cedural constructs, e.g. Proto ([14]), PROQUEL ([20]), and JSD ([4]). When 
including ERL rules in our description, both declarative rules and procedural 
constructs can be used within the same framework. 

Executability requires formality, and a variety of formal foundations have 
been used to define execution semantics. Many languages are extensions of earlier 
formalisms like Petri-nets ([22]) or finite state machines ([10]). Other languages 
have a logical basis and are implemented in PROLOG, for instance CPL ([7]). 
Since we ground our approach on languages well known from current CASE 
technology, we are fairly confident that it serves as a sound basis, not only for 
generating executable prototypes, but also for being transferred to IS engineering 
practice. 
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7 Conclusions 

Validating conceptual models of a problem domain by executing its behavior 
may improve the model comprehensibility. The work presented in this paper has 
concentrated on transforming conceptual PPP models to executable prototypes. 
The target platform (C, TEQUEL, and the Rule Manager) provides a "temporal 
semantics" and a temporM database which gives a historic view of the execution. 
The interactive step-wise execution mechanisms of Rule Manager is used to 
support user participation so that potential misconceptions can be detected. 

The need for validation support is expected to increase as the model com- 
plexity grows. When the complexity of the underlying domain increases though, 
the complexity of the models will also increase if they are to contain sufficient 
information for the generation of a running system. This is due to the essential 
problem of complexity in information systems [2]. The example used in this paper 
is artificially simple since it is also used to present PPP's  modeling constructs. 
So, the error could easily have been discovered by a simple inspection of the 
model. In cases of more complex models, misconceptions about the requirement 
are expected to be much harder to track down by mere inspection. 

Anyway, further experiments are needed to assess the gain of validating mod- 
els using transformational prototyping compared to model inspection. The vari- 
ous issues outlined in Section 5 should be addressed. Particularly, the integration 
strategy of the PPP tool and the Rule Manager should be decided, as well as 
the execution presentation should be improved by using graphical facilities. 
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