
Alternating RQ Timed Automata

William K.C. Lam* Robert K. Brayton

Department of EECS, University of California, Berkeley

Abstract. Two major difficulties in verification with timed automata are state ex-
plosion and dependence of complexity on time constants, even with restricted tim-
ing constraints. Based on the observation that a vast majority of timed automata
have a very regular timing structure, We propose a class of timed automata, alter-
nating RQ timed automata, and prove that they have simple path properties which,
even with arbitrary timing constraints, yield ef~cient verification algorithms. In
addition, the complexity of the algorithms is independent of the time constants.
Next, we give graphical necessary and sufjicient conditions for timed automata to
be RQ alternating. Finally; we discuss verification algorithms of alternating RQ
L-automata (L-processes).

1 Introduction

Much research on computer-aided verification has been focused on the sequential as-
pects of systems with real-time abstracted, as evidenced in the verification techniques
using CTL's and language containment. Recently, [4] introduced timed automata which
augmented the modeling domain of traditional finite state automata to real-time.

A timed automaton is an ,;-automaton with timing elements added. To construct
a timed automaton from an w-automaton, we introduce a set of resemble clocks that
measure the progress of real-time. A transition of an ,;-automaton may have a set of
resets of clocks and a set of inequalities (enabling conditions or queries) on the times
recorded by the clocks. If a transition has a reset for clock z, then upon the completion of
the transition, the value of the clock z becomes zero (reset). If a transition has inequalities
involving clock values Z l , . . . , xn, then the transition is enabled if the inequalities are
satisfied by the present values of Xl , . . . , xn, the present value of xi being the time
elapsed since its last reset of clock i. A formal definition of timed automata can be
found in [1].

Example 1. In Fig. 1, the automaton over the alphabet {a, b, $ } models a communicati'on
receiver using a majority error detection technique. The state $2 is the accepting state.
This timed automaton accepts input sequences that satisfy the following properties:
each symbol E {a, b} is repeated three times within 1 unit of time; a message is
preceded and ended by a special symbol "$"; the interval between messages is at
least 100 units of time. The timed input sequence {($, 0),(a, 20), (a, 20.3), (a, 20.8),
(b, 31),(b, 31.2),(b, 31.4), ($, 59), ($, 200), (b, 210.2),(b, 210.5),(b, 211.1),($, 232)} is
acceptable to the automaton, where the first component is in the alphabet S, the second
component is the time (real valued) at which the first component occurs. There are three
clocks Xa, Xb, Xs which are reset (e.g. Xa = 0) or queried (e.g. X~ < 1).

* Supported by Fannie and John Hertz Foundation and SRC under contract 92-DC-008.

�9 o

238

Fig. 1. Real-time Communication Receiver modeled by a Timed Automaton

We denote a query on clock xl by Q(zi), a reset on zi by R(zi).

2 Traversal in Timed Automata

To verify that a design meets its specifications, the design and the specifications are
first expressed with timed automata and then checked whether the language of the
automaton of the design is contained in that of the specification automaton�9 Let D be a
design timed automaton, and S, a specification timed automaton. The language of the
design automaton is contained in that of the specification automaton, i.e. L (D) _C L (S),
if and only if L(D | S c) = ~b, where S c denotes the complement of S, and | is the
production operation�9 The language of a timed automaton is empty if and only if there
is no input string accepted. Thus, verification is intimately related to traversals in timed
automata.

Traversal, deciding whether a state is reachable, in a timed automaton consists of
two parts. First, decide whether the state is reachable disregarding the timing constraints
in the timed automaton. If the state is reachable, then, for each path leading to the state,
decide whether the timing constraints along the path are satisfiable�9 If there is such a
satisfiable path, the state is reachable in the timed automaton. It is relatively easy to
decide whether a state is reachable disregarding the timing constraints, but it can be
very difficult to decide whether there exists a path along which all timing constraints are
satisfiable because such a path may not be a simple path (a simple path has no loops)�9
This is illustrated with the following example.

Example 2. In this timed automaton, if K is an integer, then the accepting state $4 can
be reached. And the only way to get from the initial state $1 to the final state $4 is to go
around the loop K times, i.e. only by traversing a non-simple path�9 During each visit of
the loop, the automaton stays at $3 for 1 unit of time to get clock)(2 to increment by 1.
Thus, to satisfy the timing constraints on the transition between $2 and $4, e.g. 3;72 = K,
the loop needs to be traversed K times. If K is not an integer, $4 is not reachable.

239

~ x l = O ' t .

R(xl) ~ ~ .~ X2=K?&

Fig. 2. Time Constant Dependent Traversal

3 Previous Approaches

To tackle traversal in timed automata, [4, 2, 1] introduced the notion of the region graph.
A region graph can be regarded as a state graph with each state augmented to include
time; that is, a state S now becomes a new state (S, R"), and the timing constraints on
transitions serve to partition the new states into equivalent classes of the form (S, Z),
where Z is a zone: [2, 1] give procedures for a coarsest partition compatible with the
timing constraints. Once a region graph is constructed from a timed automaton, the
effects of the timing constraints are incorporated into the new states; hence, traversal in
the timed automaton can be accomplished in its region graph.

