
Combining Model Checking and Theorem
Proving to Verify Parallel Processes*

Hardi Hungar

Dept. of Computer Science, University of Oldenburg, D-2900 Oldenburg, Germany

Abst rac t . To overcome the hmitations of pure model checking, this
verification technique is combined with theorem proving. Large processes
are split into components whose correctness w.r.t, local specifications is
checked via model checking. The correctness of the composition w.r.t, the
global specification is then established by constructing a formal proof in
a derivation system with the help of a theorem prover.

1 I n t r o d u c t i o n

Techniques for automatic verification of finite state systems are still not powerful
enough to cope with real life systems. The reason for this is the complexity of
the verification task. The state space of a finite system grows exponentially with
the number of its parallel components whereas the size of its description only
grows linearly. This phenomenon is usually called "state explosion". The state
space is also exponential in the number of (boolean) data variables. Both of the
above severely limit explicit enumeration techniques - they have an exponential
space complexity. Symbolic techniques seem in many cases to reduce this to a
quadratic or cubic complexity [BCMDH90, Fil91]. This suffices for many inter-
esting examples, including abstractions covering relevant aspects of real world
systems. But still too many systems can not be verified rigorously.

Our approach to overcome these difficulties is to apply semiautomatic or
interactive proof techniques for tasks which cab not be done automatically, but
to use model checking as much as possible. Roughly, the idea is as follows. A
variant of CTL is used to specify processes. This gives rise to a correctness logic:
Its basic statements are of the form

p sa t r ,

where p is a program (or process) and r is a formula. Axioms and rules for this
logic are implemented in a theorem prover environment. If the process is small
enough to permit model checking, this may be done. A successful run of the
model checker counts as an axiom of the logic. If it is too big, proof rules have to
be applied to reduce the correctness of p to the correctness of smaller processes

* This research has been funded by the German Ministery for Research and Technology
(BMFT) as part of the project KORSO (Korrekte Software) under grant No. 01 IS
203 P. The responsibility for the contents lies with the author.

155

(w.r.t other specifications, of course). There are also be further "external" axioms
of the proof systems - - e.g. temporal logic tautologies which are established
by calling a tautology checker. Proofs made up from rules applications may
be constructed completely interactively, but the theorem prover environment
also offers the possibility to automate common patterns of proofs (via so called
tactics). Thus, even the scope of fully automatic verification might be increased
significantly in this way.

The use of a general purpose theorem prover has further benefits. Model
checking is only possible for finite systems. If a system to be checked is infi-
nite, the user first has to generate a finite abstraction of the system, then have
the abstraction checked and prove that correctness of the abstraction implies
correctness of the original system. In a theorem prover framework, one can for-
malize the two steps the user has to do. Since all steps are performed (or at least
checked) by the machine, no errors are left in the proof.

At present, a verification system as described above is under implementation.
The proof environment is based on the LAMBDA system, which serves as a
general purpose, interactive theorem prover. A short description follows which
explains what processes and their specifications look like.

A subset of OCCAM is used to describe processes. Basically, a process is a
parallel composition of while-programs which are allowed to communicate via
synchronous channels. Allowed data types are subranges of the natural numbers
or the natural numbers itself.

In the temporal logic, we have atoms to talk about the basics of synchronous
communication: whether a (sub-)process is ready ~o send on some channel,
whether some data are lransmi~ed over a channel, and so on. Also, processes
may have global variables whose values a specification might refer to (but which
can not be read by other processes to prevent shared variable parallelism). Those
atoms are added to Josko's logic MCTL (modular CTL, see [DDGJ89, Jos89]).
This logic is tailored to meet three requirements:

- allow efficient model checking,
- support the assume/guarantee paradigm, and
- allow powerful proof rules dealing with the parallel composition of processes.

Thus, a specification of a process is a pair (A, C) where C describes the behav-
ior of the process under the assumption that A is guaranteed (usually by the
environment of the process).

