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Abstract .  ~re propose to  apply the verification techniques available for 
Timed Graphs [ACD90], and particularly the symbolic model-checking algo- 
rithm of [HNSY92], to the Argos [Mar92] synchronous language. We extend 
the language with a single delay construct that allows to express watchdogs 
and timeouts, at any level in the parallel or hierarchic structure of a pro- 
gram. We define the semantics of this extended language in terms of Timed 
Graphs, and show that it is a "convenient" extension of the pure Argos syn- 
chronous semantics. Indeed, for discrete time, the two semantics coincide. 
The Timed Graph semantics can be viewed as a continuous time semantics 
for Argos. We extend the Argos compiler and connect it to the KRO.~OS tool 
which implements the abovementioned model-checking algorithm. 

1 Introduction 

The synchronous languages for real-time systems, like Lustre [CHPP87], Esterel 
[BG88, BG92], Signal [GBBG85], Statecharts [Har87] and Argos [Mar92] tradition- 
ally deal with multi/orm time. In particular, time is seen as an ordinary input of the 
system, which may count meters as well as seconds. As a consequence, a timeout 
structure implies counting the occurrences of a particular input event. The syn- 
chronous languages are compiled into labeled transition systems. Verification may 
be performed on this compiled form, applying model checking techniques, or ab- 
stractions and comparisons modulo a well chosen equivalence relation. However, the 
kind of property that  may be verified in this context deals with qualitative aspects of 
time only, i.e. with ordering of inputs and outputs. Nothing can be expressed about 
the  actual values of the delays~ for instance. Indeed~ there are essentially two ways of 
compiling a t imeout  structure: the different values of the counter, up to the bound 
used in the program, can be expanded into states; or the counter may be compiled 
into a runtime variable. The first solution gives rise to state explosion due to the 
values of the delay bounds; the second solution solves this problem, but the usual 
verification techniques cannot deal with runtlme variables, and can only be used to 
verify time-independent properties on the control structure of the program. 

On the other hand, Timed Graphs [ACD90] have been introduced, that  allow 
to represent time in automata,  in a very concise way. A Timed Graph is an au- 
tomaton, extended with a finite set of real-valued clocks. Verification may be per- 
formed on Timed Graphs using model checking techniques. An algorithm is proposed 
in [ACD90]. A symbolic model checking algorithm for TCTL [ACD90] (a real-time ex- 
tension of the branching-thne logic CTL) is described in [HNSY92]. 



348 

Timed Graphs cannot be used directly as a specification formalism, and it is 
interesting to define the translation of a real-time language or formalism into Timed 
Graphs. [NSY91] describes the translation of the algebra ATP. 

In this paper, we propose to translate Argos into Timed Graphs. This language 
has a small set of powerful constructs, that allows the description of a complex 
system as a composition of automata.  In particular, a single construct called refine. 
ment is used to express exceptions, interruptions, suspensions, etc..This construct 
introduces hierarchy in state/transition-based descriptions of reactive systems, and 
is related to the notion of macro-state in Statecharts. The ability of this single con- 
struct to describe all these control structures strongly relies on the synchronous 
communication mechanism between the components involved in a refinement. 

By allowing delays to be attached to the states of the basic automaton compo- 
nents, we allow the expression of timeouts and watchdogs and a readable merge of 
these constructs with the other control structures of the language. 

The delay construction could be introduced as a macro-notation, which means 
that its semantics would be defined formally by the syntactic translation of a tem- 
porized Argos program into a "pure" Argos program. This could be done by adding 
a timer component for each temporized state. A timer component is an aatomaton 
which has one state for each possible value of the counter (between 0 and the bound 
which appears in the program). The original program has to be modified, in order to 
synchronize the timer components with the entering and leaving of the temporized 
states. A timer counts the occurrences of a special input event. Bu t  this makes sense 
only ff we consider discrete time. 

The aim of this paper is to define the structural translation of a temporized 
Argos program into a Timed Graph, applying a slightly modified version of the 
usual Argos semantics. The idea is to define the translation of a basic automaton 
component with temporized states into a Timed Graph, and then to define the 
semantics of the Argos constructs as operators on timed graphs. The Timed Graph is 
built in such a way that a discrete interpretation of it would give a labeled transition 
system B2, and B2 is bisimilar to B1 produced by the usual Argos semantics for the 
pure program where the macro-notations are expanded. 