The merit of this approach is that it allows arbitrary placement of timing constraints
and resets of clocks. The deficiencies are restrictions on timing constraints, e.g. z <
k, x - y < k, where k is an integer, as well as dependence of the number of augmented
states and thus algorithm complexity on the magnitudes of the time constants k.

4 Alternating RQ Timed Automata

In this paper, we observe that many timed automata have a regular pattern of timing
constraint placement and propose a class of timed automata that I) has traversal and
verification algorithms independent of time constants and 2) allows arbitrary timing

constraints, e.g. 3 x - 5 y + 4 < 0 ,4x 3 - 51ogy < ~ / S y - �89

4.1 Motivation and Definitions

In placing timing constraints in a automaton, if we want to inquire about a timing status
at a certain point on a path via a query, we should have resets for the clocks before
the queries on the path. If we want to inquire twice about the same clock, we can
use different clocks for each query. This suggests that resets (R's) and queries (Q's)
for any clock along any path in a timed automaton should alternate. Although not all
timed automata have alternating R's and Q's, timed automata with this property seem
intuitively general enough for most applications. For example, the timed automaton in
Fig. 1 and all but one timed automata in [4] are alternating RQ timed automata.

240

Definition 1. 1. The RQ sequence of path 7r, denoted by F(Tr), is the sequence of
resets and queries encountered along 7r.

2. Given a RQ sequence F, the RQ sequence with respect to clock z, denoted by F Ix,
is obtained from F by deleting all R's and Q's that do not involve z.

3. An RQ sequence F is alternating, if, for each clock z, Fix has R(z) and Q(z)
alternating, and with R(z) initially before Q(z).

Definition 2. An alternating RQ timed automaton is a timed automaton 2 with the
two following additional properties:

1. For each clock zi, there is only one pair R(zi) and Q(. . . , xi , . . .) . That is, distinct
clocks should be used in measuring different events.

2. For each r~ath 7r starting from an initial state, F(~r) is alternating, i.e. F(Tr)l~ ~, is
alternating for each zi.

4.2 Scope of Alternating RQ Timed Automata

We examine how restricted is this class of timed automata. In general, a timed automa-
ton can have several resets and queries for a clock; thus, it is interesting to determine
the class of timed automata that can be transformed into alternating RQ timed au-
tomata. Unfortunately, not all timed automata with multiple resets for each clock can
be transformed to satisfy condition 1 of alternating RQ timed automata. However, all
timed automata with a single reset and possibly multiple queries for each clock can be
transformed to satisfy condition 1 as stated in the following theorem.

Theorem 3. Every timed automaton with a single reset for each clock can be trans-
formed to satisfy the alternating RQ condition I while preserving its language.

Proof. Let x be a clock in a timed automaton M such that there is only one reset for
x, R(x) and there are m Qdz) ' s on edges ql, ..., qm. The transforming procedure is as
follows. Replace R(z) by {R(xl), ..., R(xm)}, and Qi(z) on qi, by Qi(z~). Now there
is only one pair of R(zi) and Qi(zi) for each i. Repeat the above transformation for all
clocks with multiple Q's.

Now it remains to show that the transformed automaton accepts the same language
as the original one. Denote the transformed automaton by M t. Since the transformation
changes only the resets and queries, we need only show that the set of inequalities
induced by any input timed sequence a on M' is satisfiable if and only if the corre-
sponding set on M is satisfiable. We show, however, the set of inequalities induced by
Qi(zi) on edge qi of M t is the same as the set induced by Q~(x) on qi of M, because
the only difference between Qi (zl) in M' and Q~ (z) in M is the renaming of variables.

Transformation of timed automata with multiple resets of the same clock to satisfy
the alternating RQ condition 1 is much more complicated. Whether it can be done may
depend, for example, on whether removal or addition of certain timing constraints affects

2 Here, arbitrary timing constraints are allowed

241

the original specification the designer has in mind. Techniques to achieve it may involve
introduction of new states and relocation of timing constraints. A general technique is
not known at this time.

Now we try to transform a timed automaton satisfying condition 1 to also satisfy
condition 2. This is not always possible. The reason that an automaton may satisfy
condition 1 but not 2 is that there is a path 7r and a clock z such that F(Tr)l= is not
alternating. Specifically, there is a loop such that only R(x) or Q(z) is in the loop.

