Expressing Program Requirements using
Refinement Lattices

Dave Robertson 7, Jaume Agusti i, Jane Hesketh {, Jordi Levy 1
iDepartment of Artificial Intelligence, University of Edinburgh.
IIITA, Centre d’Estudis Avancats de Blanes, Blanes, Spain.

Abstract. Requirements capture is a term used in software engineering, refer-
ring to the process of obtaining a problem description — a high level account
of the problem which a user wants to solve. This description is then used to
control the generation of a program appropriate to the solution of this problem.
Reliable requirements capture is seen as a key component of future automated
program construction systems, since even small amounts of information about
the type of problem being tackled can often vastly reduce the space of ap-
propriate application programs. Many special purpose requirements capture
systems exist but few of these are logic based and all of them operate in tightly
constrained domains. In previous research, we have used a combination of
order sorted logic (for problem description) and Prolog (for the generated pro-
gram) in an attempt to provide a more general purpose requirements capture
system. However, in our earlier systems the connection between the problem
description and the resulting program was obtained using ad hoc methods re-
quiring considerable amounts of domain—specific information, thus limiting the
domain of application of the system. We are experimenting with languages
which provide a formal connection between problem description and applica-
tion program, thus eliminating the need for domain—specific information in the
translation process. This paper introduces a formal language for requirements
capture which bridges the gap between an order sorted logic of problem de-
scription and the Prolog programming language. The meaning of a Prolog
predicate is often characterised according to the set of bindings which can be
obtained for its arguments. It is therefore possible to develop a hierarchical ar-
rangement of predicates by comparing the sets of results obtained for stipulated
variables. Using this hierarchical structure, we provide proof rules which may
be used to support part of the requirements capture process. We describe the
notation used for the refinement lattice; define its relationship to Prolog and
demonstrate how the language can be used to support requirements capture.
An interactive system for extracting Prolog programs from our refinement hi-
erarchies, using an algorithm similar to the one described in this paper, has
been 1mplemented.

1 Introduction

Previous work on requirements capture, described in [4], attempted to control the gen-
eration of Prolog programs by applying domain knowledge from a problem description
supplied by the user. The point of having a problem description separate from the
application program was to enable the formal language in which users described the
domain to be fitted more closely to terminology with which they would be familiar
(our intended users were ecologists with little programming expertise). A diagram rep-
resenting the general architecture of the main system used in this research is shown in
Figure 1. In it there are two key mechanisms: the program generator which constructs
Prolog programs by assembling components from a library of program schemata; and
the front—end package which assists the user in selecting and restricting template sen-
tences to form a problem description. The problem description connects the front—end
package to the program generator, since statements in the problem description are

Template Sentences

l

Front-end
Package

}

Problem Description

!

Program
Generator

}

Prolog Program

<+—— USER

Program Schemata

Figure 1: General architecture of the existing requirements capture system

used to control the selection and application of schemata during the construction of
the program.

This approach is attractive because it buffers users from part of the programming
task. However, there is a tension between the demands of users for a notation to which
they can relate and the need for computational sophistication in their application
programs. This tends to create a conceptual gap between the languages of problem
description and application. The trade—offs which were made in attempting to bridge
this gap are discussed in [5] but the end—result is normally that the language used
for problem description is different from the language used to describe the application
program. This can become a serious problem if the means by which the two languages
interact during program generation is not well understood.

One way to tackle these problems is to devise a language which can be used for
problem description but also has a straightforward translation to an application pro-
gramming language. This language has to be expressive but it must also be easy to
use. In addition, it should be capable of describing a programming problem in general
terms or in greater detail, depending on users’ preferences. Previous work by Bundy
and Uschold ([1]) has attempted to provide this sort of uniform language based on
typed lambda calculus but they have yet to implement these ideas in a working system
and the complexity of the mathematics involved makes it difficult to see how users
without specialist training could feel confident about using it. A solution to this prob-
lem would be to “dress up” the mathematics in a form which is more easily understood.
Unfortunately, it is often difficult to make an inherently complex notation appear sim-
ple. An alternative, which we adopt in this paper, is to start with comparatively simple
underlying principles and to manipulate these to obtain complex programs. A good
source of ideas for this approach is in logic programming, which (in the form of pure
Prolog programs) embodies a simple but powerful programming paradigm. A second
source of inspiration is to be found in recent set—based specification languages. In

particular we have drawn upon ideas from the COR system of refinements ([2]).