The use of MCTL is of course essential to the approach: We need a proof
system dealing with parallel composition of processes which are specified in tem-
poral logic. Less essential is the choice of the programming language. Indeed,
within the ESPRIT project FORMAT (Formal Methods in Hardware Verifica-
tion) it is planned to develop a similar proof environment for a substantial subset
of the hardware description language VttDL. 2

2 What is described here covers only part of the system to be developed within
FORMAT.

156

In the rest of the paper I will describe in more detail both the theoretical
foundations of the verification method (in Section 2) and its implementat ion (in
Section 3).

2 T h e o r y

2.1 P r o g r a m s

<prc> ::'-- x:~- * [c ? x ' [c ! t [s top] sk ip [
var x inlt t <prc> [<prc>;<prc> [
i f b --+ <prc> , b --+ <prc> fl [
al t b & c?x--+ < p r O , . . . t l a I
while b do <prc> od

<prg>,:---- <prc> II ''' II <prc>

Fig. 1. Syntax of Programs

The syntax of processes and programs is given in Figure 2.1. In this table, no
mention is made of da ta types. Allowed types are subranges of natural numbers
and the natural numbers itself. On those types, usual ari thmetic operations and
relations are available. The type information is kept implicit in the names of
variables and of channels. When necessary, conversions are done automatically.

A more essential point are the restrictions the static semantics imposes on
free variables and channels. In a process, one channel may occur as an inchannel
(c ? x) or as an outchannel (c !t), but not in both forms. A channel may occur
in one or two processes of one program: As an inchannel of one process and as
an outchannel of another, but neither twice as an inchannel nor outchannel. I f
a channel occurs twice, it is considered as an internal channel of the program,
otherwise it is external. Global variables within processes are allowed, but no
process may write to a variable (in a s ta tement x := t or c ? x) which is read by
another (in y:= t or c !t with x 6 free(t) or a condition b with x C free(b)). This
is to prevent shared-variable parallelism. As a result, the only communicat ion
between processes which is allowed is via directed channels which connect one
process with one other.

Although these restrictions are not strictly necessary for o u r approach to
work, they influence substantially a toms and rules for the specification logic.

Now to the semantics of programs. The intuitive meaning of all the constructs
should be clear. Perhaps the only thing which needs some explanation are the
clauses in an a i r -s ta tement . A branch b & c ? x --+ <pro> may be chosen if b is
true for the current (internal) state of the process and the environment offers

157

an output on c. The first step of its execution is the communication, then the
control passes to the process behind the arrow.

Viewed in isolation, the semantics of a process or program is given by an
automaton or Kripke structure whose states determine the current position in
the program and the values of all variables. Whenever an input statement is to
be executed, a suitable value is guessed. To make this semantics compositional,
steps of the environment are included. An interleaving semantics is chosen here to
keep the structures small. Since the only thing which is visible of the environment
is its willingness of the environment to engage in communications, just this has
to be added. In this way, we g e t a modular semantics for our processes and
programs.

The generated Kripke structures are finite if all occurring data types are
finite. The size of the structure for one process is exponential in the number of
channels linking i t to the outside and exponential in the number of (bits for) its
variables.

Figure 5 gives an example for the generated Kripke structures.
For CTL model checkingi a Kripke structure is viewed as a representation

of an infinite computation tree. Here, we can not simply take the unwinding of
the Kripke structure. Since the environment may make a random step at any
time, on some paths no internal step of the process would occur, which is not
the intended semantics. To guarantee progress both internally and externally,
fairness conslraints are added. The notion of fairness adopted here is the follow-
ing. If the control reaches some point infinitely often and one step could always
be taken at that point, then this step will infinitely often be executed. I do not
want to motivate the choice of this particular notion of fairness. It may suffice
to say that it is between weak and strong fairness and that any other sensible
notion could be implemented without problems.

2.2 S p e c i f i c a t i o n logic

We use an instance Josko's MCTL (modular CTL) as specification logic. Its
main properties - - which motivated its development - - are:

- efficient model checking (therefore it Js a branching time logic),
- assume/guarantee style of specification: so there is no need to specify the

behavior for situations which will not occur. A specification (A, C) means
that the commitment C may be false if the assumption A is violated.

