
A Mechanica l ly Verified A p p l i c a t i o n for
a Mechanica l ly Verified E n v i r o n m e n t

Matthew Wilding

Computational Logic Inc., 1717 West Sixth Street Suite 290, Austin Texas, USA
and The University of Texas at Austin

Abs t rac t . We have developed a verified application proved to be both
effective and efficient. The application generates moves in the puzzle-
game Nim and is coded in Piton, a language.with a formal semantics and
a compiler verified to preserve its semantics on the underlying machine.
The Piton compiler is targeted to the FM9001, a recently fabricated
verified microprocessor. The Nim program correctness proof makes use
of the language semantics that the compiler is proved to implement. Like
the Piton compiler proof and FM9001 design proof, the Nim correctness
proof is generated using Nqthm, a proof system sometimes known as the
Boyer-Moore theorem prover.

1 Introduction

Computer application programs and the systems software and hardware that
support them can be very complex. The adoption of traditional software en-
gineering practices such as rigorous testing helps computer programmers write
programs with fewer errors, but correctness can not be guaranteed using them.
One approach to developing dependable software is to formalize a problem Speci-
fication in a logic and prove that a particular program written in some computer
language meets the requirements of the problem specification. This requires a
formal semantics of the language used in the program. Ideally, the language se-
mantics will come with a verified compiler targeted to hardware whose design
has been proved to work to specification. Extra reliability can be attained by
generating the proofs with a trustworthy automatic theorem prover.

We discuss Nqthm and the proofs of the Piton compiler and the FM9001 de-
sign in Section 2. In Section 3 we develop a specification for a program that plays
Nim, a centuries-old mathematical game. Section 4 describes an algorithm and
Piton implementation of this program. The development of an Nqthm-generated
proof that the program described in Section 4 meets the requirements outlined
in Section 3 is discussed in Section 5.

[12] describes this project in greater detail and includes the input that causes
Nqthm to generate the correctness proof.

2 B a c k g r o u n d

Nqthm is the name of both a logic and an associated theorem proving sys-
tem that are documented in [4]. A large number of mathematical theorems from

269

many disparate domains have been proved using Nqthm. The Nqthm logic is a
quantifier-free, first-order logic resembling Pure Lisp. The user inputs definitions
and conjectures to the Nqthm theorem prover which, when successful, outputs
proofs. Proved conjectures are applied in later proofs. In a shallow sense the
theorem prover is fully automatic since once a conjecture is input to the theo-
rem prover the proof is uninfluenced by the user. Usually, however, important
theorems require the proof and subsequent use of many subsidiary lemmas, and
so a carefully designed sequence of conjectures is typically needed to lead Nqthm
to a non-triviM proof.

The most important property of Nqthm-generated proofs is soundness. We
have confidence that a conjecture for which Nqthm generates a proof is a math-
ematical truth. Since Nqthm runs on unverified hardware and is not proved
correct in a formal way, however, it is possible that a bug in the implementa-
tion of Nqthm or its execution environment has caused us to conclude that a
false conjecture is a theorem. [4] explores this issue more fully. Although we feel
obliged to point out this potential weakness in our work, our experience is that
Nqthm-generated proofs are extremely dependable.

One interesting domain to which Nqthm has been applied is computer sys-
tems verification. Proofs about computer systems are often mind-numbingly
complex but not particularly deep, which is to say perfectly suited to automatic
generation. The requirement imposed by Nqthm to get every detail of a proof ex-
actly correct is very important in computer systems verification as even the most
trivial-seeming mistake can lead to catastrophe. [8] describes the implementation
of a compiler for the language Piton and the associated mechanically-produced
correctness theorem. A formal semantics for Piton, a formal description of the
FM9001 microprocessor, and the Piton compiler are introduced as Nqthm func-
tions. The compiler correctness theorem relates the data values expected after
running a Piton program using Piton's formal semantics to the data values com-
puted by the FM9001 running a compiled Piton program.