The core of the requirements capture language depends on representing a lattice
of sets of results of predicates. This constitutes our problem description language.
Section 2 introduces this notion in the context of Prolog". This is followed, in Section 3
by a description of the way in which expressions in the language may be translated
into Prolog. Since this is intended to be a high level language, not all of the axioms
translate directly into Prolog and some are used, with the aid of proof rules, to control
problem description. In Section 4 we describe some of the proof rules which we use
later, in Section 5, to provide guidance in defining set lattices. Finally, in Section 6, we
describe how programs (at differing levels of detail) may be extracted from our lattices.

2 Denoting Argument Sets

It is conventional to define the meaning of a logic program to be the set of ground unit
goals deducible from that program. Thus, if we have the program shown below:

grandparent(A, B) «— parent(A,C) & parent(C, B) (1)

)
parent(fred, joe)
parent(joe, mary)

)

parent(ann, joe

then the meaning of the predicate grandparent /2 in this program would be described
by the set of unit goals:

{grandparent(fred, mary), grandparent(ann, mary)} (2)

This gives a form of “global” meaning for a predicate in terms of all its arguments
but it is possible to define more local interpretations in terms of stipulated arguments.
We shall use the notation V : P to denote the set of instances for the variable V' which
can be obtained from the goal P.

‘7 operator to denote the sets of

Using program (1) as an example, we can use the
instances obtained for either or for both of the arguments to grandparent/2, giving

the following three sets:

A : grandparent(A, X) = {fred,ann}
B : grandparent(X,B) = {mary}
(A, B) : grandparent(A, B) = {(fred,mary), (ann,mary)}

To simplify the descriptions in this paper we shall assume that only a single variable

‘7 operator. However, it should be possible to

appears on the left hand side of the
extend all the definitions of this paper to the more general case of a vector of variables.

In order sorted logics, it is normal to restrict the range of objects over which variables
in formulae are permitted to range. We can achieve this effect using our notation

by permitting the variables inside the goal expression to be restricted using the *:’

!Throughout this paper we shall be using “pure” Prolog, without complicating features such as
cut or side—effecting predicates

operator. This permits any predicate to be applied over sets of objects, rather than
over individuals as would be the case in standard first—order predicate calculus. The
interpretation of a predicate argument applied in this way is defined as the set of results
for the variables on the left of the ‘" operator, given the application of the predicate
to every combination of elements in the sets denoted in its arguments. For example,
if we take the parent/2 definitions from program 1 then we could define the following
set:

A :parent(A, B : parent(B, X)) (3)
To obtain the set denoted by the above expression we first find the interpretation
for its sub—expression:
B :parent(B,X) = {fred,joe,ann}

We then obtain the set of all solutions for the goals:

A parent(A, fred) = {}
{fred,ann}
{}

The union of these sets gives us the interpretation for the original expression

A parent(A, joe)

At parent(A,ann)

2.

A parent(A, B : parent(B, X)) = {fred,ann}

Since all of our terms represent sets of objects we can introduce some standard set
operators as follows:

Definition 1 If A and B are set expressions then we allow the set operators:
e AN B for the intersection of A and B.
o AU B for the union of A and B.
e AD B if B is a subset of A.

This allows us, for example, to say that the set of parents is larger than the set of
grandparents :

A parent(A,X) 2 B :grandparent(B,Y)

The use of the D operator allows us to arrange our set expressions into a lattice. To
provide a “top” and “bottom” to this lattice we shall use the symbol T to denote the
entire universe of discourse and L to denote the empty set of objects. The full syntax
of refinement expressions appears below:

2This is the same interpretation as we obtained earlier for A : grandparent(A, X)

Definition 2 A refinement formula is of the form H O B, where:
o H is the head of the refinement and is a primitive set expression.
e BB is the body of the refinement and can be any set expression.

o A primitive set expression is of the form V : E, where V is a variable appearing
in I and E is one of the following:
— A Prolog goal.
— A term of the form Q(A1,- -, An), where Q) is a predicate name and each Ap
is either a variable, constant or set expression.

o A set expression is one of the following:

— A primitive set expression, V : K
— A union of sel expressions, V1 : B UV, @ Fy
— An intersection of set expressions, Vi : Iy NV @ By

— The difference between two set expressions, Vi : Ky — Vo @ Fy

V' is said to be restricted by the expression E. Any variable which is not restricted
in this way is said to be unrestricted.

The next section will make more clear why the restrictions on syntax supplied in
definition 2 are needed. It is worth noting in passing that set expressions for first
order predicate calculus have also been introduced in [3] but in a different form and
for different purposes.

3 Mapping Prolog to the Refinement Language

Section 2 introduced the basic notation for the refinement language. The purpose of
this section is to show how the language can be understood in terms of Prolog. To
simplify our explanation, we shall demonstrate the correspondence for unary predicates
but the same principles apply to predicates of any arity.

The D operator can be interpreted in terms of the « operator by recognising that
if we have a formula such as:

Vi P(Vi) 2 Va:Q(V2) (4)

then it must be true that any successful result for Q(V3) would imply the same
result for P(V1). Therefore we can rewrite the formula as:

P(V) « Q(V) (5)

The N operator can be interpreted in terms of the & operator because the inter-
section of the results from two goals must be the same as the set of results from the
conjunction of those goals. Thus the expression:

VizP(Vi) 0 Va:Q(Va) (6)

corresponds to the formula:

PV) & QV) (7)

Similarly, the U operator can be interpreted in terms of the V operator by rewriting
expressions of the form:

Vit P(V1) U 12:Q(V) (8)

to produce the new expression:

P(V) VvV Q(V) (9)

Notice that the set of results obtainable from 7 and 9 are the sets denoted by set
expressions 6 and 8, respectively.

Finally, any nested variable restrictions (using the ‘:” operator) within terms must
be converted into preconditions for logical rules. Thus, if we have an expression of the
form:

ViiP(V) 2 VaiQ(Va: A(VA)Vh) (10)

we would rewrite it to the expression:

PV) = A(Vs) & Q(Vs, V) (11)

It is important to remember that not all the refinement formulae are intended to
translate directly into Prolog. In general, the refinement relation is more “permissive”
than standard implication and with it we can represent a wide variety of information,
only part of which is sufficiently precise to constitute a Prolog program. In particular,
it is not always possible to translate from refinements which have restricted variables in
the head but these variables do not appear in the body, since these introduce existential
variables into the head of the clause. Thus an expression such as 12, below, can not
be guaranteed to translate into Prolog.

Vi: P(Va: A(Va), Vi) 2 Va:Q(Va) (12)

For example, we could define the following refinement for the predicate add(A, B, C),
which adds together the natural numbers A and B to obtain ("

N :natural(N) 2 C:add(A: natural(A), B : natural(B), C) (13)

This could be translated into the following Prolog clause which, although not a
particularly useful program, is always true:

natural(N) « natural(A) &
natural(B) &
add(A, B, N)

However, we could also write the following refinement:

C :add(A : natural(A), B : natural(B),C) 2 N :natural(N) (14)

Like refinement 13, this makes sense as a refinement axiom (since all the naturals
are included in addition over naturals) but, if translated into Prolog it becomes:

add(A, B,C) «— natural(A) &
natural(B) &
natural(C')

Clearly, this rule does not always hold. The reason is that refinement 14 is defining
a general set property of the add/3 predicate — that it can (potentially) generate any
natural number — while refinement 13 defines a direct relationship between the naturals
and addition. Since our refinement language is, in this sense, very flexible we must be
careful which axioms are allowed to be translated into Prolog. However, provided such
checks are in place, we can benefit from the extra flexibility during problem description.
For this, we need to use some standard proof rules, which are the topic of the next
section.

4 Refinement Proof Rules

Since all the expressions in the language refer to sets, we can use proof rules from
set theory to perform many of the operations necessary during requirements capture.
This section describes some of the proof rules which we currently use and we anticipate
that further, derived rules will be added to the collection as the system matures — for
instance, rules describing the preservation of unions and intersections of predicates and
a full set of rules for the set difference operator. In subsequent sections we shall show
some of these rules in operation. In the proof rules which follow, the symbols A, B
and C' denote set expressions.

Proof rule 1 The universal set (T) includes any set:
F ToA
Proof rule 2 Any set includes the empty set (L):

F ADL

Proof rule 3 Any set includes itself:
F ADA
Proof rule 4 The refinement relation is transitive:
ADB,BDOC F ADC
Proof rule 5 A set, C', includes the union of any two sets which it includes separately:
COACDB F CDAUB
Proof rule 6 The union of a set with any other set includes the original set:

F AUBDA
F AUBD2OB

Proof rule 7 The intersection of a set with any other set is included in the original
set:

F ADANB
F BDANB

Proof rule 8 A set which is included independently in two others is included in their
wntersection:

BDACDA F BNCDA

Proof rule 9 The union of two intersections is the same as the intersection of the
untons:

F (ANB)UANC)2 An(BUC)

Proof rule 10 A set expression is included within another set expression if they have
the same predicate name and arity and the terms at corresponding arqgument positions
are refinements. For ease of explanation, we have shown the simpler case of this rule
for a predicate with a single argument:

ADA F V:PA) DV :PA)

5 Defining a Refinement Lattice

In Section 6 we describe how a program may be extracted from a refinement lattice.
As a precursor to this, we explain how such lattices may be constructed and show how
the refinement language may be used to help control their development.