- Validity of the following rules

p sat (A, C), q sat (true, A)
p II q s a t (true, C)

p sat (A, C), q sat (B, D)
p II q s a t (AAB, CAD)

p sat (A, C), B---~A, C--*D
p sat (B, D)

158

< atom > ::---- rtr(c) I rts(c) I r tx(c) I @c = t

< assm > ::=

l

i
i

a (< form > --* (< form > unt i l < form >))

D(< form > --* (< for~ > unless < form >))

(< form > unt i l < ~orm >) J (< iorm > unless < for,. >)

< assm> A< assm> I Vx. < assm>

< corant > ::= < form > I < coma > V_until < c o n >

J < corm > V_unless < corara >

] < c o t m > A < c o m m > J < c o r m > V < c o r m >

J V x. < corm > I 3 x. < coma>

where <form> is a first-order formula with the special atoms of the form
<atom>.

Fig. 2. Syntax of Formulae.

It turned out that the assumptions should be formulated in linear t ime logic
- - otherwise it would be hard to formalize (semantically) the intuitive concept
of an assumption. The soundness of the second and third rule above requires
that commitments are not existential. This resulted in the choice of the mono-
tonic, universal fragment of CTL as the logic for commitments . The necessity
to incorporate assumptions into the model checking procedure imposed further
restrictions on the assumptions. The syntax of both logics is given in Figure 2.

The special a toms listed there correspond to the visible effects of the com-
munication statements. Their meaning is:

- r ts(c) : the process with outchannel c is ready to send on c.
- r t r (c) : the process with iuchannel c is ready to receive on c.

- r tx(c) : A value is being communicated on c at the moment .

- @c = t: The value of t is visible on c (which implies that either r t s (c) or
r tx (e) is true).

Before a communicat ion can take place, both r t s and r t r have to be true.
When the communication starts, both signals become false and r t x goes up
instead, r t x stays high exactly for one step.

The values of those signals are included in the Kripke structures which give
meanings to processes. For boolean connectives and the temporal operators the
semantics is obvious. V and 3 are viewed as abbreviations for A and V: The value
of a variable which is bound by a quantifier is supposed not to change over time.
Wha t has to be explained is the role of assumptions.

159

Similar to fairness constraints, they restrict the set of paths of the compu-
tation tree. When evaluating a CTL path quantifier for one particular node in
the tree, only those paths are taken into account which obey the restrictions
imposed by assumptions and fairness constraints.

Since all path quantifiers in commitments are universal, they are omitted,
and every subformula is considered to be universally path quantified. As a con-
sequence we get that (false, C) is a tautology of MCTL. 3

The logic and its model checking procedure are described in more detail in
[JosS9].

2.3 P r o o f sys t em

The proof system deals mainly with parallel composition of processes and in-
cludes weakening rules. It is based on the rules from [DDGJ89]. We exhibit the
main principles and explain their soundness. The formulation of the rules is a
little different from the perhaps more intuitive one in the motivation of MCTL.
It more closely reflects the form in which they are implemented.

Embedding. Any specification which is satisfied by one process is also true for
any parallel composition involving this process.

p s a t (A, C)

P II q s a t (A, C)

This is true because of the monotonicity of the commitment. Adding processes
restricts the executions.

Modus Ponens. Assumptions which are guaranteed (by some component can
be eliminated.

p s a t (B, C), p s a t {A, B)

p s a t (A, C)

The soundness of this rule relies on the fact that if B is guaranteed under branch-
ing time interpretation, then all computation paths satisfy B in the linear time
interpretation, too.

Conjunction. The third rule simply states that under combined assumption the
combined commitments do hold.

p sat (A, C), p sat (B, D)
p s a t { A A B , C A D)

3 Here, it becomes apparent that adding implicitly universal path quantifiers makes a
little difference: If we did not do this, (false, false) would not be a tautology, since
the commitment false is not in the scope of a path quantifier.

160

Weakening.

p sat (A, C), B "-+linear time A, C --+branching time D
p sat (B, D)

Strengthening of assumption is sound because of (again) the monotonicity of
the commitment logic. Unrestricted use of CTL implication for weakening of
commitments needs implicit universal path quantifiers, compare the remarks
above. Otherwise, conclusions of e.g. (V[2C) ---, C would not be justified.