The semantics of Piton is described using an interpreter function. A Piton
state consists of elements that comprise a programmer's model of how Piton
executes: a list of Piton programs to run, a user-addressable stack, a current
instruction pointer, a subroutine calling stack, a data area, the word size, stack
size limits, and a program status flag. The interpreter function P takes as argu-
ments a Piton state and the number of Piton instructions to run, and returns
the Piton state resulting from the computation. The semantics of FM9001 is
also described using an interpreter function. An FM9001 state consists of ele-
ments that comprise a programmer's model for the FM9001 design: values for
the register file, the condition flags, and the memory. The interpreter function
FM9001-DESIGN takes as arguments an FM9001 state and the number of
FM9001 instructions to run and returns the FM9001 state resulting from the
computation.

The Piton correctness theorem is suggested by Figure 1. LOAD is the Piton
compiler, and D I S P L A Y is a function that extracts a Piton data segment from
an FM9001 image. The Piton compiler is a cross-compiler since the compiler

270

PO

LOAD(PO)

M0

P(P0, n)

(n Piton interpreter steps)

(k FM9001 interpreter steps)

FM9001-DESIGN(M0, k)

Fig. 1. The Piton correctness proof.

Dpn

DISPLAY(Mk)

~,r

is a function in the Nqthm logic that produces code for another processor, the
FM9001. Roughly speaking, the Piton compiler correctness theorem guarantees
that the data segment calculated by a Piton program running on the Piton in-
terpreter and the data segment calculated by running a compiled Piton program
on the FMg001 are identical. The interpreter function serves as a precise specifi-
cation for the expected behavior of a system component. This general approach
to system verification is described fully in [2]. Interpreter functions can be com-
plex: Piton has 71 instructions and some high-level features, and the definition
of P in the Nqthm logic requires about 50 pages.

The FM9001 is a fairly conventional microprocessor with an instruction set
somewhat like that on a PDP-11 [9]. Unlike most processors the FM9001 has
been specified, designed, and proved correct in the sense that the design is shown
to meet the specification. The same specification was also used as the target
machine in the Piton compiler correctness proof, so the proofs can be "stacked"
and we need only assume that the hardware is working properly for a Piton
program compiled onto the FM9001 to work according the the formal semantics
of Piton. Recently, the FM9001 was fabricated and has run programs, including
the compiled Piton program described in this paper [1].

In short, formalized in Nqthm are a language semantics for Piton, a verified
compiler to the FM9001, a verified design for the FM9001, and a fabricated
chip that implements the FM9001 design. The rest of this paper describes the
development of a verified application that runs in this environment.

3 A Specif ication for a Good N i m Program

Nim is an ancient mathematical game played with piles of stones by two
alternating players [5]. On his turn a player removes at least one stone from
exactly one pile. The player who removes the final stone loses.

We construct a specification for a program that calculates a good Nim move
efficiently. The specification is in the form of several Nqthm predicates listed in
this section that introduce five undefined functions related to the implementa-
tion. The programmer provides these functions and is obliged to prove that they
conform to the constraints of this specification. The five functions are:

271

@0

_ _ ,, ,,,, ~ , m,~,, may,~ 2

r e~ �9 - ~ �9 �9 e - 4 ~

�9 �9 O Pla~ 2 lo~.s
P l a ~ l

Fig. 2. An example Nim game

- CM-PROG : the program that implements a good Nim move generator;
- COMPUTER-MOVE-CLOCK : number of instructions the program will execute;
- I~IM-PITON-CTRL-STK-REqUIREMEHT : upper bound on control stack use;
- NIM-PITO~I-TEMP-STK-REQUIREMENT : upper bound on temporary stack use;
- C0MPUTER-MOVE : modified Nim state representing an optimal move.

The following subsections present the constraints the specification imposes
on the programmer. We describe each constraint informally and then provide the
Nqthm term that characterizes it. The conjunction of these terms is the program
specification. We have omitted here a precise description of the Nqthm logic and
the definitions of several functions used in the constraints which the reader re-
quires in order to understand these terms precisely. Although the straightforward
Nqthm logic and suggestive function names convey the intent of these terms, the
interested reader is referred to [4] for a description of the Nqthm logic, [8] for the
definition of functions related to the Piton interpreter, and [12] for the definition
of the specification's other defined functions.

