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Abst rac t .  To overcome the hmitations of pure model checking, this 
verification technique is combined with theorem proving. Large processes 
are split into components whose correctness w.r.t, local specifications is 
checked via model checking. The correctness of the composition w.r.t, the 
global specification is then established by constructing a formal proof in 
a derivation system with the help of a theorem prover. 

1 I n t r o d u c t i o n  

Techniques for automatic verification of finite state systems are still not powerful 
enough to cope with real life systems. The reason for this is the complexity of 
the verification task. The state space of a finite system grows exponentially with 
the number of its parallel components whereas the size of its description only 
grows linearly. This phenomenon is usually called "state explosion". The state 
space is also exponential in the number of (boolean) data variables. Both of the 
above severely limit explicit enumeration techniques - they have an exponential 
space complexity. Symbolic techniques seem in many cases to reduce this to a 
quadratic or cubic complexity [BCMDH90, Fil91]. This suffices for many inter- 
esting examples, including abstractions covering relevant aspects of real world 
systems. But still too many systems can not be verified rigorously. 

Our approach to overcome these difficulties is to apply semiautomatic or 
interactive proof techniques for tasks which cab not be done automatically, but 
to use model checking as much as possible. Roughly, the idea is as follows. A 
variant of CTL is used to specify processes. This gives rise to a correctness logic: 
Its basic statements are of the form 

p sa t  r , 

where p is a program (or process) and r is a formula. Axioms and rules for this 
logic are implemented in a theorem prover environment. If the process is small 
enough to permit model checking, this may be done. A successful run of the 
model checker counts as an axiom of the logic. If it is too big, proof rules have to 
be applied to reduce the correctness of p to the correctness of smaller processes 
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(w.r.t other specifications, of course). There are also be further "external" axioms 
of the proof systems - -  e.g. temporal logic tautologies which are established 
by calling a tautology checker. Proofs made up from rules applications may 
be constructed completely interactively, but the theorem prover environment 
also offers the possibility to automate common patterns of proofs (via so called 
tactics). Thus, even the scope of fully automatic verification might be increased 
significantly in this way. 

The use of a general purpose theorem prover has further benefits. Model 
checking is only possible for finite systems. If a system to be checked is infi- 
nite, the user first has to generate a finite abstraction of the system, then have 
the abstraction checked and prove that correctness of the abstraction implies 
correctness of the original system. In a theorem prover framework, one can for- 
malize the two steps the user has to do. Since all steps are performed (or at least 
checked) by the machine, no errors are left in the proof. 

At present, a verification system as described above is under implementation. 
The proof environment is based on the LAMBDA system, which serves as a 
general purpose, interactive theorem prover. A short description follows which 
explains what processes and their specifications look like. 

A subset of OCCAM is used to describe processes. Basically, a process is a 
parallel composition of while-programs which are allowed to communicate via 
synchronous channels. Allowed data types are subranges of the natural numbers 
or the natural numbers itself. 

In the temporal logic, we have atoms to talk about the basics of synchronous 
communication: whether a (sub-)process is ready ~o send on some channel, 
whether some data are lransmi~ed over a channel, and so on. Also, processes 
may have global variables whose values a specification might refer to (but which 
can not be read by other processes to prevent shared variable parallelism). Those 
atoms are added to Josko's logic MCTL (modular CTL, see [DDGJ89, Jos89]). 
This logic is tailored to meet three requirements: 

- allow efficient model checking, 
- support the assume/guarantee paradigm, and 
- allow powerful proof rules dealing with the parallel composition of processes. 

Thus, a specification of a process is a pair (A, C) where C describes the behav- 
ior of the process under the assumption that A is guaranteed (usually by the 
environment of the process). 

