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Preface  

This collection of papers arose from a series of lectures, given in the Department of 
Computer Science and Systems, McMaster University, Hamilton, Ontario, Canada, 
during 1991-92, at the invitation of Peter LaueL The series was co-ordinated by 
Peter Lauer, ]effery Zucker and Ryszard ]anicki. The lectures were intended to fa- 
miliarize workers in Computer Science and other disciplines with some of the most 
exciting advanced computer based systems for the conceptualization, design, imple- 
mentation, simulation, and logical analysis of applications in these disciplines. The 
papers are mostly the work of individuals who were among the originators of the 
systems presented. 

We hope that this volume will make it easier for colleagues at other universities 
and research establishments to evaluate the utility of these systems for their appli- 
cation areas. We also hope that this volume will be of paramount utility to graduate 
students in the various disciplines. 

The collection of papers presents some strong motivational points for the use of 
theory based systems in the areas of functional programming, concurrency, simula- 
tion, and automated reasoning, highlighting some of their advantages and disadvan- 
tages relative to conventional systems. 

At the editors invitation, the authors kindly agreed to furnish newly written 
papers on theory based systems which provide a guide into some of the major op- 
erational systems and which might form a useful basis for assessing knowledge and 
skills required for their informed use. 

The four topic areas were selected for various related reasons. 
Func t iona l  p r o g r a m m i n g  rather than procedural programming was chosen 

because it provides a good level of abstraction from the standpoints of the user, 
the tractability of full formalization of semantics, and providing good practical im- 
plementations, allowing for computer supported experimentation with concepts ex- 
pressed in this basically declarative style. 

C o n c u r r e n c y  rather than sequentiality was chosen as basic because we feel 
that this is closer to real-world systems and human thought processes, and avoids 
the artificial introduction of sequentiality constraints due to one's sequential model 
and not due to the nature of the system modelled. 

S imula t ion  is used here as a synonym for modelling or prototyping and was 
chosen since it is a means to enhance understanding of complex situations and dy- 
namically changing systems, and a basis for experimental study of such systems. 
Furthermore, simulation may be used to validate whether a computer implemen- 
tation of some real-world situation is adequate for the purpose for which it was 
designed. 

A u t o m a t e d  reason ing ,  which we take to include not only fully automated 
theorem provers but especially interactive definition debuggers and proof checkers, 
was chosen because it relieves the user from tedious, time consuming and error prone 
activities involved in checking whether chains of inferences and logical conclusions 
about the system are justified. We feel that a similar advantage to that obtained 
by the presence of syntax checking in compilers, for developing error free programs, 
can be obtained by the presence of proof checkers for developing error free system 
models, and ultimately trustworthy computer systems implementing them. 



vI 

The issue is how to make existing theory based systems more accessible to users 
of various kinds and at different levels. 

Theory based systems have the advantages of precision, trustworthiness, and 
generality. They can be used effectively to enhance learning. However, they have the 
disadvantage of relative inefficiency in operation, and a greater learning gap to be 
closed by the user. 

Conventional systems have the advantages of efficiency and a reputedly smaller 
learning gap, and they can also be used effectively to enhance learning, are more 
familiar to users, and have extensive application development. 

However, familiarity with conventional computer systems may not be as much 
of an advantage as might appear at first sight. There is a more basic kind of fa- 
miliarity which users have with theory based systems which is often overlooked and 
which, if exploited, has a much greater payoff than the exploitation of familiarity 
with conventional computer concepts. For example, familiarity with high school al- 
gebra, which can be relatively safely presupposed in all adults who have graduated 
from high school, makes for an easy road to computer systems based on the algebraic 
approach and its concomitant equational style of reasoning. The simple realisation 
that the objects of the algebra need not just be numbers, but can essentially come 
from any inductive domain, allows users to transfer the same algebraic understanding 
from the domain of numbers to domains such as programs, data, machines, and even 
systems as a whole. The same style of equational reasoning remains valid through- 
out. This permits frequent transfer of knowledge from one domain to another by a 
mathematical equivalent of analogical thinking. 