Forgetting about the discrete time semantics of Argos, we can see the macro- 
notation as a built-in feature, and take the semantics in terms of Timed Graphs as 
the definition of the language. 

Section 2 recalls the constructs of the Argos language. Section 3 gives the formal 
semantics of pure Argos, the semantics in terms of Timed Graphs, and the compar- 
ison between the two. Section 4 deals with the verification of timing properties. Tge 
Argos compiler has been modified to allow the generation of Timed Graphs, and we 
use the KRONOS too1 [NSY92] based upon the ideas of [HNSY92] to verify timing 
properties expressed in TCTL. Section 5 is the conclusion. 

2 T h e  A r g o s  c o n s t r u c t s  

In this section, we recall the constructs of the Argos language, by commenting a 
simplified version of the reflex game system. The complete description of the example 
may be found in [BG92]. A more detailed presentation of the Argos language may 
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be found in/Mar92]. Detailing the behaviour of the program and the semantics of 
the Argos constructs is beyond the scope of this paper. Section 3 gives a simplified 
version of the Argos semantics (without error detection). 

The program of Fig. 1 describes a system whose inputs are: onof f ,  co in ,  
ready ,  s top ,  go and whose outputs are: l~mpON, lampOFF, f lashTILT,  FlashGO, 
s outG. The machine has to be started with input onog~. Then a coin must be 
inserted (input coin). Then two users may play a reflex game: when the first player 
(P1) is ready, he presses ready. (If he does not press it within L time units, the game 
ends). A lamp at the back of the machine is switched on, and the second player (P2) 
has to press the go button. (If he does not press it within L' time units, the machine 
reacts as if he had pressed it). When P2 presses the go button, another lamp flashes 
at the front of the machine, and P1 must press the s top  button as fast as he can. 
Then the game ends. (It also ends if P1 does not press s top  within L' ~ time units). 

If P1 presses s top  before the go lamp flashes~ or exactly at the same instant~ the 
game ends and the t i l t  lamp flashes. In the Argos program of figure 1, the reader 
should first ignore the events  inG, outG, which will be explained in 4. Moreover, 
the program does not describe the reflex time measure itself, but only the control 
structure of the game. 

The main structure of the program is a two-state automaton: OFF and t~N. The 
ON state is refined by another two-state automaton: Game0ver and Game0n. Finally, 
the GaraeOn state is refined by the parallel composition of two automata .  These two 
components represent the two players, s ta r t~  end~ exs and e r r o r  are local to the 
process refining ON. 

The transition labels are of the form: input/output .  Negation of events is de- 
noted by overlining. The Argos communication mechanism is the synchronous broad- 
cast of Esterel. When the system reacts to an external input, it may give rise to 
several transitions~ in different automata,  which are simultaneous. The components 
of a parallel composition or refinement operation may communicate by synchronous 
broadcast, if the output of one of them is the input of another one. 

When the system enters a refined state~ the refining subprogram is started in its 
initial state (denoted with an arrow without source), Leaving a refined state X "kills 
the refining program P. It may be done by an interruption, or by the termination of 
P. In this case, P emits an event to which the automaton reacts by leaving X. 

The 0N state can only be left with input onoff .  This event behaves as an 
interruption of the whole ON behaviour. 

The Game0n s ta te  may be left in three ways: either the game ends normally, 
after P1 has pressed stop: one of the parallel components emits ex i t ;  or the same 
component emits e r ro r ,  in one of the error situations listed above. In these two 
cases, the Game0ver/Garae0n automaton leaves state Game0n and emits lamp0FF to 
switch the lamp off. In case of an error, it also emits :flashTILT. Finally~ Game0n 
may be left because the machine is switched off with input onoff .  

T h e  t i m e d  cons t ruc t :  the state WI~ (resp. WS, Wait) is temporized by the delay 
L (resp. L ' ' ,  L' ) written between brackets. It has an outgoing transition whose label 
is replaced by a square box. This is the timeout transition. The intuitive semantics 
is as follows: once a temporized state is entered, it must be left before the indicated 
amount of time has elapsed. The program can leave the state by taking a "normal" 
transition, or has to take The special timeout transition, when the delay expires. The 
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Fig. 1. The reflex game 

example shows timeouts only but the timed construct may be used to implement a 
variety of timed constructs taken from other languages. A watchdo9 of delay d on a 
subprograal P is described by refining a state X by P and temporizing X by d. 