In the case where only Q(z) is in the loop and Q(z) involves comparisons with
time constants only, i.e. z <~ k where k is a constant and <> E {<_, <, _>, >, =}, we can
eliminate the loop and convert the automaton to satisfy both conditions. This is because,
in a real system, a transition takes a finite amount of time to complete. Thus, if this
finite transitional time is also modeled, then each time the loop is traversed, the value of
the clock z is increased by a finite amount. So, after a finite number of transitions, z is
larger than the maximum time constant in Q(z), making Q(z) settle to a constant value,
1 or 0; that is, x <> k becomes true or false. Thus, we can expand the loop with Q(z)
in the timing specification with a finite number of new states and clocks, and remove
Q(x) from loops. Then, we can apply the transformation in Theorem 3 to convert it
to satisfy condition 1. Hence, with proper modeling, an automaton satisfying condition
1 and having cycles with only Q(z) 's of comparison type z <> k can be made to meet
condition 2 3 .

In the case of only R(z) 's in a loop or multiple R(z) 's, it is not always possible
to transform the automaton to satisfy condition 2 without losing some timing specifica-
tions. In this case, the designer may need to rearrange the R's and Q's while retaining
his intended specifications. The example below illustrates one case where being not
RQ alternating indicates an incomplete specification, while a complete and correct
specification turns out to be RQ alternating.

)

X~l

3
(A) Non-alternaUn B RQ Automston (incomplete) ~)/dt~natlng RQ Automaton (complete)

Fig. 3. Specifying a Bus Controller

3 Of course, in doing this transformation, we introduce new states; the number of which de-
pends on the time constants; hence our claim about complexity independent of time constants
disappears.

242

Example 3. Fig. 3(a) is an automaton modeling a bus-requesting protocol. When a
system is not requesting the use of a bus, the automaton is in state "idle". When the
system requests the use of a bus, it enters the state ,req" and requires the arbiter to grant
a bus within 1 unit of time, as specified by the timing constraint "~: < 1". If a bus is
granted, the system will have at most 10 units of time over the control of the bus, as
specified by the timing constraint "z < 10". In addition, the system can cancel a request
any time before a bus is granted, thus entering the state "cancel". This automaton is not
RQ alternating because the loop "idle ---+ req --+ cancel ~ idle" contains only a reset
without a query. Now, let us see how to modify this to be RQ alternating while retaining
the essentials of the specifications.

A close examination of the specification by the automaton in Fig. 3(a) reveals a
flaw; the automaton does not model the behavior of the arbiter in case the system
cancels a request, i.e. the arbiter may try to allocate a bus even when it is canceled. So
a more complete specification should include this case. And we hope that this inclusion
will produce a RQ alternating timed automaton. It may be reasonable to assume that
the arbiter will respond faster when the system cancels its request, because the arbiter
does not have to wait for available buses to respond; hence, it is not too restricting
t o require the arbiter to respond within 1 unit of time in the case of cancellation. By
adding this reasonable constraint, we obtain the automaton shown in Fig. 3(b) which is
an alternating RQ timed automaton.

4.3 Graphical Necessary and Sufficient Conditions

Here we examine the placement characteristics of timing constraints in alternating
RQ timed automata. Knowing these characteristics facilitates modeling systems with
alternating RQ timed automata, deciding whether a timed automaton is RQ alternating,
and studying effects of arbitrary placements of timing constraints.

Definition 4. In a graph, an edge e is a cut for an ordered vertex pair (vl, v2) if either
v2 is not reachable from vl or the removal of e from the graph makes v2 unreachable
from Vl. Denote the cut by el(v1, rE).

Thus, if e](vl, v2), then all paths from Vl to v2 must pass through e.
Since condition 1 is easy to check, the main concern is on the placement of timing

constraints to meet condition 2. Suppose we want to place a R(z) on edge er and a
O(z) on eq. What is the graphical relationship between er and eq such that all paths
from the initial states have R(z) and Q(z) alternating? Condition 2 requires that R (z)
be encountered before Q(z); this translates into the rule that all paths from the initial
states to eq must pass e,. Condition 2 further requires that R(z) and Q(z) alternate
thereafter; this means all loops from er to itself must also pass through eq and similarly
for eq. This intuition is formally stated in the following theorem.

Theorem 5. Assuming a given timed automaton satisfies the alternating RQ condition
1 (which can be easily checked), it is an alternatingRQ timed automaton, i.e. it satisfies
condition 2, if and only if for each clock z,

243

where So is any initial state, e~ = (v~, u~) is the edge where R(z) resides, and
eq = (Vq, uq), where Q(x) resides.

Proof. Necessity. First, if e~ is not a cut for (So, vq), then there is a path from So to
vq without passing e~. This path encounters Q(x) before R(x), violating condition 2.
Second, if e~ is not a cut for (uq, vq), then there is a path from Uq to Vq without passing
e~. Then, the loop consisting of the path and eq = (vq, uq) contains Q(x) but not R(z);
thus, traversing the loop several times produces several consecutive Q(x), violating
the RQ alternating graph. Similarly, if eq is not a cut for (u~, vr), then there is a loop
containing only R(x) which can be traversed consecutively to violate condition 2.

