
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

693

Advisory Board: W. Brauer D. Gries J. Stoer

Peter E. Lauer (Ed.)

Functional Pro .gramme." g,
Concurrency, Slmulat~on
and Automated Reasoning

International Lecture Series 1991-1992
McMaster University, Hamilton, Ontario, Canada

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, FRG

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Volume Editor

Peter E. Lauer
Department of Computer Science and Systems, McMaster University
1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada

CR Subject Classification (1991): D.I-3, E3

ISBN 3-540-56883-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56883-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

�9 Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

This collection of papers arose from a series of lectures, given in the Department of
Computer Science and Systems, McMaster University, Hamilton, Ontario, Canada,
during 1991-92, at the invitation of Peter LaueL The series was co-ordinated by
Peter Lauer,]effery Zucker and Ryszard]anicki. The lectures were intended to fa-
miliarize workers in Computer Science and other disciplines with some of the most
exciting advanced computer based systems for the conceptualization, design, imple-
mentation, simulation, and logical analysis of applications in these disciplines. The
papers are mostly the work of individuals who were among the originators of the
systems presented.

We hope that this volume will make it easier for colleagues at other universities
and research establishments to evaluate the utility of these systems for their appli-
cation areas. We also hope that this volume will be of paramount utility to graduate
students in the various disciplines.

The collection of papers presents some strong motivational points for the use of
theory based systems in the areas of functional programming, concurrency, simula-
tion, and automated reasoning, highlighting some of their advantages and disadvan-
tages relative to conventional systems.

At the editors invitation, the authors kindly agreed to furnish newly written
papers on theory based systems which provide a guide into some of the major op-
erational systems and which might form a useful basis for assessing knowledge and
skills required for their informed use.

The four topic areas were selected for various related reasons.
Func t iona l p r o g r a m m i n g rather than procedural programming was chosen

because it provides a good level of abstraction from the standpoints of the user,
the tractability of full formalization of semantics, and providing good practical im-
plementations, allowing for computer supported experimentation with concepts ex-
pressed in this basically declarative style.

C o n c u r r e n c y rather than sequentiality was chosen as basic because we feel
that this is closer to real-world systems and human thought processes, and avoids
the artificial introduction of sequentiality constraints due to one's sequential model
and not due to the nature of the system modelled.

S imula t ion is used here as a synonym for modelling or prototyping and was
chosen since it is a means to enhance understanding of complex situations and dy-
namically changing systems, and a basis for experimental study of such systems.
Furthermore, simulation may be used to validate whether a computer implemen-
tation of some real-world situation is adequate for the purpose for which it was
designed.

A u t o m a t e d reason ing , which we take to include not only fully automated
theorem provers but especially interactive definition debuggers and proof checkers,
was chosen because it relieves the user from tedious, time consuming and error prone
activities involved in checking whether chains of inferences and logical conclusions
about the system are justified. We feel that a similar advantage to that obtained
by the presence of syntax checking in compilers, for developing error free programs,
can be obtained by the presence of proof checkers for developing error free system
models, and ultimately trustworthy computer systems implementing them.

vI

The issue is how to make existing theory based systems more accessible to users
of various kinds and at different levels.

Theory based systems have the advantages of precision, trustworthiness, and
generality. They can be used effectively to enhance learning. However, they have the
disadvantage of relative inefficiency in operation, and a greater learning gap to be
closed by the user.

Conventional systems have the advantages of efficiency and a reputedly smaller
learning gap, and they can also be used effectively to enhance learning, are more
familiar to users, and have extensive application development.

However, familiarity with conventional computer systems may not be as much
of an advantage as might appear at first sight. There is a more basic kind of fa-
miliarity which users have with theory based systems which is often overlooked and
which, if exploited, has a much greater payoff than the exploitation of familiarity
with conventional computer concepts. For example, familiarity with high school al-
gebra, which can be relatively safely presupposed in all adults who have graduated
from high school, makes for an easy road to computer systems based on the algebraic
approach and its concomitant equational style of reasoning. The simple realisation
that the objects of the algebra need not just be numbers, but can essentially come
from any inductive domain, allows users to transfer the same algebraic understanding
from the domain of numbers to domains such as programs, data, machines, and even
systems as a whole. The same style of equational reasoning remains valid through-
out. This permits frequent transfer of knowledge from one domain to another by a
mathematical equivalent of analogical thinking.

Furthermore, conventional computer oriented concepts are rather far removed
from human ways of thinking about real world systems, except in the case of the
object oriented paradigm, whereas the algebraic approach has many aspects in com-
mon with the object oriented approach and hence can make similar claims to real
world closeness. On the whole, theory based systems could be considered closer to
real world situations, since they are descriptive and try to introduce the least amount
of model specific formalism possible, whereas conventional systems force upon the
user all the details of computer oriented models, including particularly the need to
express concepts algorithmically and usually sequentially.