It would be possible to define complete programs entirely within the refinement
language. For example the standard append/3 program, which concatenates the lists
in its first and second arguments to form the list in its third argument, could be defined
as:

L2 : append([H|T], L1,[H|L2])
L :append([], L, L)

> L3 :append(T, L1, L3) (15)
D L1:list(L1)

Using the translations described in Section 3, this could be rewritten into the Prolog
definition:

append([H|T], L1,[H|L2]) +« append(T, L1, L2) (16)
append([], L, L) « list(L)

However, this doesn’t seem to us to be the most advantageous use of the language,
since it merely replicates a standard logic program. In defining refinement lattices a
key idea is that people should be allowed to “rise above” the level of the application
program in the initial stages of refinement. The language supports this by allowing two
ways of adding to the lattice: by creating new refinements and by extending existing
refinements. We shall consider each in turn below.

5.1 Creating New Refinements

When creating a new refinement it is possible to assist the user in two ways. The first
is by flagging any “gaps” in the specification which are created by the addition of the
refinement. This happens when an axiom is introduced which refers to terms which are
not defined in the existing refinement lattice. For example, if we introduce a refinement
denoting that a possible refinement of diagnoses would be the set of confirmed diseases:

D : diagnosis(D) 2 C:confirmed(X : disease(X),C) (17)

then we have introduced two new set expressions: confirmed/2 and disease/l,
which may be defined in the refinement lattice. If we wish to attach disease/1 at the
top of the lattice we could add the refinement:

T O X :disease(X) (18)

Note that this attachment says nothing about the meaning of disease/1. It merely
introduces it as a predicate of arity 1.

5.2 Extending Refinements

In addition to adding new information, it is common to want to combine existing
refinements in order to be more specific about the way in which they apply. To support
this process we permit users to restrict the size of a refinement expression on either (or
both) the left or right sides. Since this could result in an overdefined expression — for
example by over-restricting the left—hand side of the refinement — we must also apply
a test for overdefinition to the resulting expression (See Section 5.3).

Definition 3 A refinement of the form A O B is an exlension of the refinement lattice
H if:

e A'D B ¢ H and
e A'D A and
e B DB

For example, we might have added the information that locations of fish are included
in aquatic habitats; that aquatic habitats include rivers and that Carp are fish:

H : aquatic_habitat(H) O L :location(F : fish(F), L) (19)
H : aquatic_habitat(H) O R :river(R) (20)
F:fish(F) 2 C:carp(C) (21)

Now if we add the information that the locations of Carp are included in rivers:

R :rwer(R) O L :location(C : carp(C), L) (22)
we can show that this is a valid extension as follows:

e By definition 3 using axiom 19, we have an extension if:
L : location(F' : fish(F),L) D L : location(C : carp(C'), L) and
H : aquatic_habitat(H) O R : river(R)

e By proof rule 8 we can establish that:
L : location(F' : fish(F),L) 2D L : location(C : carp(C), L) if
F: fish(F) 2 C :carp(C).

o [': fish(F) 2 C : carp(C) from axiom 21.

o H :aquatic_habitat(H) 2 R : river(R) from axiom 20.

5.3 Preventing Overdefinition of Refinements

We would like, as far as possible, to protect users against including refinements which
are overdefined within the existing lattice. We use the symbol, L, as the empty set
expression and assume that all new sets added will be (potentially) larger than L.

Therefore:

Definition 4 A refinement, A O B is overdefined if, in conjunction with the other
axioms of the existing refinement lattice, AD BF L D B.

One of the main purposes of this definition is in limiting the ways in which set
expressions can be refined, thus reducing the range of choices available to users when
constructing the lattice. We shall describe two techniques for providing this type of
control: mutual exclusion and argument restriction.

5.3.1 Mutually Exclusive Set Expressions

We can provide a means of trapping mutually exclusive sets by adding axioms for
stating which intersections between sets are not permitted, then using these to test for
overdefinedness of the lattice.