Furthermore, conventional computer oriented concepts are rather far removed 
from human ways of thinking about real world systems, except in the case of the 
object oriented paradigm, whereas the algebraic approach has many aspects in com- 
mon with the object oriented approach and hence can make similar claims to real 
world closeness. On the whole, theory based systems could be considered closer to 
real world situations, since they are descriptive and try to introduce the least amount 
of model specific formalism possible, whereas conventional systems force upon the 
user all the details of computer oriented models, including particularly the need to 
express concepts algorithmically and usually sequentially. 

So it seems far from obvious that conventional systems are closer to real world 
situations, and hence to the non-computer specialist user, than theory based systems. 

Even if the gaps for both were the same, there would still be the greater payoff 
from investing time in learning to understand and use theory based systems, since 
one obtains ability for very general knowledge transfer from domain to domain. One 
only needs to compare the general applicability of the results of one year's study 
of C + + ,  which is the least amount of time required to become proficient in that 
complex language, with the general applicability of the results of one year's study 
of general algebraic topics. 
M i n d - s e t  for  th i s  Series  o f  L e c t u r e s  a n d  P a p e r s .  

At the outset of the lecture series, I formulated some general thoughts about the 
current intellectual environment of advanced system theory as it relates to computer 
science. Authors of papers were aware of this mind-set and have taken it into account 
in orienting their papers for inclusion in this volume. Since this original mind-set 
may be of interest to the general readership it is included here. 
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1. C o n v e r g e n c e  o f  t h e o r e t i c a l  c o m p u t e r  science a n d  m a t h e m a t i c s .  For- 
mal and theoretical systems developed in computer science and mathematics 
are increasingly converging, as are the interests of researchers in both areas. 
This is witnessed by the regular occurrence of such conferences as the Annual 
IEEE Symposium on Logic in Computer Science, the International Workshops 
on Mathematical Foundations of Programming Semantics, and the special sec- 
tion on Logic, Mathematics and Computer Science of the International Congress 
of Logic, Methodology and Philosophy of Science. In addition four new journals 
have appeared in the past year, Mathematical Structures in Computer Science 
(Cambridge University Press), the Journal of Logic and Computing (Oxford 
University Press), the International Journal of Foundations of Computer Sci- 
ence (IOS Press), and Category Theory for Computer Science (Prentice Hall). 

2. T h e o r y  b a s e d  e n v i r o n m e n t s  a re  t r a n s f o r m i n g  s y s t e m  d e v e l o p m e n t .  
Practical computer based realizations of such theory based systems are rapidly 
appearing, and promise radically to transform the entire process of software de- 
velopment, from conceptualization to implementation, permitting rigorous for- 
mulation and verification of most aspects of the process (see the paper by Peter 
Lauer in this volume). 

3. E n v i r o n m e n t s  m u s t  b e  efficient a n d  s e m a n t i c a l l y  sound .  A practical envi- 
ronment for the rigorous development of software must be based on an efficiently 
executable programming notation which enjoys as clear and sound a semantics 
as the more abstract, and usually more mathematical and often non-executable 
notations used to express requirements, specifications, designs, etc. 

4. F u n c t i o n a l  l anguages  bes t  ach ieve  eff iciency a n d  s e m a n t i c  clari ty.  To 
date, functional programming languages (see the papers by David MacQueen on 
SML, and by R. Frost and S. Karamatos, in this volume) are the most successful 
in achieving efficiency comparable to the most efficient procedural languages such 
as C, while at the same time permitting the formulation of a clear mathematical 
semantics, which sometimes, for example, in the case of OBJ3 (see the paper by 
Tim Winkler in this volume), coincides with the actual operational (run time) 
semantics of the language, which is based on the notion of rewriting (see the 
paper by Nachum Dershowitz, in this volume). 