3.1 A l g o r i t h m Legal i ty

We require that the function COMPUTER-MOVE returns valid Nim moves, which
is expressed in the Nqthm logic with the term below. (Note that COMPUTER-MOVE
is one of the undefined functions being constrained in the specification, and that
G00D-NON-EMPTY-NIM-STATEP and VALID-MOVEP are defined in [12].)

(implies
(good-non-empty-nim-statep state)
(valid-movep state (computer-move state)))

272
3.2 A l g o r i t h m O p t i m a l i t y

A Nim state consists of a list of numbers tha t represents the number of stones
in each of the piles. A strategy maps non-empty Nim states to Nim states in a
way consistent with the notion of a legal Nim move. A winning strategy is a
s t rategy tha t guarantees for a particular Nim state tha t the player who is about
to take a turn will win. An optimal move for a particular non-empty Nim state
is a legal move that is the first step in a winning s t rategy if one exists.

For any non-empty Nim state, there either is one stone left, or there is a
winning s t rategy for the next player, or there will be a winning s t rategy for the
opponent on his next move. We can therefore search for an opt imal move f rom
any Nim state. Figure 3 depicts t h e search tree for an opt imal move f rom the
state ' (1 2 1). The nodes in the tree in bold type are losing states f rom which
there is no winning s t r a t egy .

(1,2,1)

~*~ '~ (0,.2,1) i l ~ ~ (1,,0,1) l ~

(0,1,1) (0,0,1) (0;2,0) (0,1,1) (1,0,1) (1,1tO) (0,0,1) (1,0,0)

(O,l,O) (o,o,1) (0,1,o) (O,l,O) (o,o,1) (1,o,o) (o,%1) (o,1,o)(1,o,o)

(1;2,0) /\--,..
(0;2,o) (1,1,o) (1,o,o) / \',,,

(O,l,O) (o,~,o) (1,o,o)

Play~ 1 move

Fig. 3. State-space search for an optimal move

Player 2 move

We formalize search by defining an Nqthm function WSP as a recursive func-
tion tha t blindly searches all possible moves for an opt imal move. (WSP s t a t e)
returns f a l s e if s tate is a losing state and an opt imal move otherwise. For ex-
ample, (WSP ' (1 2 1)) returns ' (1 1 1) and (WSP ' (1 i 1)) returns f a l s e .

We require tha t the function COMPUTER-MOVE return an opt imal move.

(implies
(and

(good-non-empt y-nim-st at ep state)
(wsp state))

(not (.sp (computer-move state))))

273

3.3 A l g o r i t h m I m p l e m e n t a t i o n

We require tha t a program tha t produces the same result as COMPUTER-MOVE
be implemented in a Piton program. We represent the Nim state by an array
of naturals and a length tha t are passed to the program as parameters . We
require tha t when the Piton subroutine computer -move in a list of programs
returned by the function CM-PROG is executed using the Piton interpreter on a
"reasonable" Piton s tate for COMPUTER-MOVE-CLOCK "ticks", the resulting state
has an incremented program counter, the program status word set to 'run, and
the naturals array representing the Nim state replaced by a new array with the
same value as tha t calculated by COMPUTER-MOVE.

(implies
(and
(equal pO (p-state pc ctrl-stk (cons wa (cons np (cons s temp-stk)))

(append (cm-prog word-size) prog-segment) data-segment
max-ctrl-stk-size max-temp-stk-size word-size 'run))

(equal (p-current-instruction pO) '(call computer-move))
(computer-move-implemented-input-conditionppO))

(let ((result
(p pO (computer-move-clock

(untag-array (array (car (untag s)) data-segment))
word-size))))

(and
(equal (p-pc result) (addl-addrpc))
(equal (p-psw result) 'run)
(equal (untag-array (array (car (untag s)) (p-data-segment result)))

(computer-move
(untag-array (array (car (untag s)) data-segment)))))))

COMPUTER-MOVE-IMPLEMENTED-IHPUT-COIrDITIONP above identifies "reason-
able" Piton states from which we expect our program to work properly, including
tha t NIM-PITON-CTRL-STK-RE[~UIREMENTS bytes be available on the Piton con-
trol stack and at least NIM-PITON-TEMP-STK-REqUIREMENTS bytes be available
on the Piton t empora ry stack.