Definition 5 X; : Ay and X, : Ay are mutually exclusive if
L 2 ((X] . Al) N (X2) AQ))

For example, we might want to have sets corresponding to even and odd numbers:

N : number(N)
N : number(N)

E :even(E) (23)

>
2 D:odd(D) (24)

We could then add the information that there is nothing which is both even and
odd by adding the axiom:

1L D FKE:even(k)N D :odd(D) (25)

If we then attempt to define a set (call it bad/1) which is a refinement of both even

and odd, using the axioms:

E :even(F)
D :odd(D)

B :bad(B) (26)

)
> B :bad(B) (27)

To prove that this is overdefined we need to show that:

1 D B:bad(B)
By rule 4, using axiom 25:
LD E:even(E)N D :odd(D)
Eeven(EYN D :odd(D) 2 B:bad(B) F L2 B:bad(B)
By rule 8:
E:even(F) D B: bad(B)
D :odd(D) D B:bad(B) F E:even(E)ND:odd(D)2 B :bad(B)

The preconditions of this rule are satisfied by axioms 26 and 27. Therefore we have

proved that our hierarchy is overdefined.

5.3.2 Argument Restriction

It is sometimes useful to be able to define a predicate which can range over only
particular sets of arguments but not others. For example, we might want to say that
spiders only eat living things. We can express this using the axiom:

X :living(X) D X1 :eats(S: spider(5), X1) (28)

If we also add the constraint that nothing is both living and dead:

1 D X1:living(X1)N X2: dead(X2) (29)

then we can protect against generalisation of the eats/2 predicate. For example, if
we try to add the axiom:

X :eats(S : spider(S),X) O X1 :dead(X1) (30)
we can prove that this is overdefined as follows:

e By proof rule 4, L DO X :dead(X) if:
1L DO X1 :liwing(X1)N X2: dead(X2) (Axiom 29) and
X1 : living(X1) N X2 : dead(X2) O X :dead(X)

e By proof rule 8, X1 : living(X1) N X2 : dead(X2) DO X : dead(X) if:
X1 : living(X1) O X :dead(X) and
X2 :dead(X2) O X :dead(X)

e By proof rule 4, X1 : living(X1) 2 X : dead(X) if:
X1 : living(X1) 2O X2: eats(S: spider(S), X2) (Axiom 28) and
X2 :eats(S : spider(S),X2) O X :dead(X) (Axiom 30)

e By proof rule 3, X2 : dead(X2) O X :dead(X)

5.4 A Simple Example

Having defined mechanisms for creating and extending refinements we introduce, in
this section, a short example to demonstrate the way in which the language may be
used to develop incrementally a requirements specification. We shall use a (somewhat
contrived) biological example, in which we wish to represent populations of wolves
and deer which have different probabilities of survival depending on their location. To
begin, we can introduce the concept of probabilities using the refinement:

T D P:probability(P) (31)
We could then go on to provide more specific information pertaining to probabilities.

In particular, we could say that a more restricted type of probability is the survival
factor of animals:

P :probability(P) 2 S :survival(A: animal(A),S) (32)

At his point, we have introduced, as part of expression 32 a requirement for animal/1
to be placed in the lattice. This is flagged as one of the gaps in the requirement
specification and we plug this gap by adding animal/1 below T. At the same time, it
is convenient to add wolf/1 and deer/1, as refinements of animal/1, and red_deer/1
as a refinement of deer/1:

T 2 A:animal(A) (33)

Az amimal(A) O W :wol f(W) (34)
A:amimal(A) O D :deer(D) (35)
D :deer(D) O R:red.deer(R) (36)

We might then decide to introduce a refinement of survival which is dependent on
the the location of the animals:

S survival(A : animal(A),S) 2 (37)
F o fI(L : location(A : anemal(A), L), B : animal(B), I)

3

This again introduces a gap in the specification, for location/2, which we first in-
troduce below T and then define using two axioms:

T D L:location(A: animal(A), L) (38)
L : location(A : antmal(A),L) O H : hll(H) (39)
L : location(A : antimal(A),L) O P : pasture(P) (40)

We might now decide to be more specific about the types of results which we would
expect to obtain from fI/3. For example, we could stipulate that the results in the
third argument for deer on hills might be the integers between 50 and 100, while the
same argument for wolves on hills might be the integers between 40 and 60.

Fofl(L:hill(L),A: deer(A), F)
F o fI(L:hll(L),A:wolf(A), F)

N : between(50,100, N) (41)

2
O N :between(40,60, N) (42)

Finally, we could be more specific about the locations of particular groups of animals.
For example, we could give possible locations for red_deer to be hills.