5. D o m a i n s  o f  i n t e r e s t  conce ived  ana logous ly  in m a t h e m a t i c s  a n d  com- 
p u t i n g .  Mathematicians and logicians tend to characterize domains of interest 
by giving a structure consisting of some domains, and a number of operations or 
functions, and possibly relations, on these domains. The meanings of the func- 
tions and relations are then stated axiomatically, for instance as equations or 
inequalities. 
Increasingly, computer scientists tend to characterize executable representations 
by defining concrete or abstract data types, which essentially correspond to the 
mathematician's notion of (algebraic) structure, except that the meanings of the 
functions and relations are defined operationally in terms of language primitives 
which directly translate to executable machine code. 
This similarity of characterization of domains of interest inspired the proponents 
of the algebraic specification methods to work towards a new style of software 
development which would be pervaded by sound mathematical principles and 
supported by powerful mathematical tools (see the papers by Tim Winkler on 
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OBJ3, and by Stephen Garland, John Guttag and James Homing on LARCH 
in this volume). 

6. T y p e  t h e o r y  fits t he  gene ra l  needs  o f  d o m a i n  i n d e p e n d e n t  s y s t e m s .  
Adequate support for reasoning about arbitrary formal systems (including ex- 
ecutable notation) requires more than the ability to express domain specific 
information. It  requires powerful logical systems in which to formulate, develop, 
analyT.e and compare different domain specific formalisms. Modern type theory 
has proved to be extremely fruitful when applied for this purpose. In fact, solu- 
tions of problems in computer science using type theoretical notions have greatly 
stimulated research into the lambda calculus and type theory by mathematicians 
and logicians, and have even contributed new developments in these areas. (See 
the papers by Douglas Howe on Nuprl, by K. van Hee, P. Rambags and P. Verk- 
oulen on ExSpect, and by Sentot Kromodimoeljo, Bill Pase: MarkSaaltink, Dan 
Craigen and Irwin Meisels on EVES, in this volume.) 

7. O t h e r  discipl ines  have  need  o f  a d v a n c e d  t h e o r y  b a s e d  sy s t ems .  There 
exist a number of very interesting prototypical computer based systems which 
support rigorous and systematic development of executable software from spec- 
ifications (e.g., OBJ3, LARCH, ExSpect, EVES, and IDEF/CPN, which are all 
presented in papers in this volume). Graduate students in computer science and 
other disciplines such as engineering, business, linguistics, philosophy, etc., need 
to gain experience with such systems so that they can usefully employ them 
in the process of producing dependable (verified) application oriented software. 
But this presupposes, especially in the case of non-mathematicians, that much 
of the theoretical underpinning of the system is hidden from the user, and that 
the remaining theory is taught in an appropriate manner and at the right time. 

8. SML is wide ly  u sed  to  i m p l e m e n t  such  a d v a n c e d  sy s t ems .  Standard ML 
and its extensions are proving to be the functional programming languages of 
preference for implementing many of the most advanced systems of the kind we 
have been discussing (see the papers by David MacQueen and John Ophel on 
SML, in this volume). This is in part due to the fact that they can be made 
to produce quite efficient code, while at the same time having a very well de- 
fined mathematical semantics. In fact, most of the systems covered during the 
series of talks are implemented in SML or in LISP, or use SML as part  of their 
programming interface. 

9. C o n c u r r e n c y  gives efficiency a n d  conciseness .  Concurrency is of impor- 
tance for efficiency reasons, but also due to the fact that decomposition into 
relatively independent concurrent subsystems often leads to much shorter code 
and increased clarity. Standard ML has been extended to support concurrency 
in a number of ways, which ensure that the advantages of functional program- 
ming are preserved (see the paper on Concurrent ML by John Reppy, and the 
general paper by David MacQueen on SML in this volume). On the other hand, 
concurrency introduces additional complexity into the problem of correctly con- 
ceptualizing the possible behaviours of the system and proving the correctness 
of the algorithms involved. To manage this complexity, the need for rigour and 
formality in proving properties of the system is even greater than in the case 
of sequential and centralized systems. Systems such as the Concurrency Work- 
bench (see the paper by Rance Cleaveland, and the preparatory papers by Jeffery 
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Zucker in this volume), the IDEF/CPN system from Metasoft Corporation (see 
the paper by Jawahar Malhotra and Robert Shapiro, as well as the paper by 
Robert Shapiro, Valerio Pinci and Roberto Mameli in this volume), give much 
support to this endeavor. The effective implementation of concurrent systems is 
also difficult, as is the effective exploitation of parallel architectures by program- 
mers. Mathematically well founded mechanical schemes for synthesising concur- 
rent programs from programs that do not specify concurrency or communication 
also promise to reduce the complexity inherent in developing concurrent systems 
(see the paper by Michael Barnett and Christian Lengauer in this volume). 