3.4 Predictable Response Time

We require tha t the program return a calculated move within a window of
time. The program must execute between 10,000 and 20,000 Piton instructions.
We assume the word size is at most of length 32, and the Nim state has no more
than 6 piles.

(implies (and (nat-listp state ws)
(lessp 0 ws) (not (lessp 32 ws))
(lessp 1 (length state)) (not (lessp 6 (length state))))

(and (lessp 10000 (computer-move-clock state ws))
(lessp (computer-move-clock state ws) 20000)))

274

Note that this part of the specification eliminates some possible implemen-
tations. One is the blind search implementation suggested by the definition of
WSP, since the first level of the search tree has as many as 6 * 232 nodes, and
there are as many as 6 * 232 levels to the tree.

3.5 Real is t ic M e m o r y Use

We require the implementation use little stack space.

(lessp (plug (nim-piton-ctrl-stk-requirement)
(nim-piton-temp-stk-requirement))

1000)

This part of the specification eliminates, for example, a table-driven imple-
mentation since there are 2177 distinct possible Nim states.

3.6 FM9001 Loadabi l l ty

We require that the program work on an FM9001 and that it meet the
requirements of the compiler correctness proof of [8]. This requires among other
things that the compiled Piton programs fit into the FM9001 address space and
that the Piton programs be well-formed. The interested reader is referred to
[8] for details. This part of the specification allows us to apply the compiler
correctness proof.

This constraint also eliminates some possible undesirable implementations.
An immensely long program that uses alternation to solve the Nim problem
by cases will not fit into the FM9001 address space when compiled, and will
therefore not meet the requirements of this part of the specification.

4 T h e N i m I m p l e m e n t a t i o n

In this section we develop an algorithm for efficient calculation of optimal
moves, and present a Piton program that implements this algorithm. In Section 5
we discuss the mechanical proof that this implementation meets its specification.

Since a formal specification has been developed for this program as well as a
mechanical proof that the program meets the specification, a reader interested
only in the behavior of the Nim software and not the topic of verification in
general might choose to skip this section. In contrast to conventional program
development efforts where the program source code is the only place where an
absolutely dependable description of the behavior of the system can be found, in
this effort the specification in Section 3 is dependable because the mechanically-
generated correctness proof outlined in Section 5 guarantees that it is a correct
description of the program's behavior. We present the algorithm because it im-
plements a clever trick and because it makes clearer the wide gap between the
specification and the implementation and thus demonstrates the usefulness of
proving that the specification is met.

275

Recall from Section 3 that (WSP s t a t e) is f a l s e if and only if no winning
strategy exists for state and that this calculation is performed by traversing
the tree of all possible legal moves from an initial state. Let (BIGP s t a t e) =
number of piles with at least 2 stones. Let the bit-vector representation of a num-
ber be the conventional low-order-bit-first base 2 representation for some large
number of bits. Let (X0R-BVS s t a t e) = bitwise exclusive-or of the bit-vector
representations of the number of stones in each pile. Let 0 -vec tor be a vector
composed entirely of zeroes. Let (GREEN-STATEP s t a t e) be an abbreviation for
(BIGP state)>0 ~+ (XOK-BVS state)SO-vector.

Theorem: (GREEN-STATEP s ta te) ~-~ (WSP s t a t e) .

This remarkable property was rediscovered for this project, but has in fact
been known at least since 1901 [3]. The most obvious proof uses an induction on
the search tree. Figure 3 is the search tree for a small Nim state and illustrates
the theorem above. As guaranteed by the theorem, the nodes from which there
is a winning strategy (in non-bold type) are exactly the nodes that are green
states.