L :location(A : red_deer(A),L) 2 H : hill(H) (43)

6 Extracting a Program

In Section 5 we demonstrated how a lattice of refinements could be constructed. This
lattice is capable of describing a large number of different programs, which vary on two
dimensions:

o The level of detail at which a program in the lattice is described will vary de-
pending on the depth to which we descend through the chains of refinement. The
further we travel towards the bottom of the lattice the more detailed our programs
become.

e There may be more than one possible refinement of a set expression at any given
point in the lattice. These produce choice points in the extraction of program
details.

Bearing the above considerations in mind, the method used to extract a program
from the refinement lattice is based on a simple principle. Recall the mapping between
refinements and implication which has been shown using formulae 4 and 5. Using this
mapping, if we take any sequence of refinements down through the lattice from some
top level set expression then by translating the refinements of that sequence into axioms
of Prolog we shall have produced a partial program the results of which are included
in the top—level set expression. For example if we have the sequence of refinements:

X a(X)
X b(X)

2 Y:b(Y)
O YY)
Then we could translate these into the Prolog clauses:

a(X) « b(X)
b(X) «— ¢X)

which, given further definitions for ¢(X) would allow us to obtain results for a(.X)
in terms of ¢(X). Thus we can think of extracting a program from a refinement lattice
as traversing the lattice from some top—level set expression, supplying an upper bound
on the generality of the program, down to more precise set expressions which supply
a lower bound on the program. An interactive system, based on this technique has
been implemented and is described in [6] but (to save space) only the basic algorithm
is described in this paper.

Some additional complexity is introduced into the algorithm because we permit
nesting of set expressions. This means that when we are finding sequences of refine-
ments we need to do more than simply match the left and right sides of the appropriate
refinements — we also need to ensure that set expressions contained in the matching
expressions can be coerced toward a non—empty intersection. For example, if we have
the refinement lattice:

X 1 a(C : carnivore(C), X)
X :b(H : herbvore(H), X)
C : carnivore(C)
C' : herbivore(C)

:b(C = carnivore(C),Y)
:¢(H : herbivore(H),Y)
: bear(B)
: bear(B)

v v v g
D m <<

then a valid refinement sequence would be:

X ta(B:bear(B),X)
X :b(B : bear(B), X)

Y : b(B : bear(B),Y)

2
D Y :¢(B:bear(B),Y)

and this would translate to the Prolog clauses given below. Note that this translation
involves a further refinement, since we are requiring that each bear in the set of solutions
for argument Y of b/2 will appear in the set of solutions for argument X of a/2.

a(B,X) « bear(B) & b(B,Y)
b(B,X) «— bear(B)& ¢(B,Y)

Since traversal of the refinement lattice was required in order to constrain both
carnivore/1 and herbivore/1 to bear/1 it may be useful to retain this information in
the completed program as well. Therefore the algorithm for unifying set expressions
(described later) must accumulate the refinements it uses so that these can be added
to the main sequence.

The final component of the algorithm takes care of the cases where either an inter-
section of set expressions is required or the union of set expressions is required in order
to include more than one sequence of refinements into the program. For instance, if we
have the refinement lattice:

X:a(X) 2 Y:0(Y)
X:a(X) 2 Y:ieY)
X:e(X) 2 Y dY)
X:e(X) 2 Y:eY)

Then, instead of a linear refinement sequence, we could extract from this the refine-
ments:

X a(X)
X 1 e(X)

bY)NY :e(Y)

o Y:
O Y:dY)UY :e(Y)

2

which translate to the Prolog axioms:

a(X) « b(X)& oX)
— dY)Ve(Y)

The full refinement algorithm is given below. Note the recursive use of the algorithm
when unifying set expressions and also the need to propagate the set intersections from
unification through the right hand side of the smaller of the refinement expressions.