The use of MCTL is of course essential to the approach: We need a proof 
system dealing with parallel composition of processes which are specified in tem- 
poral logic. Less essential is the choice of the programming language. Indeed, 
within the ESPRIT project FORMAT (Formal Methods in Hardware Verifica- 
tion) it is planned to develop a similar proof environment for a substantial subset 
of the hardware description language VttDL. 2 

2 What is described here covers only part of the system to be developed within 
FORMAT. 
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In the rest of the paper  I will describe in more detail both the theoretical 
foundations of the verification method (in Section 2) and its implementat ion (in 
Section 3). 

2 T h e o r y  

2.1 P r o g r a m s  

<prc> ::'-- x:~- * [c ? x ' [ c  ! t  [ s top  ] sk ip  [ 
var x inlt  t <prc> [ <prc>;<prc> [ 
i f  b --+ <prc> . . . .  , b --+ <prc> fl [ 
al t  b & c?x--+ < p r O , . . . t l a  I 
while b do <prc> od 

<prg>,:---- <prc> II ''' II <prc> 

Fig. 1. Syntax of Programs 

The syntax of processes and programs is given in Figure 2.1. In this table, no 
mention is made of da ta  types. Allowed types are subranges of natural  numbers 
and the natural numbers itself. On those types, usual ari thmetic operations and 
relations are available. The type information is kept implicit in the names of 
variables and of channels. When necessary, conversions are done automatically.  

A more essential point are the restrictions the static semantics imposes on 
free variables and channels. In a process, one channel may  occur as an inchannel 
(c ? x) or as an outchannel (c !t), but not in both forms. A channel may occur 
in one or two processes of one program: As an inchannel of one process and as 
an outchannel of another, but  neither twice as an inchannel nor outchannel. I f  
a channel occurs twice, it is considered as an internal channel of the program, 
otherwise it is external. Global variables within processes are allowed, but no 
process may write to a variable (in a s ta tement  x :=  t or c ? x) which is read by 
another (in y:= t or c !t with x 6 free(t) or a condition b with x C free(b)). This 
is to prevent shared-variable parallelism. As a result, the only communicat ion 
between processes which is allowed is via directed channels which connect one 
process with one other. 

Although these restrictions are not strictly necessary for o u r  approach to 
work, they influence substantially a toms and rules for the specification logic. 

Now to the semantics of programs. The intuitive meaning of all the constructs 
should be clear. Perhaps the only thing which needs some explanation are the 
clauses in an a i r -s ta tement .  A branch b & c ? x --+ <pro> may be chosen if b is 
true for the current (internal) state of the process and the environment offers 
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an output  on c. The first step of its execution is the communication, then the 
control passes to the process behind the arrow. 

Viewed in isolation, the semantics of a process or program is given by an 
automaton or Kripke structure whose states determine the current position in 
the program and the values of all variables. Whenever an input statement is to 
be executed, a suitable value is guessed. To make this semantics compositional, 
steps of the environment are included. An interleaving semantics is chosen here to 
keep the structures small. Since the only thing which is visible of the environment 
is its willingness of the environment to engage in communications, just this has 
to be added. In this way, we g e t  a modular semantics for our processes and 
programs. 

The generated Kripke structures are finite if all occurring data types are 
finite. The size of the structure for one process is exponential in the number of 
channels linking i t  to the outside and exponential in the number of (bits for) its 
variables. 

Figure 5 gives an example for the generated Kripke structures. 
For CTL model checkingi a Kripke structure is viewed as a representation 

of an infinite computation tree. Here, we can not simply take the unwinding of 
the Kripke structure. Since the environment may make a random step at any 
time, on some paths no internal  step of the process would occur, which is not 
the intended semantics. To guarantee progress both internally and externally, 
fairness conslraints are added. The notion of fairness adopted here is the follow- 
ing. If the control reaches some point infinitely often and one step could always 
be taken at that  point, then this step will infinitely often be executed. I do not 
want to motivate the choice of this particular notion of fairness. It may suffice 
to say that it is between weak and strong fairness and that  any other sensible 
notion could be implemented without problems. 

2.2 S p e c i f i c a t i o n  logic  

We use an instance Josko's MCTL (modular CTL) as specification logic. Its 
main properties - -  which motivated its development - -  are: 

- efficient model checking (therefore it Js a branching time logic), 
- assume/guarantee style of specification: so there is no need to specify the 

behavior for situations which will not occur. A specification (A, C) means 
that the commitment  C may be false if the assumption A is violated. 

- Validity of the following rules 

p sat (A, C), q sat (true, A) 
p II q s a t  (true, C) 

p sat (A, C), q sat (B, D) 
p II q s a t  (AAB, CAD) 

p sat (A, C), B---~A, C--*D 
p sat (B, D) 
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< atom > ::---- rtr(c) I rts(c) I r tx(c) I @c = t 

< assm > ::= 

l 

i 
i 

a ( <  form > --* (< form > unt i l  < form >)) 

D(< form > --* (< for~ > unless < form >)) 

(< form > unt i l  < ~orm >) J (< iorm > unless < for,.  >) 

< assm> A< assm> I Vx. < assm> 

< corant > ::= < form > I < coma > V_until < c o n  > 

J < corm > V_unless < corara > 

] < c o t m > A < c o m m >  J < c o r m > V < c o r m >  

J V x. < corm > I 3 x. < coma> 

where <form> is a first-order formula with the special atoms of the form 
<atom>. 

Fig. 2. Syntax of Formulae. 

It  turned out that  the assumptions should be formulated in linear t ime logic 
- -  otherwise it would be hard to formalize (semantically) the intuitive concept 
of an assumption.  The soundness of the second and third rule above requires 
that  commitments  are not existential. This resulted in the choice of the mono- 
tonic, universal fragment  of CTL as the logic for commitments .  The necessity 
to incorporate assumptions into the model checking procedure imposed further 
restrictions on the assumptions. The syntax of both  logics is given in Figure 2. 

The special a toms listed there correspond to the visible effects of the com- 
munication statements.  Their meaning is: 

- r ts(c) :  the process with outchannel c is ready to  send on c. 
- r t r (c ) :  the process with iuchannel c is ready to receive on c. 

- r tx(c) :  A value is being communicated on c at the moment .  

- @c = t: The value of t is visible on c (which implies that  either r t s (c )  or 
r tx (e )  is true). 

Before a communicat ion can take place, both  r t s  and r t r  have to be true. 
When the communication starts,  both  signals become false and r t x  goes up 
instead, r t x  stays high exactly for one step. 

The values of those signals are included in the Kripke structures which give 
meanings to processes. For boolean connectives and the temporal  operators the 
semantics is obvious. V and 3 are viewed as abbreviations for A and V: The value 
of a variable which is bound by a quantifier is supposed not to change over time. 
Wha t  has to be explained is the role of assumptions.  



159 

Similar to fairness constraints, they restrict the set of paths of the compu- 
tation tree. When evaluating a CTL path quantifier for one particular node in 
the tree, only those paths are taken into account which obey the restrictions 
imposed by assumptions and fairness constraints. 

Since all path quantifiers in commitments are universal, they are omitted, 
and every subformula is considered to be universally path quantified. As a con- 
sequence we get that (false, C) is a tautology of MCTL. 3 

The logic and its model checking procedure are described in more detail in 
[JosS9]. 

2.3 P r o o f  sys t em 

The proof system deals mainly with parallel composition of processes and in- 
cludes weakening rules. It is based on the rules from [DDGJ89]. We exhibit the 
main principles and explain their soundness. The formulation of the rules is a 
little different from the perhaps more intuitive one in the motivation of MCTL. 
It more closely reflects the form in which they are implemented. 

Embedding. Any specification which is satisfied by one process is also true for 
any parallel composition involving this process. 

p s a t  (A, C) 

P II q s a t  (A, C) 

This is true because of the monotonicity of the commitment. Adding processes 
restricts the executions. 

Modus Ponens. Assumptions which are guaranteed (by some component can 
be eliminated. 

p s a t  (B, C), p s a t  {A, B) 

p s a t  (A, C) 

The soundness of this rule relies on the fact that if B is guaranteed under branch- 
ing time interpretation, then all computation paths satisfy B in the linear time 
interpretation, too. 

Conjunction. The third rule simply states that under combined assumption the 
combined commitments do hold. 

p sat (A, C), p sat (B, D) 
p s a t  { A A B , C A D )  

3 Here, it becomes apparent that adding implicitly universal path quantifiers makes a 
little difference: If we did not do this, (false, false) would not be a tautology, since 
the commitment false is not in the scope of a path quantifier. 
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Weakening. 

p sat  (A, C), B "-+linear time A, C --+branching time D 
p sat (B, D) 

Strengthening of assumption is sound because of (again) the monotonicity of 
the commitment logic. Unrestricted use of CTL implication for weakening of 
commitments needs implicit universal path quantifiers, compare the remarks 
above. Otherwise, conclusions of e.g. (V[2C) ---, C would not be justified. 

Applying the Rules. With the above set of rules, the standard proof proceeds 
as follows. First, all necessary atomic correctness statements for single processes 
have to be established (e.g. via model checking). Those are lifted to statements 
about the whole system under investigation via the embedding rule. Now the 
conclusions have to be drawn. This is mainly done by applying Modus Ponens. 
Indeed, a stronger version of this rule is needed where the eliminated assump- 
tion is only one conjunct of the assumptions. The other composition rule, which 
is called conjunction, caters for the situation where two services can be proven 
independently. This includes the (rare) case of two processes running indepen- 
dently (disjoint parallelism). Note that the rules should not be applied blindly. 
Whenever possible, assumptions should be eliminated. Otherwise, one might end 
up with a trivial statement like "assuming that the system is correct, correct be- 
havior can be guaranteed". 

There is no completeness result for the proof system. Most probably, it can 
be complete for a severely restricted class of processes only. One reason is that  
suitable modular specifications for the components of a program will not be 
expressible in MCTL. Nevertheless, a lot of systems can be handled. A small 
example illustrating the verification process follows in the next section. 

2.4 E x a m p l e  

producer distributor 

var zo:o ini t  O; 
while true do var xo:o; var yo:l; 

I while true do 
if t rue~  c! 0 c?yo:l; d?xo:o; 

t rue~ c ! 1 fi; if  y0:l = 0 ~ e ! z0:o 
d ! xo:o 

od Y0:l = I ---, f ! xo:o fi 
od 

consumer1 consumer2 

var x0:o ; var x0:o ; 
while true do while true do 

e?xo:0 f?z0:0 
od od 

Fig. 3. An abstract producer/consumer scenario 

Figures 3 and 4 present two views of a simple system. A producer process 
generates addresses and data, sends these to a distributor, which forwards the 
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producer distributor 

var xi,~t ini t  0; 
while  true do var  xint; var y0:l; 

xint:= random; while true do 
c ? Y0:l; d?x~nt; 

if  t rue~  c!0 i f  y0:l = 0 --* eIxi~t  
true---+ c I 1 fi; 

d I xint  y0:l = 1 ---* f I xi,~t fi 
od 

od 

consurnerl consumer2 

v a t  x i n t  ; , v a r  X i n t  ; 

while  true do I while true do 
e ? x ~ t  ) f ? xi~t 

od od 

Fig. 4. An more concrete producer/consumer scenario 

data  to the addressed consumer. One view abstracts completely from the data 
and just  keeps the communication structure. In the second, the data  may be ar- 
bi trary integers. The system has no external channels. Therefore, no assumptions 
should be used when specifying it. Three aspects of its behavior are formalized 
in monotonic CTL below. 

D(r tx(c)  A @c = 0 --* [ ~ r t x ( f )  u n t i l  ( r tx (e )  A -~rtx(f))])  (1) 

This says that  if the address 0 is t ransmit ted,  consumerO is the next to get a 
value. 

[::]Vx. ( r tx(d)  A @d = x -+ 

[(-~rtx(e) A -~r tx(f ) )  u n t i l  ( r tx(e)  A @e = x V r t x ( f )  A @f = x)]) (2) 

This formula means that  a value t ransmit ted on d is the next one which will be 
delivered via e or f .  

E](rtx(c) A @c = 0 --~ 

Vx. ([-~rtx(f) u n l e s s  ( r t x ( f )  A @f # x)] V O[r tx(e)  A @e = x])) (3) 

Formula (3) expresses that ,  after transmission of the address 0, the next value 
sent on d will eventually be delivered to consumerO. 

I present a derivation of (1) to illustrate the proof  process. 
The atomic assertions (established by model checking) are: 

producer sa t  

consumerO s a t  

dislribulor s a t  

(true, D(rtx(c) ~ ~rts (d) )  A 

r'][rts(d) ---+ (rts(d) un le s s  rtx(d))])  (4) 

(true, O<>rtr(e) A O[m-(e) ~ (~t~(e) u n l e s s  ,'tx(~))]) (~) 
([][rtx(c) ---* ~rts(d)]  A Dirts(d) ~ ( r t s ( d ) u n l e s s  rtx(d))] 
A OOrtr(e) A D[rtr(e) ---+ ( r t r ( e ) u n l e s s  rtx(e))] ,  

Q[i'tx(c) A @c = 0 --+ (-~rtx(f)  u n t i l  (rtx(e) A ~r tx ( f ) ) ) ]  )(6) 

(4) describes part  of the behavior of producer which is independent of the 
environment: After a communicat ion on c, the process will come to a point where 
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it constantly offers to engage in a communication on d. (5) is a similar statement 
for consumerO, only that  this process will without any restrictions arrive at 
the state where it wants to communicate. Both assertions together provide the 
assumptions for (6). Applying the embedding rule for all three assertions and 
then two times Modus Ponens gives the desired result. 

The Kripke structures belonging to the abstract system are very small. The 
one for producer is given in Figure 5. So the proof above can completely be 
carried out on the machine. For the concrete system, this is impossible, because 
the Kripke structures get too big even when integers are restricted to 32 bit. 
In the next section it is described how the concrete system can nevertheless be 
verified. 

2.5 Abstracting Out Data 

The key to automatically verify (model check) processes with large data domains 
is to apply abstractions first. In [Wo186], Wolper has introduced the notion of a 
data independent process. Intuitively, a process is data independent if its behav- 
ior does not depend on the values which it gets as input. This applies to queues 
or similar devices. The process distributor of our example is data independent 
on the channels d, e and f ,  though its behavior does depend on the values re- 
ceived on c. To capture processes like this one too, I use a slight generalization 
of Wolper's original definition. 

Def in i t i on  1. Let C be a subset of the channels of a process p, and let type(c) 
for c E C denote the set of values which may be sent on c. Then p is data 
independent on C if for any function f whose domain is Ueec type(c) and any 
computation tree of p there exists another computation tree of p where in every 
node the value of @c for c e C is replaced by f(@c). 

A simple syntactic check can show that  a process is data independent. What  
makes this property important is that  to verify suitable specifications, the types 
of the channels can be replaced by very small data types. For example, the 
commitment of the specification of distributor in the proof example above does 
not mention any data on d, e or f .  According to [Wo186], it suffices to verify 
the specification for a process where the type of those channels has only one 

'element, i.e. it is save to consider the abstract version of distributor. 
Also, in proving the formulae (2) and (3) the data independence of distributor 

can favorably be used. In the commitments to be established for distributor, 
infinite conjunctions appear. Each of the conjuncts mentions the transmission 
of only one value on d, e or f .  The truth of such specifications is left invariant 
if the integers are replaced by a domain with two elements. Again, the resulting 
Kripke structures are small enough to be explicitly enumerated. 

3 I m p l e m e n t a t i o n  

The basis of the LAMBDA system [FPZ88, MF91] is an interactive theorem 
prover for higher-order predicate logic. It offers tactics and rewriting to automate 
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rtr(e) 

rtr(c) 

rts(c),@c=0 ~c----O rts(c),rtr(c: @c----O 

Irtx(c),@c=01 

z~'ts(d),rtr(d) 

[rtx(d),~d=O I 

Ctx(c),@c=l 

/ 
Fig. 5. The Kripke structure describing the behavior of producer within an arbitrary 
environment. 

proving. In these respects, it is similar to other systems like HOL [Gor88] or 
ISABELLE [PN90]. 4 

There are two ways in which with the help of such a system a prover for a 
given program logic can be built. The first one is to embed the program logic in 
higher-order logic. This involves defining a formal semantics for the program logic 
in higher-order logic. Any assertion would have to denote its semantics. Proof  

4 LAMBDA has some additional features to support specific styles of hardware verifi- 
cation and synthesis [MF91], which at the moment are not important to us. 
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rules for the program logic could be derived formally. This approach has the 
advantage of guaranteeing soundness of the proof system. But the disadvantage 
is that terms would sometimes be clumsy and that  it would take a long time 
to establish the system. Indeed, in view of the complicated semantic domain for 
MCTL, one can not hope to do all this in n reasonable amount of time. 

Therefore, another way has been chosen: Just the syntax of the program logic 
has been formalized in higher-order logic. Its rules have simply been added as 
additional nxioms. But also this way requires a lot of work. A formal syntax 
has to be much more detailed than what one usually writes down when talking 
about a formal system. Let me exemplify this by presenting the formal syntax 
of two of the rules. 

G//H I- P sat_prg (A t_and B , C) 
G//H I- P sat~rg (A' , A) 

G//H I- P sat_prg (A' t_and B , C) 

G//H ,I- P sat_prg (B , C) 
G//H I- l~aut(A t_impl B) 
G//H J- is_assm A 

G//H l -  P sa t_prg  (A , C) 

The part to the left side of the turnstile ( I - )  in these rules is LAMBDA- 
specific and can be ignored here. It simply means that hypotheses play no role 
in performing these proof steps, hnpor tan t  are the terms to the right. There, a lot 
of operators do appear which have the following (syntactic) types and informal 
meanings. 

- sa t_prg  : program • MCTL ---+ t ruth value. Corresponds to sat .  
- l _ t a u t  : temporal formula ---+ truth value. Tells whether n temporal formula 

is n linear time tautology. 
- t_and,  t_impl : Constructors for temporal formulae. 
- is_assm : temporal formula ---+ t ruth value. Gives true for formulae which 

obey the restrictions imposed on assumptions (see Figure 2). 

There are nanny further operators .  Most of them are partially or completely 
axiomatized in LAMBDA. If an operator (like e.g. i s_nssm)can completely be 
axiomatized by a set of equations, the rewriting component of LAMBDA cnn 
automatically discharge any valid premises with this operator occurring in the 
proof .  For some other operators external programs do exist which decide the 
validity. The most prominent is of course sa t_pro  for which the model checker 
can be called. But even for completely axiomntized operators it is favorable to 
have external programs. To check the static semantics constraints for the sim- 
ple example from Section 2.4, rewriting within LAMBDA took several minutes 
whereas a ML program needed at most seconds. 

The implementation is not yet complete. Some components are still sort of 
n prototype. Nevertheless, the abstract producer/consumer scenario from Sec- 
tion 2.4 has been verified, although some of the steps (e.g. the generation of 
internal fairness constraints) had to be done manually. The missing parts will 
be added in the near future. 
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4 Future Work 

In addition to complete the system in order to provide the full functionality 
as described above, some extension are also planned. One major issue will be 
the development of powerful tactics to automate reasoning in the proof system. 
Some experience with more realistic examples will help to perform this task. It 
is planned to verify a communication processor for a direct connection network 
which guarantees reliable message passing. 

On the theoretical side, further concepts are sought for to cope with large 
data domains. I.e. what is needed is a more powerful way to abstract out data. 
Also, a symbolic model checker would help in this respect, but unfortunately 
n6ne is available at the moment. 
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