Applying the Rules. With the above set of rules, the standard proof proceeds
as follows. First, all necessary atomic correctness statements for single processes
have to be established (e.g. via model checking). Those are lifted to statements
about the whole system under investigation via the embedding rule. Now the
conclusions have to be drawn. This is mainly done by applying Modus Ponens.
Indeed, a stronger version of this rule is needed where the eliminated assump-
tion is only one conjunct of the assumptions. The other composition rule, which
is called conjunction, caters for the situation where two services can be proven
independently. This includes the (rare) case of two processes running indepen-
dently (disjoint parallelism). Note that the rules should not be applied blindly.
Whenever possible, assumptions should be eliminated. Otherwise, one might end
up with a trivial statement like "assuming that the system is correct, correct be-
havior can be guaranteed".

There is no completeness result for the proof system. Most probably, it can
be complete for a severely restricted class of processes only. One reason is that
suitable modular specifications for the components of a program will not be
expressible in MCTL. Nevertheless, a lot of systems can be handled. A small
example illustrating the verification process follows in the next section.

2.4 E x a m p l e

producer distributor

var zo:o ini t O;
while true do var xo:o; var yo:l;

I while true do
if t rue~ c! 0 c?yo:l; d?xo:o;

t rue~ c ! 1 fi; if y0:l = 0 ~ e ! z0:o
d ! xo:o

od Y0:l = I ---, f ! xo:o fi
od

consumer1 consumer2

var x0:o ; var x0:o ;
while true do while true do

e?xo:0 f?z0:0
od od

Fig. 3. An abstract producer/consumer scenario

Figures 3 and 4 present two views of a simple system. A producer process
generates addresses and data, sends these to a distributor, which forwards the

161

producer distributor

var xi,~t ini t 0;
while true do var xint; var y0:l;

xint:= random; while true do
c ? Y0:l; d?x~nt;

if t rue~ c!0 i f y0:l = 0 --* eIxi~t
true---+ c I 1 fi;

d I xint y0:l = 1 ---* f I xi,~t fi
od

od

consurnerl consumer2

v a t x i n t ; , v a r X i n t ;

while true do I while true do
e ? x ~ t) f ? xi~t

od od

Fig. 4. An more concrete producer/consumer scenario

data to the addressed consumer. One view abstracts completely from the data
and just keeps the communication structure. In the second, the data may be ar-
bi trary integers. The system has no external channels. Therefore, no assumptions
should be used when specifying it. Three aspects of its behavior are formalized
in monotonic CTL below.

D(r tx(c) A @c = 0 --* [~ r t x (f) u n t i l (r tx (e) A -~rtx(f))]) (1)

This says that if the address 0 is t ransmit ted, consumerO is the next to get a
value.

[::]Vx. (r tx(d) A @d = x -+

[(-~rtx(e) A -~r tx(f)) u n t i l (r tx(e) A @e = x V r t x (f) A @f = x)]) (2)

This formula means that a value t ransmit ted on d is the next one which will be
delivered via e or f .

E](rtx(c) A @c = 0 --~

Vx. ([-~rtx(f) u n l e s s (r t x (f) A @f # x)] V O[r tx(e) A @e = x])) (3)

Formula (3) expresses that , after transmission of the address 0, the next value
sent on d will eventually be delivered to consumerO.

I present a derivation of (1) to illustrate the proof process.
The atomic assertions (established by model checking) are:

producer sa t

consumerO s a t

dislribulor s a t

(true, D(rtx(c) ~ ~rts (d)) A

r'][rts(d) ---+ (rts(d) un le s s rtx(d))]) (4)

(true, O<>rtr(e) A O[m-(e) ~ (~t~(e) u n l e s s ,'tx(~))]) (~)
([][rtx(c) ---* ~rts(d)] A Dirts(d) ~ (r t s (d) u n l e s s rtx(d))]
A OOrtr(e) A D[rtr(e) ---+ (r t r (e) u n l e s s rtx(e))] ,

Q[i'tx(c) A @c = 0 --+ (-~rtx(f) u n t i l (rtx(e) A ~r tx (f)))])(6)

(4) describes part of the behavior of producer which is independent of the
environment: After a communicat ion on c, the process will come to a point where

162

it constantly offers to engage in a communication on d. (5) is a similar statement
for consumerO, only that this process will without any restrictions arrive at
the state where it wants to communicate. Both assertions together provide the
assumptions for (6). Applying the embedding rule for all three assertions and
then two times Modus Ponens gives the desired result.