Algorithm 1 We write re finement(Ty, Tz, P) to denote that Ty is a valid refinement
of Ty producing axiom set P, given refinement lattice H. The algorithm for this is as
follows:

o refinement(Ty, Tz, P) if refinement(Ty, 15, {}, P)

o refinement(1.1', P, P)

o refinement(V : A,V : B, P, P") if
- (V:ADV:B)eH and
—unify(A, A", Ay, P, P") and
— propagate_bindings(A,, B', B,) and
— refinement(V : B,,V : B, P', P")

o refinement(P(Aq, -+, A,), P(AY,---,AL), P, P') if
— For each Ay and A%: refinement(A;, Ay, Pr) and
P =UPUP

o refinement(V : A,V : By N By, P, P") if
— refinement(V : A,V : By, P, P') and
— refinement(V : A,V 1 By, P’ P")

Algorithm 2 We write unify(A, A, Ay, P) to denote that set expressions A and A’
have a shared subset defined by set expression A, yielding axiom set, P. The algorithm
for this is as follows:

o unify(A, A", Ay, P) if uni fy(A, A, Au. {}, P)
o unify(A, A, A,, P, P") if

— refinement(A, Ay, P, P') and
— refinement(A’, Ay, P', P")

Algorithm 3 The procedure, propagate_bindings(A, B, B') takes each term of the form
V' X contained in A and replaces every occurrence of V: _in B with V : X, yielding
the new term, B'.

6.1 A Simple Example

The example in this section uses axioms 31 to 43 from Section 5.4 to provide a refine-
ment lattice. Given these axioms, we demonstrate how programs containing differing
levels of detail may be extracted. Our first step must be to specify a set expression
which (potentially) contains all the results we require. Suppose that we are interested
in a program for determining the survival of red_deer. Our top-level goal for the
refinement algorithm is therefore:

refinement(S : survival(D : red_deer(D),S), R, P) (44)

The algorithm will first descend to the levels of refinement which are closest to the
top—level set. Using axiom 37 it can reach the set:

S fI(L = location(D : red_deer(D), L), D : red_deer(D), S) (45)

In doing this it has had to unify animal and red_deer, using axioms 35 and 36. The
refinements extracted are therefore:

D :deer(D) 2 D:reddeer(D)
D :animal(D) O D :deer(D)
S survival(D : red_deer(D),S) 2 S: fI(L:location(D : red_deer(D), L),
D :red_deer(D),S5)

Applying the translation algorithm to these refinements gives the partial program:

deer(D) «— red_deer(D)
animal(D) « deer(D)
survival(D,S) «— red_deer(D) &
location(D, L) &
red_deer(D) &
fl(L,D,S)
We may not be content with this level of detail so we can force the algorithm to
search further down through the lattice. Using axiom 41 we can extend downwards to:

S+ between(50,100, 5) (46)

This uses axiom 39 to unify location and hill so this — along with the axiom corre-
sponding to the refinement step — is added, giving the refinements:

D :deer(D) 2 D :red.deer(D)
D :amimal(D) O D :deer(D)
L : location(D : red_deer(D),L) 2 L: hill(L)
S UL hill(L), D :red_deer(D),S) 2 S:between(50,100,5)
S survival(D : red_deer(D),S) 2 S: fI(L: location(D : red_deer(D), L),

D :red_deer(D),S)

Applying the translation algorithm to these refinements gives the partial program:

deer(D) «— red_deer(D)

animal(D) « deer(D)
location(D, L) «— red.-deer(D) &
hall(L)

JUL,D,S) « hll(L)&
red_deer(D) &
between(50,100,)

survival(D,S) «— red_deer(D) &
location(D, L) &
fl(L,D,S)

7 A Larger Example

This section describes the refinements necessary to represent a larger example and
shows how these can be translated into a working logic program. The problem we have
chosen is one of medical diagnosis. Let us assume that we think of diagnosis as being
some procedure which suggests diseases based on the symptoms we already know (K’)
and those we could ask about (A). Our top—level definition might therefore be:

D :disease(D) 2O DI :diagnosis(K, A, D1) (47)

We might then decide to give some options for what we consider to be valid types
of diagnoses. First, we can say that the set of diagnoses would include any diseases we

had confirmed:

D : diagnosis(K,A,D) 2 C :confirmed(K,A,C) (48)

A second option for diagnosis might involve asking questions about disease candi-
dates and thereby adding to the list of symptoms we know. Let us further assume that
each of the elements we know about is recorded as a data structure of the form k(S5, V),
where S is a symptom and V' is its known value (e.g. S might be sweating and V
might be profuse). Each question will have to be contained in a program capable of
generating all questions and each value will have to be obtained from a program which
can ask the user for appropriate values. Our definition is therefore:

D : diagnosis(K, A, D) D (49)
D1 : diagnosis([k(S : question(C : candidates(K, A, D1,C),S),
V iask(A, S, V)|K], A, D1)

The above two definitions might be sufficient to allow diagnoses in conditions where
we always wanted to ask questions until some diseases were confirmed. However, we
might also want to allow for diagnoses which were not fully confirmed but still possible
(having run out of questions). To allow this possibility we add:

D :diagnosis(K, A, D) 2 P :possible(K, A, P) (50)

We now need to define what it means to be a confirmed disease. For this we shall use
a predicate, for_each(A, B,C'), which succeeds if each result A generated by program
B satisfies test C'; and member(k, L) which succeeds if element £ is in the list L. We
shall also introduce the predicate, symptom(D, S, V), which succeeds if the disease D
has symptom S, with value V. Our definition of confirmed diseases is then:

C :confirmed(K,A,C) D (51)
D : for_each((S,V), symptom(D, S, V), member(k(S,V), K)

A definition of possible diseases can be obtained using a similar expression to that
for confirmed diseases, except that we will be satisfied if only a single symptom is

confirmed. For this we need to employ a further predicate, for_some(A, B,C') which
succeeds if any result A generated by program B satisfies test C.

P : possible(K, A, P) D (52)
D : for_some((S,V), symptom(D, S, V), member(k(S,V), K)

To determine the symptom candidates (used in asking questions during diagnosis)
we need to find the set of symptoms which are currently not known. For this we shall
use the standard Prolog predicates, setof(A, B,C) (which gives the set C of elements
of form A such that the goal B succeeds) and the closed-world negation operator, —.

C : candidates(K, A, D,C) D (53)
C1:setof(S, (symptom(D, S, V), =member(k(S,.), K)),C1)

The set of questions is simply defined as any member of the list of candidate ques-
tions:

St question(C,S) 2 S1:member(S1,C) (54)

Finally, the set of values which have been successfully asked of the user is defined
as those for which the user has been successfully prompted, given the list A of askable
symptoms.

S:ask(A,S, V) D V1:prompt_user(A,S,V1) (55)

The above refinements (47 to 55) can be translated, via the program extraction
mechanism, into the following logic program:

diagnosis(K, A, D) «— confirmed(K,A,D)
diagnosis(K, A, D) « candidates(K,A,D,C)&
question(C,5) &
ask(A,S,V) &
dragnosis([k(S,V)|K], A, D)
diagnosis(K, A, D) «— possible(K, A, D)
confirmed(K, A, D) «— for_each((S1,V),symptom(D,S1,V), member(k(S1,V), K))
possible(K, A, D) «— for_some((S1,V),symptom(D.S1, V), member(k(S1,V), K))
candidates(K, A, D,C) « setof(S, (symptom(D, S,), ~member(k(S,.), K)),C)
question(C,S) «— member(S,C)
ask(A,S, V) « prompt_user(A,S,V)

8 Conclusions

The language introduced in this paper embodies what we claim to be a novel approach
to requirements capture. It has the following features:

e The space of requirements is described using a lattice of refinements between sets
of potential results from Prolog programs.

e Construction of a Prolog program can be achieved by searching this requirement
space, having delimited the upper and lower bounds within which the completed
(partial) program must lie.

e Guidance during the construction of the refinement lattice is obtained by the
application of logically consistent set—theoretic proof rules.

Although the algorithms presented in this paper are comparatively simple, we have
yet to test whether they can readily be applied by real users. We are currently produc-
ing a first prototype (implemented in Prolog) to test our ideas. Of major importance
in this activity is to develop new proof rules to help guide users in supplying and
extending refinements.

References

[1] A. Bundy and M.. Uschold. The use of typed lambda calculus for requirements cap-
ture in the domain of ecological modelling. Research Paper 446, Dept. of Artificial
Intelligence, Edinburgh, 1989.

[2] J. Levy, J. Agusti, F. Esteva, and P. Garcia. An ideal model of an extended
lambda-calculus with refinement. Ecs-1fcs-91-188, Laboratory for the Foundations
of Computer Science, 1991.

[3] D. McAllester, B. Givan, and T. Fatima. Taxonomic syntax for first order inference.

In Proceedings of KR-89, 19809.

[4] D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, and M Uschold. Feco-Logic:
Logic-Based Approaches to Ecological Modelling. MIT Press (Logic Programming
Series), 1991. ISBN 0-262-18143-6.

[5] D. Robertson, M. Uschold, A. Bundy, and R. Muetzelfeldt. The ECO program
construction system: Ways of increasing its representational power and their effects
on the user interface. International Journal of Man Machine Studies, 31:1-26, 1988.

[6] M. Salib. Using refinement logic in requirements capture and program generation.
Technical report, Department of Artificial Intelligence, University of Edinburgh,
1992. Unpublished MSc thesis.