3 F r o m  t e m p o r i z e d  A r g o s  p r o g r a m s  t o  T i m e d  G r a p h s  

We first give the semantics of "pure" Argos~ in terms of input/output-labeled tran- 
sition systems. Then we extend this model with timers. We  obtain a form of Timed 
Graphs where the transition labels have additional actions, as in [NSY91]. These 
actions are used to apply the semantics of the Argos contructs to Timed Graphs. 

3.1 Syntax 

We consider a globalset of event~ ct = {a, b, c, . . .} . .~(a) is the set of monomial8 with 
variables in o. Negation is denotedby overlining and, for a monomial m E .M(a) = 
al An2 A ... A an A bl A b2 A.. .  A b, we denote by m + the set {al ,az , . . .an}  and by 
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m -  the set {bl,b2 .... ,bp}. We write m ~ fa].se iff m + A m -  = 0. The restriction 
miX] of a monomial m to a subset X C_ ~ is defined by: ( m [ X l )  + = m + n X and 

= n x .  

"Pure" Argos  p r o g r a m s  
An automaton is a tuple A = (~, q0, T) where Q is a set of bozes, q0 is the initial 
box and T C Q • .A/I(o~) • 2 (x • Q is the set of transitions. A program P E P is 

of the form: P ::= RA(R1,... ,Rn) I PII P I p'V. R ::-- P I NIL. Each automaton 
A --- (Q, qo, T) defines a parameterized refinement operator RA(), whose arity is Iql. 
To relate a box in Q to its refining program, we identify the set ~ to the interval 
[1..IQ[]. Then RA(R1,. . . ,Rn) is a program made with the automaton A, the box i 
being refined by Ri. The Ri may be programs or the special value NIL, which means 
that the box is not refined. [I denotes parallel composition; overlining denotes local 
event declaration (Y C_ ~). 

T e m p o r i z e d  Argos  p r o g r a m s  
The automata of a temporized Argos program are of the form: ~ ,  q0, T~ 7"), where 

�9 " �9 �9 �9 �9 e ~ �9 Is the set of boxes, q0 Is the mltlal box, T E Q •  x 2  •  
transitions. The input part of the label is an element of Af(r - M (o 0 U {to} ( to for 
t~meout). 7" : Q ---, lid" tJ {-I-or} is the function which expresses the temporization 
of boxes. T(q) = + ~  if the box is not temporized. The programs have the same 
syntax as before. 

3.2 T h e  semant ics  of  pu re  Argos  p r o g r a m s  

We consider a version of ARGOS without error detection. The models we produce 
may be nondeterministic and/or  nonreactive. However, for correct programs, the 
semantics given below coincide with the one detailed in [Mar92]. The semantics of 
pure ARCos programs is given by the function ,5: P .-, ~olts where Eolts is the set 
of input/output.labeled transition systems. Such a system is of the form (Q, qo,T) 
where Q is a set of states, qo �9 Q is the initial state, T �9 Q x .~[(c~) x 2 c~ x Q is 
the set of transitions. A transition t = (qs, m,o, qt) will be denoted by q, role 'qt 
in the following. S is defined in a structural way. It is extended to NIL. For a correct 
program P, the transition system S(P)  is reactive, which means: Vq E Q, Vm E 
./Vt(O'), 3q'.o s.t. q m/o_:q, (sometimes q' = q and o = 0). 