Sufficiency. First, er I(So, Vq) guarantees that R(x) be encountered before Q(x) if
Q(x) is ever encountered along any path from an initial state So. Second, e~ I(uq, vq)
guarantees that if there is a loop containing Q(x) then the loop also contains R(x);
thus, between any two Q(x)'s along any path there is at least one R(x)'s. Similarly,
eql(u~, v~) guarantees at least one Q(x)'s between any two R(x) 's along any path.
Together, e, I(uq, vq) and eq I(u~, v~) assure that R(x) 's and Q(x) 's alternate along any
path. Combining with er[(So , vq), alternating RQ condition 2 is satisfied. �9

The following theorem provides a sufficient condition that can be checked by in-
spection.

Theorem 6. A timed automaton, represented by a graph G, is RQ alternating if, for each
clock x, the removal of the edges of R(z) and Q(z) (e~ = (vr, u,) and eq = (Vq, uq),
respectively) partitions G into two disjoint subgraphs G1 and G2 such that Vr, Uq, and
all initial states are in G1, while ur, and Vq are in G2. See Fig. 4.

Fig. 4. Illustration for Theorem

Proof. All paths (if any) from an initial state to eq must pass er; thus, er [(SO, Vq). Then,
all paths (if any) from uq to vq must pass er; thus, er I(uq, vq). Finally, all paths (if any)
from ur to v~ must pass eq; thus, eql(u~, v~). By Theorem 5, the timed automaton is
RQ alternating. �9

244

4.4 Modeling Capacity

Roughly speaking, in view of Theorem 6, an RQ pair in an alternating RQ timed
automaton constrains a set of partial paths having common head edges and common
tail edges, for example, the partial paths in the subgraph G2 in Fig. 4. Thus, to impose a
timing constraints on a set of partial paths, auxiliary states may be introduced to make
the partial paths share common head edges and common tail edges.

Alternating RQ timed automata can not model all timing behaviors; and a charac-
terization of the behaviors modelable by a general, but not an alternating RQ, timed
automaton is beyond the scope of this paper. An advantage of alternating RQ timed
automata is that the placement of the timing constraints reveals easily the paths being
constrained. It is often more difficult to see how to do this for non-alternating RQ timed
automata - - thus, non-alternating RQ timed automata are often difficult to place timing
constraints to meet the exact specifications without constraining other paths needlessly.
Further, most timed automata encountered so far are either RQ alternating or can be
converted, for example, all those in [5, 3] and all but one in [4].

4.5 Composition of Alternating RQ Timed Automata

It is very common that large systems are built from a collection of smaller systems.
We show that composing alternating RQ timed automata preserves the RQ alternating
property, under a very general definition of composition.

Definition 7. Given a collection of alternating RQ timed automata, which may have
outputs, we define an I/O composition of the collection to be the timed automaton
formed by interconnecting the inputs and outputs of the automata in the collection,
e.g. inputs of an automaton may be connected to the outputs of another. The set of
initial states of the composition automaton is the Cartesian product of the initial states
of the sub-automata in the collection. The sets of clocks of any two sub-automata are
considered distinct.

The I/O composition includes the usual notion of product of automata, because
a product automaton can be formed by simply connecting together the inputs of the
sub-automata.

Theorem 8. The timed automaton derived from an IlO composition of a collection of
alternating RQ timed automata is RQ alternating.

Proof. Any path in the composition automaton consists of paths in some of the sub-
automata in the collection. Because all the sub-automata are RQ alternating, the RQ
sequences of all the paths starting from initial states in the sub-automata are alternating;
therefore, the RQ sequence of any path starting from an initial state in the composition
automaton is also alternating. Further, because the sets of clocks of any two sub-automata
are considered distinct, there is only one pair R(x) and Q(. . . , x , . . .) for each clock x
in the composition automaton. Therefore, the composition automaton is RQ alternating.

245

There are situations where only component automata of an automaton are of concern.
Then, will an alternating RQ timed automaton imply its sub-automata RQ alternating?
In general, this is not true, because an automaton may contain a sub-automaton with
unreachable paths whose RQ sequences are not alternating. Example 4 shows an alter-
nating RQ automaton with a non-RQ alternating sub-automaton.

Example4. In Fig. 5, M3 is an I/O composition of M1 and M2, in which the outputs of
M1 are fed to the inputs of M2. M3 is RQ alternating, but M2 is not. This is because the
paths in M2, e.g. rl, r2, r3, r2, r3, �9 that have non-alternating RQ sequences are not
reachable in the composition automaton M3.