10. Gr a ph i c a l  r e p r e s e n t a t i o n  o f  knowledge  is i m p o r t a n t .  Graphical repre- 
sentation of knowledge is increasingly recognized as an important technique for 
visualizing complex relationships. Thus, in mathematics, category theory gener- 
alizes the conventional arrow representation of functional relationships, to obtain 
powerful and general ways of conceptualizing complex (functional) domains, and 
replacing specific combinatorial arguments by graph manipulation (arrow chas- 
ing), 

11. Level  o f  p e r f o r m a n c e  of  s t u d e n t s  rises when  courses s tress  t h e o r y  
based  a p p r o a c h  and  use  o f  t h e o r y  based  sys tems.  Limited experiments 
with students indicates that use of rigorous specification techniques, particularly 
following the algebraic approach, enhances the student's ability for independent, 
verified, and complete program development, and allows for the ready transferral 
of knowledge from high school elementary algebra to the business of specifying 
and designing sofware. Using the algebraic approach also reinforces their knowl- 
edge of the algebraic techniques they learned in high school. 
This seems to indicate that this approach may well be the best for requirement 
specification, because it is to be assumed that any potential customer requesting 
a software system will have completed high school algebra. 
Theory based systems which are based on logic require more training and so- 
phistication than can be expected from high school graduates. But as more 
programming takes place in languages like Prolog even at the high school level, 
this may change soon. 

12. T h e o r y  based  sys tems  shou ld  be  h u m a n  and  p r o b l e m  or i en ted .  
(a) In computer science, graphical representations have extended application in 

software engineering environments and particularly in the representation of 
concurrent systems. The IDEF/CPN system from MetaSoftware Corporation 
(see the paper by Robert Shapiro, Valerio Pinci and Roberto Mameli in this 
volume), is one of the most developed, integrated , and theoretically sound 
systems elegantly supporting graphical interaction. 
In IDEF/CPN it is possible to input an (inscribed) graph from which the 
system automatically generates a correct program. The ExSpect system is 
a similar system which at present has more system analysis support than 
IDEF/CPN (see the paper by K.van Hee, P. Rambags and P. Verkoulen in 
this volume). 

(b) In Nuprl (see the paper by Douglas Howe in this volume) it is possible 
to input a proof (a reasoned logical specification) from which the system 
automatically extracts a correct program. 

(c) Pattern matching is a natural human activity and the use of pattern match- 



ing in explaining the application of functions to their arguments in SML, 
OB:I, and W/AGE enhances readability greatly (see the papers by David 
MacQueen and John Ophel on SML, by Tim Winkler on OBff3, and by R. 
Frost and S. Karamatos on W/AGE,  in this volume). 

(d) The dictum that system code be as high-level as possible and the same 
throughout, which is one of the aspects of parametric programming as in- 
troduced by 3. Goguen, leads to ease of comprehension of the whole system 
in the case of all of the systems described in this volume. 

I n t e n d e d  r eade r s  o f  th is  v o l u m e  
This volume is meant as a modest contribution to narrowing the learning gap 

facing conventional computer users when they wish to use advanced theory based 
systems. The papers in this volume are meant for a wide audience and should not 
require great mathematical sophistication for their comprehension, in fact a high 
school knowledge of algebra, and perhaps a little set theory and formal logic should 
suffice. The papers contain numerous references for those wishing to pursue any 
of these topics to greater depth. These references may require more mathematical 
accumen from the reader, but the appropriate utilization of the available computer 
implementations of the mathematical theories, during the learning stages, should en- 
hance the process of self-instruction required to acquire the necessary mathematical 
knowledge and skills for an informed use of these systems. 

The collection of papers could also be used in advanced courses by students and 
researchers as an introduction and guide to advanced theory based systems, all of 
which are operational at McMaster and are readily available to other educational 
and research institutions. 
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