We exploit this theorem in the following algorithm that computes optimal
moves efficiently. If (BIGP s t a t e) < 2 and there are an even number of non-
empty piles, remove all the stones from a largest pile. If (BIGP s t a t e) < 2 and
there are an odd number of non-empty piles, remove all but one stone from a
largest pile. If (BIGP s t a t e) > 1, find a pile whose binary representation has
a 1-bit in the position of the highest 1-bit in (XOR-BVS s t a t e) , and remove
enough stones so that the new pile's binary representation is the X0R of the
binary representations of the other piles.

From the previous theorem one can prove that this algorithm efficiently gen-
erates optimal moves.

The five functions left undefined in the specification presented in Section 3
have been defined in the implementation. The Piton implementation of Nim
(returned by function CM-PROG described in the specification) implements the
efficient algorithm described above and contains approximately 300 lines of Piton
code. Figure 4 lists two example Piton routines from the implementation that
convert natural numbers to bit vectors and natural number arrays to bit vector
arrays. [12] contains a complete program listing.

5 The N q t h m Correctness Proof

Nqthm has been used to construct proofs that correspond to the six spec-
ification constraints given in Section 3, so our Piton implementation has been
proved correct. Approximately 750 lemmas were proved in order to guide Nqthm
to the proof of these main theorems. Most of these lemmas fall into one of the
following four categories.

- Some lemmas relate the behavior of Piton loops and subroutines when inter-
preted by the Piton interpreter to an Nqthm function. Typically, a special
Nqthm function that calculates a result in precisely the same manner as the

SUBROUTINE NAT-TO-BV
(VALUE) (CURRENT-BIT TEMP)

CALL PUSH-I-VECTOR
POP-LOCAL CURRENT-BIT
CALL PUSH-I-VECTOR
RSH-BITV

LOOP: PUSH-LOCAL VALUE
TEST-NAT-AND-JLYIPZERO DON
PUSH-LOCAL VALUE
DIV2-NAT
POP-L0CAL TEMP
POP-LOCAL VALUE
PUSH-LOCAL TENP
TEST-NAT-AND-JL~PZER0 LAB
PUSH-LOCAL CURRENT-BIT
XOR-BITV

LAB: PUSH-LOCAL CURRENT-BIT
LSH-BITV

POP-LOCAL CURRENT-BIT

JUMP LOOP
DONE: RET

276

SUBROUTINE NAT-TO-BV-LIST
(NAT-LIST BV-LIST LENGTH) (I 0)

LOOP: PUSH-LOCAL NAT-LIST
FETCH
CALL HAT-TO-BV
PUSH-LOCAL BV-LIST
DEPOSIT
PUSH-LOCAL I
ADDI-NAT

SET-LOCAL I

PUSH-LOCAL LENGTH

Eq

TEST-BOOL-AND-JL.'HFT DONE

PUSH-LOCAL NAT-LIST

PUSH-C0NSTAHT (NAT 1)

ADD-ADDR

POP-LOCAL NAT-LIST

PUSH-LOCAL BV-LIST

PUSH-CONSTANT (NAT 1)

ADD-ADDR

POP-LOCAL BV-LIST
JUMP LOOP

DONE: RET

Fig. 4. Two example Piton subroutines

Piton program in question is defined. A clock function tha t computes the
number of Piton iiastructions the loop or subroutine will execute is defined. A
correctness l emma for a loop or subroutine states tha t the Piton interpreter
running the loop or subroutine for the number of instructions computed by
the clock function yields the same result as the Nqthm function.
We call proofs of this kind of l emma code correctness proofs.

- Some lemmas demonstra te the equivalence of Nqthm functions tha t mimic
Piton programs to Nqthm functions defined more natural ly and are easier
to reason about.
We call proofs of this kind of l emma specification proofs.

- Some lemmas are used to prove the opt imal i ty of COMPtrrER-ll0VE. Tha t is,
tha t the algori thm outlined in Section 4 works.
We cM1 proofs of this kind of l emma algorithm proofs.

- Some lemmas establish bounds on the clock functions.
We call proofs of this kind of l emma timing proofs.