M2

" [,A l

I I L1 a / a / ' ' - ~ I ~ �9
/ wb I [I ~ H I ' I ~ - " ~ ' ' - - - ~ ~ I

' '

Fig. 5. Composition of RQ Automata

Thus, if every path in a sub-automaton is reachable in the composition automaton,
then the RQ alternating property of the composition automaton will be inherited to the
sub-automaton. This is because if the sub-automaton is not RQ alternating, then the
input sequence to the composition automaton, which activates the non-alternating path
in the sub-automaton, will cause a non-alternating RQ sequence in the composition
automaton. A useful special case is when the I/O composition is a production in the the
usual convention.

Theorem 9. If a product automaton is RQ alternating, then all of its component au-
tomata are also RQ alternating.

Proof. A product automaton can be formed by connecting the inputs of all its compo-
nent automata together. Thus, every reachable path in a component automaton is also
reachable in the product automaton. If a component automaton is not RQ alternating,
then the paths with non-alternating RQ sequences can be made reachable from the
product automaton, causing the product automaton to be non-RQ alternating. �9

4.6 Simple Path Properties

Here we prove some properties of alternating RQ timed automata that make reachability
analysis independent of time constants and also simplify verification algorithms. As seen

246

in example 2, reachability analysis can be quite complicated in general timed automata
- - some states can only be reached through non-simple (with loops) paths whose lengths
depend on the timing constraints. Further, there exist examples in which some loops can
only be traversed a finite number of times, thus, making language acceptance testing
difficult for acceptance conditions which involve infinite looping, e.g. Buchi, Muller,
and L-automata. In contrast, alternating RQ timed automata avoid these complications
- - a state is reachable from another if and only if it is reachable through a simple path,
and a loop can be traversed infinitely often if and only if it can be traversed once. These
properties are proved in the following theorems.

Definition 10, 1. Assume automata take no time to complete transitions; thus, the
time spent along a path is the sum of times spent at the states on the path. Let /~,
interarrival variable, be the time spent on state i.

2. Given an RQ sequence F, each query induces a set of inequalities on interarrival
variables,/ti's. Denote by O(F) the set of inequalities induced by this RQ sequence.

3. In timed automata, path 7r is traversable if 69(F(Tr)) is satisfiable. State v is
reachable from state u if there is traversable path from u to v.

Theorem 11. In alternating R Q timed automata, a state is reachable from another state
if and only if it is reachable through a simple path.

Proof. Assumetraversablepath r from vto u hasaloop, i.e. rr = v, ..., vzl, ..., vt 2, vk, ..., u,
where vzl . . . , v~2 is the loop and vi ! denotes the state vr being visited at the beginning of
the loop while v~ z, at the end of the loop. vl 1 and v~ 2 are the same state, the superscripts
denote the order of visit. Let 7r ~ = v, ..., vl 1 , vk, ..., u be derived from 7r by deleting
the loop. Consider the sets of inequalities induced by 7r and ~r ~. The set of inequalities
induced by 7r consists of three subsets of inequalities, 691,692, and 69toop. 691 is induced
by Q's on the path v, ...vzl; 69Zoop, on the path vtl, ..., vt2; 692, on the path vl 2, ..., u.
Similarly, the set of inequalities induced by 7r' consists of two subsets of inequalities,
69~ and 69~. 69~ is induced by Q's on the path v, ..., vzl; 69~, on the path vii, ..., z~. Note
that 69~ is the same as 691 except for renaming of interarrival variables. Let ~ be the sum
of the interarrival variables of the states from vt I to v~ on 7r, i.e. the time spent in the
loop, ~', from vz 1 to vk on rr'. Now consider the Q(x)'S that induce inequalities in 692.
The simplest case is when the Q(x)'s R(x) occurs after the loop, then the inequalities
induced by this Q(x) on both 692 and 69~ are the same except for the renaming of
variables. Consider now the case where the Q(z)'s R(x) occurs before or in the loop.
Because of the alternating RQ condition, the Q(x)'s R(x) cannot occur in the loop,
but before the loop; thus, if some inequalities in 692 contain some interarrival variables
of states in the loop, then these inequalities contain the interarrival variables of all the
states in the loop; that is, the inequalities in 692 contain only the interarrival variables of
states before and after the loop plus ~, not interarrival variables of a subset of states in
the loop. Similarly, the variables of 69~ consist of the interarrival variables between v
and vl 1, between vk and u, and ~ . Again, 69~ is the same as 692 except for renaming of
interarrival variables and identifying of ~ with ~ . Therefore, the inequalities {O~, 69~}
are a subset of {691,692, Oloop}. Because path ~" is traversable, {691,692,691oop } is satis-
fiable; thus, {69~, 69~}, a subset, is also satisfiable; Therefore, the simple path 7r ~ is also
traversable. �9

247

Theorem 12. In alternating RQ timed automata, a loop is traversable infinitely often if
it is traversable once.

Proof. If a Q(=) is in the loop, then the corresponding R(x) must appear somewhere
before Q(z) but also in the loop. Because, otherwise, a path going through the loop
twice will generate two consecutive Q(x)'s, violating the alternating RQ condition. So
the set of inequalities induced by going through the loop twice consists of two identical
subsets of inequalities, the subset being those induced by going through the loop once.
I f the subset is satisfiable, the set made of the subset is also satisfiable. Therefore,
once-traversability implies infinite-traversability. �9

Since in an alternating RQ timed automaton a state is reachable from another
state if and only if it is reachable through a simple path, reachability can be checked
by examining all simple paths between the two states. For each such simple path, the
inequalities resulted from the timing constraints on the path can be checked for feasibility
by using, for example, linear programming for linear constraints. Therefore, reachability
analysis is independent of time constants, and arbitrary timing constraints are allowed
(nonlinear constraints can be checked using a general nonlinear solver.) Examining all
simple paths is not practical, the following section proposes an algorithm that uses these
simple path properties in verification without checking explicitly all simple paths.

5 Verification with Alternating RQ Timed Automata

In this section we consider L-automata and L-processes that have timing constraints on
some transitions and are RQ alternating. We propose algorithms to check for language
containment.

5.1 L.automata and L-processes

Here we briefly review L-automata and L-processes. For a more detailed discussion, the
reader is referred to [8].

An L-automaton is a 4-tuple

F = (M r , I (F) , R(F) , Z(F))

where Mr is the transition matrix, I(F) is the set of initial states where r # I(F) C
V(F), V(F) is the set of vertices of F, R(F) C_ V(F) • V(F) is the set of"recur" edges
of F, Z(F) C_ 2v(r) is the set of"cycle" sets of F. A sequence of states v = (v0, v l , . . .)
is accepted if either for some integer N and some C C Z(F) vi E C Vi > N or the
set {i : (vi, ui+l) E R(F)} is infinite. In words, a sequence of states is accepted is
either the sequence visits eventually only the states in some cycle set C or it visits
some recur edges infinitely often. An L-automaton is deterministic if Mr produces a
unique next state for a given input alphabet at any present state. An L-process is similar
to an L-automaton except it has an output function and the acceptance conditions are
interpreted complementarily. An L-process is a 5-tuple

r = (Mr, 0(;) , I(r), R(r), Z(r))

248

where 0(1") is the output function with the state space as its domain, A sequence of
states (v0, v l , . . .) is rejected, rather than accepted as in L-automata, if either for some
integer N and some C E Z(F) vi E C Vi > N or the set {i : (vi, vi+l) E R(F)} is
infinite.

To verify that a system accomplishes a task, the system is represented by an L-process
while the task is represented by a deterministic L-automaton. If the language of the L-
process, the set of all accepting input sequences, is a subset of that of the L-automaton,
the system is said to accomplish the task. To determine language containment, one
searches for an input sequence that is aCcepted by the L-process but not by the L-
automaton. If the search is successful, the language containment fails. To begin, after
determining all reachable states, all recur edges in the L-process and the L-automaton
ar~ removed so that the sequences rejected by the L-process or accepted by the L-
automaton by recurring on their respective recur edges are eliminated; these sequences
do not contribute to the determination of the language containment. Then, a product
machine of the L-process with the L-automaton is formed and the strongly connected
components of the graph of the product machine are identified. If there is a strongly
connected component (a subset of vertices) that is not a subset of some cycle set of either
the L-process or the L-automaton, the containment fails, because this strongly connected
component contains a cycle that is accepted by the L-process (by not being in some
cycle set of the L-process) and is rejected by the L-automaton (by not being in some
cycle set of the L-automaton). Although some verifiers use implicit state enumeration
techniques instead of this explicit graphical method [11, 9], the essence is similar.

5.2 Verification with Alternating RQ L-automata

Here we consider language containment of L-automata (L-processes) whose resets and
queries alternate. Because the effects of timing constraints in timed automata are to pre-
vent some paths from being traversable, we construct a constraining automaton to char-
acterize all the untraversable paths; thus, the behavior of the original timed automaton
is completely captured by the original timed automaton ignoring the timing constraints
and the constraining automaton. If this constraining automaton is constructed, a generic
verifier can be used to verify properties specified by the original timed automaton.
In general timed automata, these constraining automata can be too complicated to be
practical due to traversal complications in timed automata. However, in alternating RQ
timed automata, the traversabilities of paths are better structured, e.g. the simple path
properties, thus, facilitating construction of constraining automata.

Definition 13. 1. An~ pathisaninfinitepathfromsomeinitialstate.AnoJ simple path
is a path consisting of a simple path from an initial state to a simple cycle.

2. For a given path 7r, the simplified path(s) of 7r, denoted by S(Tr), are the set
of simple path(s) derived from 7r by deleting intermediate loops. For example, if
71" = (~)1, "/)2, V3, ~34, '02, "04, ~3), then S(rc) = {(vx, v2, ~34, V3), (Vl, ~32, ~3)}, which is
a set of simple paths.

3. A minimal RQ sequence is an unsatisfiable RQ sequence such that removal of any
R's and Q's from the sequence makes it satisfiable.

249

. Since, in alternating RQ timed automata, R's and Q's in any RQ sequence appear
pairwise, any RQ sequence can be represented by the Q's alone. For the set con-
sisting of all minimal RQ sequences of all w simple paths, call the Q's in the set the
minimal blocking Q set, denoted by XQ.

Theorem 14. Let X~ be the set of all untraversable ~v simple paths in alternating RQ
L-automaton L, L u, the automaton of L with timing constraints ignored. Then, there is
a traversable ~; path in L if and only if there is a w simplepath in L u - X~.

Proof. If direction. A ~v simple path in L ~ - X~ is traversable in L.
Only if direction. If there is a traversable path in L, a simplified path of the traversable

path is traversable by the simple path properties of alternating RQ timed automata. This
simplified path is therefore not in X~, thus in L ~ - X~. �9

This theorem says that if we can construct an automaton to represent Xr , then timing
verification on L can be done using the ordinary automaton L ~' and the automaton
representing X~.

5.3 Construction of Constraining Automata

X~ can be represented by representing the edges where the Q's of X~ reside, because
it is the Q's that determine X~. And the number of Q's in X~ can be reduced by using
the minimal block Q set, X O. So, the problem of representing X~ is reduced to that of
representing sequences of edges.

Let { e i -- (vi, u i), 1 < i < n } be a sequence of edges on which Q's of a minimal RQ
sequence reside. For a w simple path (Vl , . . . , v r , . . . , vr), the simple cycle v~ , . . . , v~
is "cut" so that the ~ simple path is regarded as a plain simple path (Vl, �9 �9 �9 v~ , . . . , v,)
(In fact, the alternating RQ requirement implies that a ~ simple path can be split into
two subpaths (Vl , . . . , vr) and (v r , . . . , vr) which can be considered separately): The
constraining automaton has an initial state v0 which is identified with any initial state
in the original timed automaton and an exclusion state X. Start with el. Create States
Vl and Ul and a transition from v0 to v~ with the input alphabets on the transition being
the union of strings along all simple paths from v0 to vx without passing any e~. One
way to obtain this union is to remove all edges e~ i >_ 2 and find the regular language
with vl being the only accepting state and delete all Kleen closures from the language.
Then, create another transition from vl to ul with the same transition alphabet as that
in the original automaton. For el, create states vi and ui, add transition from vi to ui
with transition alphabet being the union of strings along all simple paths from ui-1 to
vi without passing any el. Then add a transition from vl to ul with the same alphabet as
the original automaton. Identify un with the exclusion state X. Finally, a self-loop at X
is added. A constraining automaton for several sequences of edges is just the product of
the constraining automaton for each sequence. The product automaton can be simplified
by any state reduction technique, e.g. the state minimization algorithm in [10].

When the timed automata are nondeterministic, there may be more than one distinct
paths having the same sequence of input alphabets and different timing constraints. Then
an extra step needs to be included in the above algorithm for constructing constraining

250

automata. By including the input strings in the constraining automata, all paths with
the input strings will be eliminated; therefore, if, among the paths having the same
input strings but different timing constraints, there are some paths that are traversable
and some untraversable, then all these paths should not be included in the constraining
automata. Of course, if all these paths are untraversable, then all these paths should be
included in the constraining automata as mentioned above. In summary, the extra step
is as follows. For a set of input strings leading to a untraversable path, check all the
paths with the same set of input strings for timing constraints. If all these paths are
untraversable, include all these paths in the constraining automaton as before. If some
of these paths are traversable, do not include any of these paths in the constraining
automaton.

Once a constraining automaton L= for X~ is constructed, L ~ - X,~ is just the product
machine of L u and L= with the modified cycle sets Z' as: Z ' = {C~}, C' = {(c, y) :
c E Ci, y ~ X}. Therefore, an accepting w path will never enter the exclusion state
X, avoiding all the untraversable simple paths. Hence, all accepting ~v simple paths in
L u • L= are L ~ - X,~.

Example5. Fig. 6 is an example of how to construct a constraining automaton to
represent timing behaviors. The partial path "$1 ~ $2 ~ $3 ~ $4 ~ $5" is the
only untraversable partial path;and the minimal blocking Q set is {x > 2 ,y < 1}
with the Q-edges being {($3, $4), ($4, Ss)}. The constraining automaton enters into the
exclusion state S] when ($3, $4), ($4, $5)} are traversed. The strings (of simple paths)
from the initial state So to $3 are {aeb, baeb}, which are the transition strings for the
transition from $6 to S~ in the constraining automaton. The rest of the construction
is straightforward. The constraining automaton is shown in Fig. 6(b). In fact, only
($4, $5) needs to be represented because ($3, $4) is traversed whenever ($4, $5) is. The
simplified automaton is shown in Fig. 6(c).

By representing the Q-edges, a subset of paths are represented, not just one. When
an unsatisfiable partial path is represented by its Q-edges, all paths through the partial
path are represented.

Note that finding X~ involves linear programming; thus, arbitrary timing constraints
are allowed and the verification algorithm is independent of timing constraints,

Besides the method of constructing an ordinary automaton from the original timed
automaton and then proceeding to verify on this untimed automaton, another method
is to start verification with timing constraints ignored. If and when it fails, timing
constraints are added to eliminate "bad" paths. This is repeated until either all bad paths
are eventually eliminated by the timing constraints, whence the containment check
succeeds, or an example of bad behavior meeting all timing constraints is found, e.g.
[5, 3].

The scheme is as follows. We have an ordinary containment checker which ig-
nores all timing constraints, a linear program to check for satisfiability of linear timing
constraints, and a routine to construct an automaton which excludes the bad paths not
traversable due to the timing constraints. We start with the automaton with timing con-
straints ignored. If the containment check falls, the checker will produce a simple bad
path leading to a bad cycle, which will be checked for traversability with the timing

B

B A

251

(A) Alternating RQ Timed Automaton

{A,B,C}

(~ {ACB, BACB} ~

(B) Constraining Automaton S$' (X)

{AS,C}

(C) Simplified Constraining Automaton

Fig. 6. Construction of a Constraining Automaton

constraints. If either all bad paths or the bad cycle are not traversable due to the un-
satisfiability of the timing constraints along the paths, these bad paths and cycle do
not really exist in the timed automaton. Thus, a constraining automaton is created to
represent the Q's of the bad path. Note that this constraining automaton will eliminate
all paths going through the unsatisfiable Q's, not just the bad path. This new automaton
is then combined with the original automaton so that the resulting product automaton
will not have these bad paths and bad cycle. The above procedure is repeated on this
new product automaton.

If the above procedure is performed on a general timed automaton, all paths, not
only the simple paths, need to be examined; there are infinitely many non-simple paths.
Further, it is not obvious how to check infinite traversability of loops; loops that can
only be traversed a finite number of times can be constructed. With alternating RQ timed
automata, Theorem 11 guarantees that only simple paths need to be checked. Theorem
12 guarantees that loops need only be checked for traversability around the loop once
in order to check for infinite traversability. Therefore, the ordinary containment checker
needs to provide only the simple bad paths and simple bad cycles to the linear program.

252

6 Conclusion

In this paper, we proposed alternating RQ timed automata, whose resets and queries
alternate along any path from an initial state, and showed that this class of timed automata
have the simple path properties: a state is reachable if and only if it can be reached via a
simple path and a loop can be traversed infinitely often if it can be traversed once. With
these properties, timing verification algorithms have complexities independent of timing
constraints and allow arbitrary timing constraints. Next, we observed that this class of
timed automata contained most examples of timed automata to date. Then, we gave
graphical necessary and sufficient conditions for timed automata to be RQ alternating.
Finally, we discussed a verification strategy using alternating RQ L-automata.

References

1. R. Alur, C. Courcoubetis, D..Dill, N. Halbwachs, and H. Wong-Toi. An implementation
of three algorithms for timing verification base on automata emptiness. IEEE Real-Time
Systems Symposium, 1992.

2. R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization of timed
transition systems. International Conference on Computer-Aided Verification, 1992.

3. R. Alur, A. Itai, R. Kurshan, and M. Yannakakis. Timing verification by successive approx-
imation. International Conference on Computer-Aided Verification, 1992.

4. Rajeev Alur and David Dill. Automata for modeling real-time systems. 1990 ACM Inter-
national Workshop on Timing Issues In the Specification and Synthesis of Digital Systems,
1990.

5. Felice Balarin and Alberto Sangiovanni-VincenteUi. A verification strategy for timing con-
strainted systems. International Conference on Computer-Aided Verification, 1992.

6. E. Clarke, O. Grumberg, and R. Kurshan. A synthesis of two approaches for verifying finite
state concurrent systems. Workshop on Automatic Verification Methods for Finite State
Systems, 1989.

7. R.Kurshan E.M.Clarke, I.A.Draghicescu. A unified approach for showing language contain-
ment and equivalence between various types of co-automata. Tech. report, CMU,, 1989.

8. Z. Har'E1 and R. Kurshan. Software for analytical development of communications proto-
cols. AT&T Technical Journal, Jan. 1990.

9. R. Hojati, H. Touati, R. Kurshan, and R. Brayton. Efficient co-regular languagecontainment.
International Conference on Computer-Aided Verification, 1992.

10. J.E. Hopcroft and J.D. Ullman. Introduction to Automata, Languages and Computation.
Addison-Wesley, 1979.

11. H. Touati, R. Brayton, and R. Kurshan. Testing language containment for w-automata using
bdd's. International Workshop on Formal Methods in VLSI Design, 1991.

