Skip to main content

Indexing on spherical surfaces using semi-quadcodes

  • Conference paper
  • First Online:
Book cover Advances in Spatial Databases (SSD 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 692))

Included in the following conference series:

Abstract

The conventional method of referencing a point on a spherical surface of known radius is by specifying the angular position of φ and A with respect to an origin at the centre. This is akin to the ≪x,y≫ coordinates system in R 2 cartesian plane. To specify a region in the cartesian plane, two points corresponding to the diagonal points ≪x 1,y 1≫ and ≪x 2,y 2≫ are sufficient to characterize the region. Given any bounded region, of 2h×2h an alternate form of referencing a square subregion is by the linear quadtree address [10] or quadcode [13]. Corresponding encoding scheme for spherical surfaces is lacking. Recently a method similar to the quadtree recursive decomposition method has been proposed independently by Dutton and Fekete. Namely, the quaternary triangular mesh (QTM) [4] and the spherical quadtree (SQT) [8]. The addressing method of the triangular regions suggested are very similar. We present a new labeling method for the triangular patches on the sphere that allows for a better and more efficient operation and indexing on spherical surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta Informatica, 1:173–189, 1972.

    Article  Google Scholar 

  2. Z. T. Chen. Quad tree spatial spectra — its generation and applications. In Proc. International Symposium on Special Data Handling, pages 218–237, 1984.

    Google Scholar 

  3. D. Comer. The ubiquitous b-tree. ACM Comput. Surveys, 11(2):121–137, Jun. 1979.

    Google Scholar 

  4. G. H. Dutton. Geodesic modelling of planetary relief. Cartographica, 21(2&3):188–207, 1984.

    Google Scholar 

  5. G. H. Dutton. Locational properties of quaternary triangular meshes. In Proc. 4th Int'l Symp. on Spatial Data Handling, pages 901–910, Zurich, Switzerland, 1990.

    Google Scholar 

  6. G. H. Dutton. Planetary modelling via hierarchical tessellation. In Proc. Auto-Carlo 9, ACSM-ASP, pages 462–471, Baltimore, U.S.A., 1989.

    Google Scholar 

  7. G. H. Dutton. Zenithial orthotriangular projection.

    Google Scholar 

  8. G. Fekete. Rendering and managing spherical data with sphere quadtrees. In Proc. Visualization '90, pages 176–186, San Francisco, 1990.

    Google Scholar 

  9. G. Fekete and L. S. Davis. Property spheres: a new representation for 3-d object recognition. In Proceedings of the workshop on Computer Vision: Representation and Control, pages 192–201, Annapolis, MD, April 1984. (also University of Maryland Computer Science Tech Report-1355).

    Google Scholar 

  10. I. Gargantini. An effective way to represent quad-trees. Comm. ACM, 25(12):905–910, Dec. 1982.

    Google Scholar 

  11. I. Gargantini. Linear octtrees for fast processing of three dimensional objects. Comput. Gr. Image Process., 20(4):365–374, Dec. 1982. File=D4B, *.

    Google Scholar 

  12. M. F. Goodchild and Y. Shiren. A hierarchical data structure for global geographical information systems. Graphical Models and Image Processing, 54(1):31–44, Jan. 1992.

    Google Scholar 

  13. S. X. Li and M. H. Loew. Adjacency detection using quadcodes. Comm. ACM., 30(7):627–631, Jul. 1987.

    MathSciNet  Google Scholar 

  14. S. X. Li and M. H. Loew. The quadcode and its arithmetic. Comm. ACM., 30(7):621–626, Jul. 1987.

    Google Scholar 

  15. F. D. Libera and F. Gosen. Using b-trees to solve geographic range queries. Comput, Journal, 29(2):176–181, 1986.

    Google Scholar 

  16. D. M. Mark and J. P. Lauzon. Approaches for quadtree-based geographic information systems at a continental or global scales. In Proc. Auto Carto 7, Digital Representation of Spatial Knowledge, Amer. Soc. of Photogamm., Falls Church, Virginia, Mar. 1985.

    Google Scholar 

  17. D. M. Mark and J. P. Lazon. Linear quadtrees for geographic information systems. In Proc. Int'l. Symp. on Spatial Data hasndling, pages 412–430, Zurich, Switzerland, Aug. 1984.

    Google Scholar 

  18. E. J. Otoo. Semi-Quadcode and Its Operations on Spherical Surfaces. Technical Report, School of Computer Science, Carleton Univ., Ottawa, Canada, 1992.

    Google Scholar 

  19. H. Samet. Applications of Spatial Data Structures. Addison-Wesley, Reading, Mass., 1990.

    Google Scholar 

  20. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, Mass., 1990.

    Google Scholar 

  21. W. Tobler and Z-T. Chen. A quadtree for global information storage. Geographical Analysis, 18(4):360–371, Oct. 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Abel Beng Chin Ooi

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otoo, E.J., Zhu, H. (1993). Indexing on spherical surfaces using semi-quadcodes. In: Abel, D., Chin Ooi, B. (eds) Advances in Spatial Databases. SSD 1993. Lecture Notes in Computer Science, vol 692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56869-7_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-56869-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56869-8

  • Online ISBN: 978-3-540-47765-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics