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Abs t rac t .  We have developed a verified application proved to be both 
effective and efficient. The application generates moves in the puzzle- 
game Nim and is coded in Piton, a language.with a formal semantics and 
a compiler verified to preserve its semantics on the underlying machine. 
The Piton compiler is targeted to the FM9001, a recently fabricated 
verified microprocessor. The Nim program correctness proof makes use 
of the language semantics that the compiler is proved to implement. Like 
the Piton compiler proof and FM9001 design proof, the Nim correctness 
proof is generated using Nqthm, a proof system sometimes known as the 
Boyer-Moore theorem prover. 

1 Introduction 

Computer  application programs and the systems software and hardware that  
support  them can be very complex. The adoption of traditional software en- 
gineering practices such as rigorous testing helps computer programmers write 
programs with fewer errors, but correctness can not be guaranteed using them. 
One approach to developing dependable software is to formalize a problem Speci- 
fication in a logic and prove that  a particular program written in some computer 
language meets the requirements of the problem specification. This requires a 
formal semantics of the language used in the program. Ideally, the language se- 
mantics will come with a verified compiler targeted to hardware whose design 
has been proved to work to specification. Extra  reliability can be attained by 
generating the proofs with a trustworthy automatic theorem prover. 

We discuss Nqthm and the proofs of the Piton compiler and the FM9001 de- 
sign in Section 2. In Section 3 we develop a specification for a program that  plays 
Nim, a centuries-old mathematical  game. Section 4 describes an algorithm and 
Piton implementation of this program. The development of an Nqthm-generated 
proof that  the program described in Section 4 meets the requirements outlined 
in Section 3 is discussed in Section 5. 

[12] describes this project in greater detail and includes the input that  causes 
Nqthm to generate the correctness proof. 

2 B a c k g r o u n d  

Nqthm is the name of both a logic and an associated theorem proving sys- 
tem that  are documented in [4]. A large number of mathematical  theorems from 
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many disparate domains have been proved using Nqthm. The Nqthm logic is a 
quantifier-free, first-order logic resembling Pure Lisp. The user inputs definitions 
and conjectures to the Nqthm theorem prover which, when successful, outputs 
proofs. Proved conjectures are applied in later proofs. In a shallow sense the 
theorem prover is fully automatic since once a conjecture is input to the theo- 
rem prover the proof is uninfluenced by the user. Usually, however, important 
theorems require the proof and subsequent use of many subsidiary lemmas, and 
so a carefully designed sequence of conjectures is typically needed to lead Nqthm 
to a non-triviM proof. 

The most important property of Nqthm-generated proofs is soundness. We 
have confidence that a conjecture for which Nqthm generates a proof is a math- 
ematical truth. Since Nqthm runs on unverified hardware and is not proved 
correct in a formal way, however, it is possible that a bug in the implementa- 
tion of Nqthm or its execution environment has caused us to conclude that a 
false conjecture is a theorem. [4] explores this issue more fully. Although we feel 
obliged to point out this potential weakness in our work, our experience is that 
Nqthm-generated proofs are extremely dependable. 

One interesting domain to which Nqthm has been applied is computer sys- 
tems verification. Proofs about computer systems are often mind-numbingly 
complex but not particularly deep, which is to say perfectly suited to automatic 
generation. The requirement imposed by Nqthm to get every detail of a proof ex- 
actly correct is very important in computer systems verification as even the most 
trivial-seeming mistake can lead to catastrophe. [8] describes the implementation 
of a compiler for the language Piton and the associated mechanically-produced 
correctness theorem. A formal semantics for Piton, a formal description of the 
FM9001 microprocessor, and the Piton compiler are introduced as Nqthm func- 
tions. The compiler correctness theorem relates the data values expected after 
running a Piton program using Piton's formal semantics to the data values com- 
puted by the FM9001 running a compiled Piton program. 

The semantics of Piton is described using an interpreter function. A Piton 
state consists of elements that comprise a programmer's model of how Piton 
executes: a list of Piton programs to run, a user-addressable stack, a current 
instruction pointer, a subroutine calling stack, a data area, the word size, stack 
size limits, and a program status flag. The interpreter function P takes as argu- 
ments a Piton state and the number of Piton instructions to run, and returns 
the Piton state resulting from the computation. The semantics of FM9001 is 
also described using an interpreter function. An FM9001 state consists of ele- 
ments that comprise a programmer's model for the FM9001 design: values for 
the register file, the condition flags, and the memory. The interpreter function 
FM9001-DESIGN takes as arguments an FM9001 state and the number of 
FM9001 instructions to run and returns the FM9001 state resulting from the 
computation. 

The Piton correctness theorem is suggested by Figure 1. LOAD is the Piton 
compiler, and D I S P L A Y  is a function that extracts a Piton data segment from 
an FM9001 image. The Piton compiler is a cross-compiler since the compiler 
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Fig. 1. The Piton correctness proof. 
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is a function in the  Nqthm logic that  produces code for another processor, the 
FM9001. Roughly speaking, the Piton compiler correctness theorem guarantees 
that  the data  segment calculated by a Piton program running on the Piton in- 
terpreter and the data  segment calculated by running a compiled Piton program 
on the FMg001 are identical. The interpreter function serves as a precise specifi- 
cation for the expected behavior of a system component. This general approach 
to system verification is described fully in [2]. Interpreter functions can be com- 
plex: Piton has 71 instructions and some high-level features, and the definition 
of P in the Nqthm logic requires about 50 pages. 

The FM9001 is a fairly conventional microprocessor with an instruction set 
somewhat like that  on a PDP-11 [9]. Unlike most processors the FM9001 has 
been specified, designed, and proved correct in the sense that  the design is shown 
to meet the specification. The same specification was also used as the target 
machine in the Piton compiler correctness proof, so the proofs can be "stacked" 
and we need only assume that  the hardware is working properly for a Piton 
program compiled onto the FM9001 to work according the the formal semantics 
of Piton. Recently, the FM9001 was fabricated and has run programs, including 
the compiled Piton program described in this paper [1]. 

In short, formalized in Nqthm are a language semantics for Piton, a verified 
compiler to the FM9001, a verified design for the FM9001, and a fabricated 
chip that  implements the FM9001 design. The rest of this paper describes the 
development of a verified application that  runs in this environment. 

3 A Specif ication for a Good N i m  Program 

Nim is an ancient mathematical  game played with piles of stones by two 
alternating players [5]. On his turn a player removes at least one stone from 
exactly one pile. The player who removes the final stone loses. 

We construct a specification for a program that  calculates a good Nim move 
efficiently. The specification is in the form of several Nqthm predicates listed in 
this section that  introduce five undefined functions related to the implementa- 
tion. The programmer provides these functions and is obliged to prove that  they 
conform to the constraints of this specification. The five functions are: 
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Fig. 2. An example Nim game 

- CM-PROG : the program that implements a good Nim move generator; 
- COMPUTER-MOVE-CLOCK : number of instructions the program will execute; 
- I~IM-PITON-CTRL-STK-REqUIREMEHT : upper bound on control stack use; 
- NIM-PITO~I-TEMP-STK-REQUIREMENT : upper bound on temporary stack use; 
- C0MPUTER-MOVE : modified Nim state representing an optimal move. 

The following subsections present the constraints the specification imposes 
on the programmer. We describe each constraint informally and then provide the 
Nqthm term that characterizes it. The conjunction of these terms is the program 
specification. We have omitted here a precise description of the Nqthm logic and 
the definitions of several functions used in the constraints which the reader re- 
quires in order to understand these terms precisely. Although the straightforward 
Nqthm logic and suggestive function names convey the intent of these terms, the 
interested reader is referred to [4] for a description of the Nqthm logic, [8] for the 
definition of functions related to the Piton interpreter, and [12] for the definition 
of the specification's other defined functions. 

3.1 A l g o r i t h m  Legal i ty  

We require that the function COMPUTER-MOVE returns valid Nim moves, which 
is expressed in the Nqthm logic with the term below. (Note that COMPUTER-MOVE 
is one of the undefined functions being constrained in the specification, and that 
G00D-NON-EMPTY-NIM-STATEP and VALID-MOVEP are defined in [12].) 

(implies 
(good-non-empty-nim-statep state) 
(valid-movep state (computer-move state))) 
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3.2 A l g o r i t h m  O p t i m a l i t y  

A Nim state  consists of  a list of numbers tha t  represents the number  of  stones 
in each of the piles. A strategy maps  non-empty Nim states to Nim states in a 
way consistent with the notion of a legal Nim move. A winning strategy is a 
s t rategy tha t  guarantees for a particular Nim state tha t  the player who is about  
to take a turn will win. An optimal move for a particular non-empty Nim state  
is a legal move that  is the first step in a winning s t rategy if one exists. 

For any non-empty  Nim state, there either is one stone left, or there is a 
winning s t rategy for the next player, or there will be a winning s t rategy for the 
opponent  on his next move. We can therefore search for an opt imal  move f rom 
any Nim state. Figure 3 depicts t h e  search tree for an opt imal  move f rom the 
state ' (1 2 1). The nodes in the tree in bold type are losing states f rom which 
there is no winning s t r a t egy .  

(1,2,1) 

~*~ '~ (0,.2,1) i l ~ ~  (1,,0,1) l ~  

(0,1,1) (0,0,1) (0;2,0) (0,1,1) (1,0,1) (1,1tO) (0,0,1) (1,0,0) 

(O,l,O) (o,o,1) (0,1,o) (O,l,O) (o,o,1) (1,o,o) (o,%1) (o,1,o)(1,o,o) 

(1;2,0) /\--,.. 
(0;2,o) (1,1,o) (1,o,o) / \',,, 

(O,l,O) (o,~,o) (1,o,o) 

Play~ 1 move 

Fig. 3. State-space search for an optimal move 

Player 2 move 

We formalize search by defining an Nqthm function WSP as a recursive func- 
tion tha t  blindly searches all possible moves for an opt imal  move. (WSP s t a t e )  
returns f a l s e  if s tate is a losing state and an opt imal  move otherwise. For ex- 
ample, (WSP ' ( 1  2 1))  returns ' ( 1  1 1) and (WSP ' ( 1  i 1 ) )  returns f a l s e .  

We require tha t  the function COMPUTER-MOVE return an opt imal  move. 

(implies 
(and 

(good-non-empt y-nim-st at ep state) 
(wsp state) ) 

(not (.sp (computer-move state)))) 
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3.3 A l g o r i t h m  I m p l e m e n t a t i o n  

We require tha t  a program tha t  produces the same result as COMPUTER-MOVE 
be implemented in a Piton program. We represent the Nim state by an array 
of naturals  and a length tha t  are passed to the program as parameters .  We 
require tha t  when the Piton subroutine computer -move  in a list of programs 
returned by the function CM-PROG is executed using the Piton interpreter on a 
"reasonable" Piton s tate  for COMPUTER-MOVE-CLOCK "ticks", the resulting state 
has an incremented program counter, the program status  word set to  'run, and 
the naturals  array representing the Nim state replaced by a new array with the 
same value as tha t  calculated by COMPUTER-MOVE. 

(implies 
(and 
(equal pO (p-state pc ctrl-stk (cons wa (cons np (cons s temp-stk))) 

(append (cm-prog word-size) prog-segment) data-segment 
max-ctrl-stk-size max-temp-stk-size word-size 'run)) 

(equal (p-current-instruction pO) '(call computer-move)) 
(computer-move-implemented-input-conditionppO)) 

(let ((result 
(p pO (computer-move-clock 

(untag-array (array (car (untag s)) data-segment)) 
word-size)))) 

(and 
(equal (p-pc result) (addl-addrpc)) 
(equal (p-psw result) 'run) 
(equal (untag-array (array (car (untag s)) (p-data-segment result))) 

(computer-move 
(untag-array (array (car (untag s)) data-segment))))))) 

COMPUTER-MOVE-IMPLEMENTED-IHPUT-COIrDITIONP above identifies "reason- 
able" Piton states from which we expect our program to work properly, including 
tha t  NIM-PITON-CTRL-STK-RE[~UIREMENTS bytes be available on the Piton con- 
trol stack and at least NIM-PITON-TEMP-STK-REqUIREMENTS bytes be available 
on the Piton t empora ry  stack. 

3.4 Predictable  Response  Time 

We require tha t  the program return a calculated move within a window of 
time. The  program must  execute between 10,000 and 20,000 Piton instructions. 
We assume the word size is at most  of length 32, and the Nim state has no more 
than  6 piles. 

(implies (and (nat-listp state ws) 
(lessp 0 ws) (not (lessp 32 ws)) 
(lessp 1 (length state)) (not (lessp 6 (length state)))) 

(and (lessp 10000 (computer-move-clock state ws)) 
(lessp (computer-move-clock state ws) 20000))) 
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Note that this part of the specification eliminates some possible implemen- 
tations. One is the blind search implementation suggested by the definition of 
WSP, since the first level of the search tree has as many as 6 * 232 nodes, and 
there are as many as 6 * 232 levels to the tree. 

3.5 Real is t ic  M e m o r y  Use 

We require the implementation use little stack space. 

(lessp (plug (nim-piton-ctrl-stk-requirement) 
(nim-piton-temp-stk-requirement)) 

1000) 

This part of the specification eliminates, for example, a table-driven imple- 
mentation since there are 2177 distinct possible Nim states. 

3.6 FM9001 Loadabi l l ty  

We require that the program work on an FM9001 and that it meet the 
requirements of the compiler correctness proof of [8]. This requires among other 
things that the compiled Piton programs fit into the FM9001 address space and 
that the Piton programs be well-formed. The interested reader is referred to 
[8] for details. This part of the specification allows us to apply the compiler 
correctness proof. 

This constraint also eliminates some possible undesirable implementations. 
An immensely long program that uses alternation to solve the Nim problem 
by cases will not fit into the FM9001 address space when compiled, and will 
therefore not meet the requirements of this part of the specification. 

4 T h e  N i m  I m p l e m e n t a t i o n  

In this section we develop an algorithm for efficient calculation of optimal 
moves, and present a Piton program that implements this algorithm. In Section 5 
we discuss the mechanical proof that this implementation meets its specification. 

Since a formal specification has been developed for this program as well as a 
mechanical proof that the program meets the specification, a reader interested 
only in the behavior of the Nim software and not the topic of verification in 
general might choose to skip this section. In contrast to conventional program 
development efforts where the program source code is the only place where an 
absolutely dependable description of the behavior of the system can be found, in 
this effort the specification in Section 3 is dependable because the mechanically- 
generated correctness proof outlined in Section 5 guarantees that it is a correct 
description of the program's behavior. We present the algorithm because it im- 
plements a clever trick and because it makes clearer the wide gap between the 
specification and the implementation and thus demonstrates the usefulness of 
proving that the specification is met. 
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Recall from Section 3 that (WSP s t a t e )  is f a l s e  if and only if no winning 
strategy exists for state and that this calculation is performed by traversing 
the tree of all possible legal moves from an initial state. Let (BIGP s t a t e )  = 
number of piles with at least 2 stones. Let the bit-vector representation of a num- 
ber be the conventional low-order-bit-first base 2 representation for some large 
number of bits. Let (X0R-BVS s t a t e )  = bitwise exclusive-or of the bit-vector 
representations of the number of stones in each pile. Let 0 -vec tor  be a vector 
composed entirely of zeroes. Let (GREEN-STATEP s t a t e )  be an abbreviation for 
(BIGP state)>0 ~+ (XOK-BVS state)SO-vector. 

Theorem: (GREEN-STATEP s ta te )  ~-~ (WSP s t a t e ) .  

This remarkable property was rediscovered for this project, but has in fact 
been known at least since 1901 [3]. The most obvious proof uses an induction on 
the search tree. Figure 3 is the search tree for a small Nim state and illustrates 
the theorem above. As guaranteed by the theorem, the nodes from which there 
is a winning strategy (in non-bold type) are exactly the nodes that are green 
states. 

We exploit this theorem in the following algorithm that computes optimal 
moves efficiently. If (BIGP s t a t e )  < 2 and there are an even number of non- 
empty piles, remove all the stones from a largest pile. If (BIGP s t a t e )  < 2 and 
there are an odd number of non-empty piles, remove all but one stone from a 
largest pile. If (BIGP s t a t e )  > 1, find a pile whose binary representation has 
a 1-bit in the position of the highest 1-bit in (XOR-BVS s t a t e ) ,  and remove 
enough stones so that the new pile's binary representation is the X0R of the 
binary representations of the other piles. 

From the previous theorem one can prove that this algorithm efficiently gen- 
erates optimal moves. 

The five functions left undefined in the specification presented in Section 3 
have been defined in the implementation. The Piton implementation of Nim 
(returned by function CM-PROG described in the specification) implements the 
efficient algorithm described above and contains approximately 300 lines of Piton 
code. Figure 4 lists two example Piton routines from the implementation that 
convert natural numbers to bit vectors and natural number arrays to bit vector 
arrays. [12] contains a complete program listing. 

5 The  N q t h m  Correctness  Proof  

Nqthm has been used to construct proofs that correspond to the six spec- 
ification constraints given in Section 3, so our Piton implementation has been 
proved correct. Approximately 750 lemmas were proved in order to guide Nqthm 
to the proof of these main theorems. Most of these lemmas fall into one of the 
following four categories. 

- Some lemmas relate the behavior of Piton loops and subroutines when inter- 
preted by the Piton interpreter to an Nqthm function. Typically, a special 
Nqthm function that calculates a result in precisely the same manner as the 



SUBROUTINE NAT-TO-BV 
(VALUE) (CURRENT-BIT TEMP) 

CALL PUSH-I-VECTOR 
POP-LOCAL CURRENT-BIT 
CALL PUSH-I-VECTOR 
RSH-BITV 

LOOP: PUSH-LOCAL VALUE 
TEST-NAT-AND-JLYIPZERO DON 
PUSH-LOCAL VALUE 
DIV2-NAT 
POP-L0CAL TEMP 
POP-LOCAL VALUE 
PUSH-LOCAL TENP 
TEST-NAT-AND-JL~PZER0 LAB 
PUSH-LOCAL CURRENT-BIT 
XOR-BITV 

LAB: PUSH-LOCAL CURRENT-BIT 
LSH-BITV 

POP-LOCAL CURRENT-BIT 

JUMP LOOP 
DONE: RET 
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SUBROUTINE NAT-TO-BV-LIST 
(NAT-LIST BV-LIST LENGTH) (I  0) 

LOOP: PUSH-LOCAL NAT-LIST 
FETCH 
CALL HAT-TO-BV 
PUSH-LOCAL BV-LIST 
DEPOSIT 
PUSH-LOCAL I 
ADDI-NAT 

SET-LOCAL I 

PUSH-LOCAL LENGTH 

Eq 

TEST-BOOL-AND-JL.'HFT DONE 

PUSH-LOCAL NAT-LIST 

PUSH-C0NSTAHT (NAT 1) 

ADD-ADDR 

POP-LOCAL NAT-LIST 

PUSH-LOCAL BV-LIST 

PUSH-CONSTANT (NAT 1) 

ADD-ADDR 

POP-LOCAL BV-LIST 
JUMP LOOP 

DONE: RET 

Fig. 4. Two example Piton subroutines 

Piton program in question is defined. A clock function tha t  computes the 
number  of Piton iiastructions the loop or subroutine will execute is defined. A 
correctness l emma  for a loop or subroutine states tha t  the Piton interpreter 
running the loop or subroutine for the number  of instructions computed by 
the clock function yields the same result as the Nqthm function. 
We call proofs of  this kind of l emma  code correctness proofs. 

- Some lemmas  demonstra te  the equivalence of Nqthm functions tha t  mimic 
Piton programs to Nqthm functions defined more natural ly and are easier 
to reason about.  
We call proofs of this kind of l emma specification proofs. 

- Some lemmas  are used to prove the opt imal i ty  of COMPtrrER-ll0VE. Tha t  is, 
tha t  the algori thm outlined in Section 4 works. 
We cM1 proofs of this kind of l emma algorithm proofs. 

- Some lemmas  establish bounds on the clock functions. 
We call proofs of  this kind of l emma  timing proofs. 

The t iming proofs were done using PC-Nqthm [7], the interactive enhance- 
ment  to Nqthm.  All other proofs require only Nqthm. The  proof that  the Piton 
program meets the specification uses the default ar i thmetic l ibrary [10] and the 
Piton interpreter definitions [8]. 



277 

(prove-lenuaa correctness-of-nat-to-by (rewrite) 
(implies 
(and 
(equal pO (p-state pc ctrl-stk (cons v temp-stk) prog-segment 

data-segment max-ctrl-stk-size max-temp-stk-size 
word-size 'run)) 

(equal (p-current-instruction pO) '(call nat-to-by)) 
(nat-to-bv-input-conditionp pO)) 
(equal 
(p pO (nat-to-by-clock num)) 
(p-state 

(addl-addr pc) ctrl-stk. 
(cons (list 'bitv (nat-to-by (cadr v) word-size)) temp-stk) 
prog-segment data-segment max-ctrl-stk-size 
max-temp-stk-size word-size ~run)))) 

Fig. 5. An Nqthm prove-lemma event 

The correctness of nat-to-bv listed in Figure 4 is described by the prove- 
lemma command in Figure 5. We use the proof of this lemma to illustrate what 
it takes to do these kinds of proofs. First, we accomplish a code correctness proof 
the loop in n a t - t o - b y .  We introduce a recursive function F00i in the Nqthm 
logic that computes the values calculated in the loop, and use Nqthm to prove 
inductively that the interpreter applied to a Piton state that is about to execute 
that loop calculates the same values as F00. Several trivial subsidiary lemmas 
must be proved first so as to guide Nqthm to this proof. We then introduce a 
function FO02 that computes values in the same manner as n a t - t o - b y ,  and use 
Nqthm to generate a code correctness proof of this. Next we have Nqthm generate 
a specification proof of the equivalence of F002 to NAT-T0-BV, a conventional 
Nqthm definition of a natural number to bit vector conversion function. This 
requires dozens of subsidiary lemmas about arithmetic. Finally, we use Nqthm 
to prove the lemma shown in Figure 5, which it does using the previously proved 
lemmas. 

The correctness lemma is even more complex than it may appear at first 
glance. I~AT-T0-BV-INPUT-CONDITIONP contains additional preconditions that 
this subprogram requires in order to run correctly. There must be enough stack 
space to do the calculation, the value at the top of the stack must be a natu- 
ral number representable on the machine, and the program segment must have 
the needed programs loaded. NAT-T0-BV-CLOCK is a function that computes the 
number of instructions the Piton subroutine n a t - t o - b y  executes when called. 

Like most conjectures presented to Nqthm with the prove-lemma command 
for which Nqthm successfully generates a proof, CORRECTIIESS-OF-NAT-TI3-BV 
has two importaht properties. First, since it is accepted by the Nqthm prover, 
we believe that it represents mathematical truth. Second, i t is  an instruction to 
the prover about how to prove future theorems. By constructing the exact form 
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of the theorem mindful of the theorem's interpretation in later proof efforts, we 
add to the prover's ability to reason soundly about Piton programs that call 
nat  - t  o - b y .  

CORRECTNESS-OF-NAT-TO-BV is useful because it equates the behavior of a 
Piton subprogram as defined by the Piton interpreter to an Nqthm term that 
does not involve the interpreter. By applying this lemma Nqthm can reason 
about this program without regard to the semantics of Piton. This makes proofs 
achievable since, as a practical matter, proofs involving Piton programs running 
on the very complicated Piton interpreter are much more complex than proofs 
about Nqthm functions that compute similar results. The lemma is stored in 
Nqthm as a replacement rule, and has been constructed so that later proofs can 
apply this lemma automatically during proofs. The subroutine n a t - t o - b y - l i s t  
contains several kinds of Piton instructions, and the proof of the correctness of 
n a t - t o - b y - l i s t  depends on the semantics of these instructions as defined in the 
Piton interpreter. For example, PUSII-LOCAL is defined in the Piton interpreter 
and the Nqthm theorem prover uses the definitions that describe the effect of 
executing a PUSH-L0CAL instruction automatically when constructing a proof. 
Similarly, the instruction CALL NAT-T0-BV in the subprogram is reasoned about 
by Nqthm automatically using CORRECTNESS-OF-NAT-TO-BV. 

Once a carefully-constructed correctness theorem such as this one about a 
subroutine has been added to the database of proved lemmas, a call to that 
subroutine in a Piton program is reasoned about automatically just as any built- 
in Piton instruction. 

The development of the correctness proof required about 3 man-months. 
(This does not include time to develop the events of the Piton compiler or arith- 
metic library or to accomplish an earlier proof related to Nim [11].) Approx- 
imately 40% of the man-hours were spent on code correctness proofs, 30% on 
specification proofs, 20% on algorithm proofs, and 10% on timing proofs. Nqthm 
generates the proof in approximately 10 hours on a Sun Sparcstation IPC. 

6 Conclusions  

Mechanical verification of programs in this manner is time-consuming and 
difficult. Nevertheless, and quite remarkably, the experience of building the Nim 
program suggests that development time scales linearly with program length. 
Once a Piton subroutine has been proved correct, a call to this subroutine can 
be reasoned about as easily as any basic Piton statement. 

A modest but non-trivial application has been constructed that makes use 
of a verified compiler and microprocessor. Its functional correctness has been 
verified using Nqthm. Mechanically-checked proofs of bounds on the number of 
executed instructions have been constructed. We hope to verify more complex 
software in the future using our mechanical proof tools as we pursue our goal 
of building error-free computer systems. Programs that work in real-time are 
particularly attractive since the formalization of a programming language with 
an interpreter as in [8] is well-suited to proving program timing properties. 
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An FM9001 was fabricated and runs a compiled version of the Nim pro- 
gram. The fabricated FM9001 microprocessor, the Piton compiler, and the Nim 
program were never tested in a conventional manner during development or af- 
ter completion. Even so, each worked the first t ime and we would have been 
surprised if any had not. 
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