The t iming proofs were done using PC-Nqthm [7], the interactive enhance-
ment to Nqthm. All other proofs require only Nqthm. The proof that the Piton
program meets the specification uses the default ar i thmetic l ibrary [10] and the
Piton interpreter definitions [8].

277

(prove-lenuaa correctness-of-nat-to-by (rewrite)
(implies
(and
(equal pO (p-state pc ctrl-stk (cons v temp-stk) prog-segment

data-segment max-ctrl-stk-size max-temp-stk-size
word-size 'run))

(equal (p-current-instruction pO) '(call nat-to-by))
(nat-to-bv-input-conditionp pO))
(equal
(p pO (nat-to-by-clock num))
(p-state

(addl-addr pc) ctrl-stk.
(cons (list 'bitv (nat-to-by (cadr v) word-size)) temp-stk)
prog-segment data-segment max-ctrl-stk-size
max-temp-stk-size word-size ~run))))

Fig. 5. An Nqthm prove-lemma event

The correctness of nat-to-bv listed in Figure 4 is described by the prove-
lemma command in Figure 5. We use the proof of this lemma to illustrate what
it takes to do these kinds of proofs. First, we accomplish a code correctness proof
the loop in n a t - t o - b y . We introduce a recursive function F00i in the Nqthm
logic that computes the values calculated in the loop, and use Nqthm to prove
inductively that the interpreter applied to a Piton state that is about to execute
that loop calculates the same values as F00. Several trivial subsidiary lemmas
must be proved first so as to guide Nqthm to this proof. We then introduce a
function FO02 that computes values in the same manner as n a t - t o - b y , and use
Nqthm to generate a code correctness proof of this. Next we have Nqthm generate
a specification proof of the equivalence of F002 to NAT-T0-BV, a conventional
Nqthm definition of a natural number to bit vector conversion function. This
requires dozens of subsidiary lemmas about arithmetic. Finally, we use Nqthm
to prove the lemma shown in Figure 5, which it does using the previously proved
lemmas.

The correctness lemma is even more complex than it may appear at first
glance. I~AT-T0-BV-INPUT-CONDITIONP contains additional preconditions that
this subprogram requires in order to run correctly. There must be enough stack
space to do the calculation, the value at the top of the stack must be a natu-
ral number representable on the machine, and the program segment must have
the needed programs loaded. NAT-T0-BV-CLOCK is a function that computes the
number of instructions the Piton subroutine n a t - t o - b y executes when called.

Like most conjectures presented to Nqthm with the prove-lemma command
for which Nqthm successfully generates a proof, CORRECTIIESS-OF-NAT-TI3-BV
has two importaht properties. First, since it is accepted by the Nqthm prover,
we believe that it represents mathematical truth. Second, i t is an instruction to
the prover about how to prove future theorems. By constructing the exact form

278

of the theorem mindful of the theorem's interpretation in later proof efforts, we
add to the prover's ability to reason soundly about Piton programs that call
nat - t o - b y .

CORRECTNESS-OF-NAT-TO-BV is useful because it equates the behavior of a
Piton subprogram as defined by the Piton interpreter to an Nqthm term that
does not involve the interpreter. By applying this lemma Nqthm can reason
about this program without regard to the semantics of Piton. This makes proofs
achievable since, as a practical matter, proofs involving Piton programs running
on the very complicated Piton interpreter are much more complex than proofs
about Nqthm functions that compute similar results. The lemma is stored in
Nqthm as a replacement rule, and has been constructed so that later proofs can
apply this lemma automatically during proofs. The subroutine n a t - t o - b y - l i s t
contains several kinds of Piton instructions, and the proof of the correctness of
n a t - t o - b y - l i s t depends on the semantics of these instructions as defined in the
Piton interpreter. For example, PUSII-LOCAL is defined in the Piton interpreter
and the Nqthm theorem prover uses the definitions that describe the effect of
executing a PUSH-L0CAL instruction automatically when constructing a proof.
Similarly, the instruction CALL NAT-T0-BV in the subprogram is reasoned about
by Nqthm automatically using CORRECTNESS-OF-NAT-TO-BV.