Para l le l  compos i t i on  
Let S(Pi) = (Qi, qoi,Ti) be the semantics of program Pi, for i E {1,2}. 
Then `5(PlIIP2)= (Q, IIQ2,qo, Ilq02,T') with Q,IIQ2 = {qallq2,qa �9 Qx,q2 e Q2} 
a n d T '  is defined from 2"1,2"2 by the following rule: 

ql ' m,/o~ ,q~, q2 ,-n.~/o2 ,q~, rn.l Arn.2 ~ - f a l s e  
[P pure] 

The two components always react together. But one of them may take an empty- 
output loop. Note that, if S(P1) and `5(P2) are reactive, then `5(PIHP2) is too. 
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Encapsu la t ion  

Let ~ (P)  = (Q, q0, T) be the semantics of a program P. Then S ( P  i~) = ( ~ ' ,  q-~, T I) 

with QY = {qY, q E Q} and T'  is defined from T by the following rule: 

q m/o q,, m + t 3 y C _ o A r n _ A Y t 3 o =  0 

q"-~ ,,,[a-Yl/o-v ,q,r" 
[I pure] 

This rule expresses the synchronous broadcast mechanism. Taking a program P 
whose transition labels contains the elements of Y both as inputs and outputs, 
it keeps only those transitions which correspond to correct cooperations between 
the components: the events that are positively tested in the input part have to be 
emitted (m + A Y _C o) and the events that are negatively tested have not to be 
emitted ( m-  f'l Y t3 o =  0). Moreover the elements of Y are hidden. 

Re f inemen t  
Let ,..q(Ri) = (Qi, qoi, Ti) be the semantics of programs RI,..., R , .  
Then S(R(q,qo,r)(R~ ...... R2)) = (Q', q', T')  with: 

Q' = {R(Q,qo,z,T)(Yl,...,yn),X e Q, yi e Qi for i e [1,n]} 
q' = R(Q:qD,qo,T) ( qOl , ..., qo, ) 

and T I is defined from T, T1, ..., Ta by the following rules: 

T1"12/O2 ~ q. t  (qc, ml ,ol ,qd)  6 T, re "-e, ml Am2 ~ false 
JR1 pure] 

frl 1Al"tl  2 / O l  t . Jo  2 ~ [ 
R(Q,qo,qc,r) (rl, ...,re, ..., rn) " ~M~(Q,qo,qd,r)tq01, .,., qon) 

nonreact(qc, m2,T) ,  re m~/~ 
JR2 pure] 

R(q,qo,q,,T)(rl ..... re, ..., rn) m~/o; , RcQ,q0,qo,r)(rl,...,re ..... r , )  

where: nonreact(qc, m2, T) r ~I ml  s.t. (3qd, ol ,(q~,ml,o],qd) E T and ml A 
m2 # f a l s e )  and $(,~]L) = ({NIL},mL, T) where T is defined by: NIL m/$ ,NIL. 

i 

A state of the behaviour has the form: q ::= qllq ]qY I R(q,q0,q~ �9 
r ::= q I NIL. A box B is said to be active in a state q iff active(B, q): 

active(B, ql IIq2 ) 

active(B, qY ) 
active(B, R(q,q o,qr (rl, ..., re,...; r ,  )) 

active(B, .~IL) 

= active(B,ql) V active(B,q~) 

= active(B,q) 
= (B = qc) v ac t ive(B,  to) 
= false 

All states of the behaviour are such that the subprograms refining inactive states 
are set to their initial state. (this is due to the general reinitialization of the refining 
subprograms in [R1 pure]). Hence the states are built in a canonical form, and the 
behaviour is minimal in this sense. 
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3.3 The semantics of temporized Argos programs 
in terms of Timed Graphs 

The semantics of temporized ARGOS programs in terms of Timed Graphs is given 
by the function $1: ~t ~ A T ~  where ~)t is the set of temporized Argos programs 
and ~4T~ is the set of Action Timed Graphs. The Action Timed Graphs we use here 
are of the form (Q, q0, T, .~', X) where Q is a set of nodes, qo E Q is the initial node, 
X is a set of integer variables called timers, T C Q x C(X) x Ad(ol) U {EMPTY} X 
2 a X 7s x Q is the set of transitions. C(X) is the set of boolean expressions 
built from the variables of X foUowing the grammar: c ::= z < k [ z = k where 
k is an nonnegative integer constant and z E X (timed graphs allow more general 
conditions), R A ( X )  is the set of reset actions. A reset action r E R A ( X )  is a subset 
of X, which contains the variables to  be reset When the transition is taken. The 
other variables are unchanged. A transition t -- (qs, C, m, o, r, qt) will be denoted by 
qs c. m/o "~qt  in the following..~" : Q - -*  r  gives the labeling of nodes by 

invariant properties. 