So it seems far from obvious that conventional systems are closer to real world
situations, and hence to the non-computer specialist user, than theory based systems.

Even if the gaps for both were the same, there would still be the greater payoff
from investing time in learning to understand and use theory based systems, since
one obtains ability for very general knowledge transfer from domain to domain. One
only needs to compare the general applicability of the results of one year's study
of C + + , which is the least amount of time required to become proficient in that
complex language, with the general applicability of the results of one year's study
of general algebraic topics.
M i n d - s e t for th i s Series o f L e c t u r e s a n d P a p e r s .

At the outset of the lecture series, I formulated some general thoughts about the
current intellectual environment of advanced system theory as it relates to computer
science. Authors of papers were aware of this mind-set and have taken it into account
in orienting their papers for inclusion in this volume. Since this original mind-set
may be of interest to the general readership it is included here.

vii

1. C o n v e r g e n c e o f t h e o r e t i c a l c o m p u t e r science a n d m a t h e m a t i c s . For-
mal and theoretical systems developed in computer science and mathematics
are increasingly converging, as are the interests of researchers in both areas.
This is witnessed by the regular occurrence of such conferences as the Annual
IEEE Symposium on Logic in Computer Science, the International Workshops
on Mathematical Foundations of Programming Semantics, and the special sec-
tion on Logic, Mathematics and Computer Science of the International Congress
of Logic, Methodology and Philosophy of Science. In addition four new journals
have appeared in the past year, Mathematical Structures in Computer Science
(Cambridge University Press), the Journal of Logic and Computing (Oxford
University Press), the International Journal of Foundations of Computer Sci-
ence (IOS Press), and Category Theory for Computer Science (Prentice Hall).

2. T h e o r y b a s e d e n v i r o n m e n t s a re t r a n s f o r m i n g s y s t e m d e v e l o p m e n t .
Practical computer based realizations of such theory based systems are rapidly
appearing, and promise radically to transform the entire process of software de-
velopment, from conceptualization to implementation, permitting rigorous for-
mulation and verification of most aspects of the process (see the paper by Peter
Lauer in this volume).

3. E n v i r o n m e n t s m u s t b e efficient a n d s e m a n t i c a l l y sound . A practical envi-
ronment for the rigorous development of software must be based on an efficiently
executable programming notation which enjoys as clear and sound a semantics
as the more abstract, and usually more mathematical and often non-executable
notations used to express requirements, specifications, designs, etc.

4. F u n c t i o n a l l anguages bes t ach ieve eff iciency a n d s e m a n t i c clari ty. To
date, functional programming languages (see the papers by David MacQueen on
SML, and by R. Frost and S. Karamatos, in this volume) are the most successful
in achieving efficiency comparable to the most efficient procedural languages such
as C, while at the same time permitting the formulation of a clear mathematical
semantics, which sometimes, for example, in the case of OBJ3 (see the paper by
Tim Winkler in this volume), coincides with the actual operational (run time)
semantics of the language, which is based on the notion of rewriting (see the
paper by Nachum Dershowitz, in this volume).

5. D o m a i n s o f i n t e r e s t conce ived ana logous ly in m a t h e m a t i c s a n d com-
p u t i n g . Mathematicians and logicians tend to characterize domains of interest
by giving a structure consisting of some domains, and a number of operations or
functions, and possibly relations, on these domains. The meanings of the func-
tions and relations are then stated axiomatically, for instance as equations or
inequalities.
Increasingly, computer scientists tend to characterize executable representations
by defining concrete or abstract data types, which essentially correspond to the
mathematician's notion of (algebraic) structure, except that the meanings of the
functions and relations are defined operationally in terms of language primitives
which directly translate to executable machine code.
This similarity of characterization of domains of interest inspired the proponents
of the algebraic specification methods to work towards a new style of software
development which would be pervaded by sound mathematical principles and
supported by powerful mathematical tools (see the papers by Tim Winkler on

VIII

OBJ3, and by Stephen Garland, John Guttag and James Homing on LARCH
in this volume).

6. T y p e t h e o r y fits t he gene ra l needs o f d o m a i n i n d e p e n d e n t s y s t e m s .
Adequate support for reasoning about arbitrary formal systems (including ex-
ecutable notation) requires more than the ability to express domain specific
information. It requires powerful logical systems in which to formulate, develop,
analyT.e and compare different domain specific formalisms. Modern type theory
has proved to be extremely fruitful when applied for this purpose. In fact, solu-
tions of problems in computer science using type theoretical notions have greatly
stimulated research into the lambda calculus and type theory by mathematicians
and logicians, and have even contributed new developments in these areas. (See
the papers by Douglas Howe on Nuprl, by K. van Hee, P. Rambags and P. Verk-
oulen on ExSpect, and by Sentot Kromodimoeljo, Bill Pase: MarkSaaltink, Dan
Craigen and Irwin Meisels on EVES, in this volume.)