The Kripke structures belonging to the abstract system are very small. The
one for producer is given in Figure 5. So the proof above can completely be
carried out on the machine. For the concrete system, this is impossible, because
the Kripke structures get too big even when integers are restricted to 32 bit.
In the next section it is described how the concrete system can nevertheless be
verified.

2.5 Abstracting Out Data

The key to automatically verify (model check) processes with large data domains
is to apply abstractions first. In [Wo186], Wolper has introduced the notion of a
data independent process. Intuitively, a process is data independent if its behav-
ior does not depend on the values which it gets as input. This applies to queues
or similar devices. The process distributor of our example is data independent
on the channels d, e and f , though its behavior does depend on the values re-
ceived on c. To capture processes like this one too, I use a slight generalization
of Wolper's original definition.

Def in i t i on 1. Let C be a subset of the channels of a process p, and let type(c)
for c E C denote the set of values which may be sent on c. Then p is data
independent on C if for any function f whose domain is Ueec type(c) and any
computation tree of p there exists another computation tree of p where in every
node the value of @c for c e C is replaced by f(@c).

A simple syntactic check can show that a process is data independent. What
makes this property important is that to verify suitable specifications, the types
of the channels can be replaced by very small data types. For example, the
commitment of the specification of distributor in the proof example above does
not mention any data on d, e or f . According to [Wo186], it suffices to verify
the specification for a process where the type of those channels has only one

'element, i.e. it is save to consider the abstract version of distributor.
Also, in proving the formulae (2) and (3) the data independence of distributor

can favorably be used. In the commitments to be established for distributor,
infinite conjunctions appear. Each of the conjuncts mentions the transmission
of only one value on d, e or f . The truth of such specifications is left invariant
if the integers are replaced by a domain with two elements. Again, the resulting
Kripke structures are small enough to be explicitly enumerated.

3 I m p l e m e n t a t i o n

The basis of the LAMBDA system [FPZ88, MF91] is an interactive theorem
prover for higher-order predicate logic. It offers tactics and rewriting to automate

163

rtr(e)

rtr(c)

rts(c),@c=0 ~c----O rts(c),rtr(c: @c----O

Irtx(c),@c=01

z~'ts(d),rtr(d)

[rtx(d),~d=O I

Ctx(c),@c=l

/
Fig. 5. The Kripke structure describing the behavior of producer within an arbitrary
environment.

proving. In these respects, it is similar to other systems like HOL [Gor88] or
ISABELLE [PN90]. 4

There are two ways in which with the help of such a system a prover for a
given program logic can be built. The first one is to embed the program logic in
higher-order logic. This involves defining a formal semantics for the program logic
in higher-order logic. Any assertion would have to denote its semantics. Proof

4 LAMBDA has some additional features to support specific styles of hardware verifi-
cation and synthesis [MF91], which at the moment are not important to us.

164

rules for the program logic could be derived formally. This approach has the
advantage of guaranteeing soundness of the proof system. But the disadvantage
is that terms would sometimes be clumsy and that it would take a long time
to establish the system. Indeed, in view of the complicated semantic domain for
MCTL, one can not hope to do all this in n reasonable amount of time.

Therefore, another way has been chosen: Just the syntax of the program logic
has been formalized in higher-order logic. Its rules have simply been added as
additional nxioms. But also this way requires a lot of work. A formal syntax
has to be much more detailed than what one usually writes down when talking
about a formal system. Let me exemplify this by presenting the formal syntax
of two of the rules.