Once a carefully-constructed correctness theorem such as this one about a
subroutine has been added to the database of proved lemmas, a call to that
subroutine in a Piton program is reasoned about automatically just as any built-
in Piton instruction.

The development of the correctness proof required about 3 man-months.
(This does not include time to develop the events of the Piton compiler or arith-
metic library or to accomplish an earlier proof related to Nim [11].) Approx-
imately 40% of the man-hours were spent on code correctness proofs, 30% on
specification proofs, 20% on algorithm proofs, and 10% on timing proofs. Nqthm
generates the proof in approximately 10 hours on a Sun Sparcstation IPC.

6 Conclusions

Mechanical verification of programs in this manner is time-consuming and
difficult. Nevertheless, and quite remarkably, the experience of building the Nim
program suggests that development time scales linearly with program length.
Once a Piton subroutine has been proved correct, a call to this subroutine can
be reasoned about as easily as any basic Piton statement.

A modest but non-trivial application has been constructed that makes use
of a verified compiler and microprocessor. Its functional correctness has been
verified using Nqthm. Mechanically-checked proofs of bounds on the number of
executed instructions have been constructed. We hope to verify more complex
software in the future using our mechanical proof tools as we pursue our goal
of building error-free computer systems. Programs that work in real-time are
particularly attractive since the formalization of a programming language with
an interpreter as in [8] is well-suited to proving program timing properties.

279

An FM9001 was fabricated and runs a compiled version of the Nim pro-
gram. The fabricated FM9001 microprocessor, the Piton compiler, and the Nim
program were never tested in a conventional manner during development or af-
ter completion. Even so, each worked the first t ime and we would have been
surprised if any had not.

References

1. Ken Albin, Warren Hunt, and Matthew Wilding. FM9001 fabrication (in prepa-
ration). Technical report, Computational Logic, Inc., 1993.

2. William R. Bevier, Waxren A. Hunt Jr., J Strother Moore, and William D. Young.
An approach to systems verification. Journal o] Automated Reasoning, 5(4):411-
428, December 1989.

3. Charles L. Bouton. Nim, a game with a complete mathematical theory. In Annals
of Mathematics, volume 3, 1901-02.

4. R. S. Bayer and J S. Moore. A Computational Logic Handbook. Acaxlemic Press,
Boston, 1988.

5. Martin Gardner. Mathematical Puzzles and Diversions. Simon and Schuster, New
York, 1959.

6. Warren A. Hunt Jr. Microprocessor design verification. Journal of Automated
Reasoning, 5(4):429-460, December 1989.

7. Matt Kaufmann. A user's manual for an interactive enhancement to the Bayer-
Moore theorem prover. Technical Report 60, Institute for Computing Science,
University of Texas at Austin, Austin, Tex~s, August 1987.

8. 3 Strother Moore. A mechanically verified language implementation. Journal of
Automated Reasoning, 5(4):493-518, December 1989. Also published as CLI Tech-
nical Report 30.

9. Warren A. Hunt Jr. and Bishop Brock. A formal HDL and its use in the FMg001
verification. Proceedings of the Royal Society, April 1992.

10. Matthew Wilding. Proving Matijasevich's lemma with a default ~rithmetic strat-
egy. Journal of Automated Reasoning, 7(3), September 1991.

11. Matthew Wilding. A verified aim strategy. Internal Note 249, Computational
Logic, Inc., November 1991.

12. Matthew Wilding. A proved application with simple real-time properties. Techni-
cal Report 78, Computational Logic, Inc., October 1992.

A c k n o w l e d g m e n t s : I thank Bill Bevier and J Moore for many very valuable
suggestions during this project, and David Goldschlag, Chris Rath, Bill Young,
and three anonymous referees for reading drafts of this paper. This work was
supported in part at Computat ional Logic, Inc., by the Defense Advanced Re-
search Projects Agency, ARPA Order 7406. The views and conclusions contained
in this document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of CornputationM Logic,
Inc., the Defense Advanced Research Projects Agency or the U.S. Government.