7. O t h e r discipl ines have need o f a d v a n c e d t h e o r y b a s e d sy s t ems . There
exist a number of very interesting prototypical computer based systems which
support rigorous and systematic development of executable software from spec-
ifications (e.g., OBJ3, LARCH, ExSpect, EVES, and IDEF/CPN, which are all
presented in papers in this volume). Graduate students in computer science and
other disciplines such as engineering, business, linguistics, philosophy, etc., need
to gain experience with such systems so that they can usefully employ them
in the process of producing dependable (verified) application oriented software.
But this presupposes, especially in the case of non-mathematicians, that much
of the theoretical underpinning of the system is hidden from the user, and that
the remaining theory is taught in an appropriate manner and at the right time.

8. SML is wide ly u sed to i m p l e m e n t such a d v a n c e d sy s t ems . Standard ML
and its extensions are proving to be the functional programming languages of
preference for implementing many of the most advanced systems of the kind we
have been discussing (see the papers by David MacQueen and John Ophel on
SML, in this volume). This is in part due to the fact that they can be made
to produce quite efficient code, while at the same time having a very well de-
fined mathematical semantics. In fact, most of the systems covered during the
series of talks are implemented in SML or in LISP, or use SML as part of their
programming interface.

9. C o n c u r r e n c y gives efficiency a n d conciseness . Concurrency is of impor-
tance for efficiency reasons, but also due to the fact that decomposition into
relatively independent concurrent subsystems often leads to much shorter code
and increased clarity. Standard ML has been extended to support concurrency
in a number of ways, which ensure that the advantages of functional program-
ming are preserved (see the paper on Concurrent ML by John Reppy, and the
general paper by David MacQueen on SML in this volume). On the other hand,
concurrency introduces additional complexity into the problem of correctly con-
ceptualizing the possible behaviours of the system and proving the correctness
of the algorithms involved. To manage this complexity, the need for rigour and
formality in proving properties of the system is even greater than in the case
of sequential and centralized systems. Systems such as the Concurrency Work-
bench (see the paper by Rance Cleaveland, and the preparatory papers by Jeffery

IX

Zucker in this volume), the IDEF/CPN system from Metasoft Corporation (see
the paper by Jawahar Malhotra and Robert Shapiro, as well as the paper by
Robert Shapiro, Valerio Pinci and Roberto Mameli in this volume), give much
support to this endeavor. The effective implementation of concurrent systems is
also difficult, as is the effective exploitation of parallel architectures by program-
mers. Mathematically well founded mechanical schemes for synthesising concur-
rent programs from programs that do not specify concurrency or communication
also promise to reduce the complexity inherent in developing concurrent systems
(see the paper by Michael Barnett and Christian Lengauer in this volume).

10. Gr a ph i c a l r e p r e s e n t a t i o n o f knowledge is i m p o r t a n t . Graphical repre-
sentation of knowledge is increasingly recognized as an important technique for
visualizing complex relationships. Thus, in mathematics, category theory gener-
alizes the conventional arrow representation of functional relationships, to obtain
powerful and general ways of conceptualizing complex (functional) domains, and
replacing specific combinatorial arguments by graph manipulation (arrow chas-
ing),

11. Level o f p e r f o r m a n c e of s t u d e n t s rises when courses s tress t h e o r y
based a p p r o a c h and use o f t h e o r y based sys tems. Limited experiments
with students indicates that use of rigorous specification techniques, particularly
following the algebraic approach, enhances the student's ability for independent,
verified, and complete program development, and allows for the ready transferral
of knowledge from high school elementary algebra to the business of specifying
and designing sofware. Using the algebraic approach also reinforces their knowl-
edge of the algebraic techniques they learned in high school.
This seems to indicate that this approach may well be the best for requirement
specification, because it is to be assumed that any potential customer requesting
a software system will have completed high school algebra.
Theory based systems which are based on logic require more training and so-
phistication than can be expected from high school graduates. But as more
programming takes place in languages like Prolog even at the high school level,
this may change soon.

12. T h e o r y based sys tems shou ld be h u m a n and p r o b l e m or i en ted .
(a) In computer science, graphical representations have extended application in

software engineering environments and particularly in the representation of
concurrent systems. The IDEF/CPN system from MetaSoftware Corporation
(see the paper by Robert Shapiro, Valerio Pinci and Roberto Mameli in this
volume), is one of the most developed, integrated , and theoretically sound
systems elegantly supporting graphical interaction.
In IDEF/CPN it is possible to input an (inscribed) graph from which the
system automatically generates a correct program. The ExSpect system is
a similar system which at present has more system analysis support than
IDEF/CPN (see the paper by K.van Hee, P. Rambags and P. Verkoulen in
this volume).