G//H I- P sat_prg (A t_and B , C)
G//H I- P sat~rg (A' , A)

G//H I- P sat_prg (A' t_and B , C)

G//H ,I- P sat_prg (B , C)
G//H I- l~aut(A t_impl B)
G//H J- is_assm A

G//H l - P sa t_prg (A , C)

The part to the left side of the turnstile (I -) in these rules is LAMBDA-
specific and can be ignored here. It simply means that hypotheses play no role
in performing these proof steps, hnpor tan t are the terms to the right. There, a lot
of operators do appear which have the following (syntactic) types and informal
meanings.

- sa t_prg : program • MCTL ---+ t ruth value. Corresponds to sat .
- l _ t a u t : temporal formula ---+ truth value. Tells whether n temporal formula

is n linear time tautology.
- t_and, t_impl : Constructors for temporal formulae.
- is_assm : temporal formula ---+ t ruth value. Gives true for formulae which

obey the restrictions imposed on assumptions (see Figure 2).

There are nanny further operators . Most of them are partially or completely
axiomatized in LAMBDA. If an operator (like e.g. i s_nssm)can completely be
axiomatized by a set of equations, the rewriting component of LAMBDA cnn
automatically discharge any valid premises with this operator occurring in the
proof . For some other operators external programs do exist which decide the
validity. The most prominent is of course sa t_pro for which the model checker
can be called. But even for completely axiomntized operators it is favorable to
have external programs. To check the static semantics constraints for the sim-
ple example from Section 2.4, rewriting within LAMBDA took several minutes
whereas a ML program needed at most seconds.

The implementation is not yet complete. Some components are still sort of
n prototype. Nevertheless, the abstract producer/consumer scenario from Sec-
tion 2.4 has been verified, although some of the steps (e.g. the generation of
internal fairness constraints) had to be done manually. The missing parts will
be added in the near future.

165

4 Future Work

In addition to complete the system in order to provide the full functionality
as described above, some extension are also planned. One major issue will be
the development of powerful tactics to automate reasoning in the proof system.
Some experience with more realistic examples will help to perform this task. It
is planned to verify a communication processor for a direct connection network
which guarantees reliable message passing.

On the theoretical side, further concepts are sought for to cope with large
data domains. I.e. what is needed is a more powerful way to abstract out data.
Also, a symbolic model checker would help in this respect, but unfortunately
n6ne is available at the moment.

Acknowledgement

I sincerely thank Werner Damm and Bernhard Josko, on whose ideas and pre-
vious work the above is based. Further, I would like to mention the students
Roland Baumann and Gunnar Wittich who have done most of the programming
which was necessary to implement the system.

References

[BCMDHg0] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., and Hwang, J.
Symbolic model checking: 1030 states and beyond, in: Proe. 5th IEEE Symp.
Logic in Computer Science (1990).

[DDGJ89] Datum, W., DShmen, G., Gerstner, V., and Josko, B. Modular verification
of Petri nets: the temporal logic approach, in: deBakker, deRoever, Rozen-
berg (eds) Stepwise refinement of distributed systems: models, formalisms,
correctness, Springer LNCS 430 (1990), 180-207.

[Filgl] Filkorn, T. Functional extension of symbolic model checking, in: Proc;
CAV'91.

[FPZ88] Fourman, M., Palmer, W., and Zimmer, R; Proof and synthesis, in Proc.
ICCD'88, Rye Brook, NY, 1988.

IGor88] Gordon, M.J.C. HOL: A proof generating system for higher-order logic, in:
Birtwistle, Subrahmanyam (eds) VLSI specification, verification and synthe-
sis, Kluwer (1988), 73-128.

[Jos89] Josko, B. Verifying the correctness of AADL modules using model checking,
in: deBakker, deRoever, Rozenberg (eds) Stepwise refinement of distributed
systems: models, formalisms, correctness, Springer LNCS 430 (1990), 386-
400.

[MFgl] Mayger, E., and Fourman, M. Integration of formal methods with system
design, in Proc. VLSI'91, Edinburgh.

[PN90] Paulson, L., and Nipkow, T. ISABELLE tutorial and user's manual, Tech.
Rep. No. 189, Univ. Cambridge Comp. Lab. (1990).

[Wol86] Wolper, P. Expressing interesting properties of programs in propositional
temporal logic, POPL '86, 184-193.