(b) In Nuprl (see the paper by Douglas Howe in this volume) it is possible
to input a proof (a reasoned logical specification) from which the system
automatically extracts a correct program.

(c) Pattern matching is a natural human activity and the use of pattern match-

ing in explaining the application of functions to their arguments in SML,
OB:I, and W/AGE enhances readability greatly (see the papers by David
MacQueen and John Ophel on SML, by Tim Winkler on OBff3, and by R.
Frost and S. Karamatos on W/AGE, in this volume).

(d) The dictum that system code be as high-level as possible and the same
throughout, which is one of the aspects of parametric programming as in-
troduced by 3. Goguen, leads to ease of comprehension of the whole system
in the case of all of the systems described in this volume.

I n t e n d e d r eade r s o f th is v o l u m e
This volume is meant as a modest contribution to narrowing the learning gap

facing conventional computer users when they wish to use advanced theory based
systems. The papers in this volume are meant for a wide audience and should not
require great mathematical sophistication for their comprehension, in fact a high
school knowledge of algebra, and perhaps a little set theory and formal logic should
suffice. The papers contain numerous references for those wishing to pursue any
of these topics to greater depth. These references may require more mathematical
accumen from the reader, but the appropriate utilization of the available computer
implementations of the mathematical theories, during the learning stages, should en-
hance the process of self-instruction required to acquire the necessary mathematical
knowledge and skills for an informed use of these systems.

The collection of papers could also be used in advanced courses by students and
researchers as an introduction and guide to advanced theory based systems, all of
which are operational at McMaster and are readily available to other educational
and research institutions.
A c k n o w l e d g e m e n t s

Financial support for the series was given by the Department of Computer Sci-
ence and Systems at McMaster University, supplemented with some support from
Dr. H. A. Elmaraghy at the Flexible Manufacturing Research and Development
Centre and the Department of Mechanical Engineering at McMaster, and Dr. W.
Elmaraghy at the Design Automation and Manufacturing Research Laboratory and
the Faculty of Engineering at the University of Western Ontario.

It is due to Ryszard :lanicki's prompting that Peter Lauer undertook to produce
this volume of papers which gives these lectures a more permanent form of use to a
much wider audience.

Thanks are due to Alfred Hofmann and Hans W/Sssner, both of Springer-Ver-
lag, for their continuing support and excellent advice during the production of this
volume.

Last, but most important, we would like to thank the authors of the papers for
taking the time in their busy schedules to produce such excellent papers in such a
short time.

March 1993
Peter E. Lauer (Editor)
McMaster University

Contents

On the Use of Theory Based Systems to Traverse
Educational Gaps in Computer Related Activities 1
Peter E. Lauer

Reflections on S tandard ML . 32
David B. MacQueen

An In t roduct ion to the High-Level Language S tandard ML 47
John Ophel

Generat ing an Algor i thm for Executing Graphica l Models 71
Jawahar Malhotra and Robert M. Shapiro

Modeling a NORAD Command Post Using SADT and Colored Petr i Nets 84
Robert M. Shapiro, Valerio O. Pinci and Roberto Mameli

Proposi t ional Temporal Logics and Their Use in Model Checking 108
Jeffery Zucker

The Proposi t ional /~-Calculus and Its Use in Model Checking 117
Jeffery Zucker

Analyzing Concurrent Systems Using the Concurrency Workbench 129
Rance Cleaveland

Reasoning About Funct ional Programs in Nuprl . 145
Douglas J. Howe

Concurrent ML" Design, Appl ica t ion and Semantics . 165
John H. Reppy

A Taste of Rewrite Systems . 199
Nachum Dershowitz

Programming in OBJ and Maude . 229
Tim Winkler

Suppor t ing the At t r ibu te G r a m m a r P rogramming Parad igm
in a Lazy Funct ional P rogramming Language . 278
R.A. Frost and S. Karamatos

Specification and Simulat ion with ExSpect . 296
K.M. van Hee, P.M.P. Rambags and P.A.C. Verkoulen

An Overview of Larch . 329
Stephen J. Garland, John V. Guttag and James J. Horning

The EVES System . 349
Sentot Kromodimoeljo, Bill Pase, Mark Saaltink, Dan Craigen and Irwin Meisels

A Systolizing Compi la t ion Scheme for Nested Loops with Linear Bounds 374
Michael Barnett and Christian Lengauer