P r i n c i p l e  of  t he  t r a n s l a t i o n  
We consider a global set of real variables X. We suppose that all the boxes of the 
basic automaton components are distinct and that  there exists a one-to-one function 
var which associates an element of X to each automaton box. Conversely, boz(z), 
for x E X. ~ves the automaton box to which the timer z is attached. ( When a 
box is not temporized, the bound is +0r This wiU introduce conditions of the form 
x < + ~  (resp. x = +oc) in the timed graph. These conditions are replaced by t r u e  
(resp. fa2se)  and the variable x never appears in the timed graph.) 

The idea is to do the following, for each temporized box: 

Argos Action Timed Graph 
/02 resets 

'"  vat(A) - J v a r ( A )  <d ~ . ~ A  
- f  "~ ~ r~ )=d) EMPTY/O2 

m l ~ ~ A [  d] J ~ ~ ~ . . . . . .  
(var(A)<d) ml /o l . . .  

The input part  of a transition label may be m E .M(a)  or a special input denoted 
by EMPTY. In the sequel, a transition is said to be temporal if the input part  of 
its label is EMPTY, nontemporal otherwise, The EMPTY input is used as a marker 
to identify the timeout transitions which are taken without external input, and to  
avoid combining them with nontemporal transitions, when applying the semantics 
of the Argos constructs (see [P tempo] and [R* tempo] below). Note that  a temporal 
transition may have outputs. The S '  semantic function is defined in such a way that 
S(exp(e,))  = D(S'(Pt))  where: 
�9 gxp is the expansion of the d e l l '  construct, considered as a macro-notation: 
s is a pure Argos program containing a special "time" event X; 
�9 We need to compare S(s ~ which is a labeled transition system contain- 
ing X, to S'(Pt) - -  which is a timed graph, where time is implicit. For this purpose, 
we use a "discrete time" semantics D of the Timed Graphs we obtain as models of 
the temporized Argos programs. For a timed graph atg, :P(atg) will be a labeled 
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transition system containing X. 
�9 = is the strong bisimulation. 

The expansion of t he  mac ro -no t a t i on  
The macro-notation may be expanded in such a way that the pure Argos program 

corresponding to Pt is of the form: Pml]CIlIC~[I...IIC, Y where the Ci are timer com- 
ponents (one for each temporized box in Pt) and Pm is obtained from Pt by adding 
some communication with the timer components (the boxes and transitions axe not 
modified. The transition labels are modified). The timer component Cx for a box 
X[d] is the automaton (Q = [0, d - 1], q0 -- 0, T) where: 
T = {(i, x A r - " C ~ x / $ , i +  1),(i, r ese tx /O,0) , i  < d - 1 }  U 
{(d - I, ~set ^ ~/0, 0), (d - I, X/~ox, 0)}. 
Y ---- {resetu, r u e [1, hi}. X is the external event introduced to model discrete 
time; we consider that the time event never occurs simultaneously with another input 
event: in the global behaviour, the input part of the transitions is X or m E A4(c~). 
The timer sends tox to Pm when it expires. It is reset (with resel;x) when the box 
X to which it is attached becomes active. When this box is not active, the timer is 
not set to an idle value: it loops, counting time events modulo its bound, sending 
timeout events which are ignored. 

The discrete semantics of Action Timed Graphs 
We denote by .~ E N" a waluation of the ,~riables in X = {xl, ...x,,}. X[i] is the 
value of Zi in .~. For k e N, k e N" is defined by k[i] = k, V ie  [1, hi. 
/)((Q, qo, T,Y,X)) = (Q x ~",(qo,6),T') and T' (denoted by ---,) is defined by: 

~(q)(2 + f) 
(q,X) ~/~;(q,:: + f) 

[D1] 

q C. EMPTY/o .r , _t C t ~  
,,, _.q, ~ +i') 

(q,)~) x/o :(qf, r(X~- 1)) 
[D2] 

q ~.m/o., ' m  c(•) ~.q ~ ~ EMPTY~ 

(q,2) "/~ . ,~q,r(2)) 
[Da] 

, [ 0  if xi E r 
where r(]~')[i] - [ ~'[i] otherwise 

T h e  bis imulat ion 
With this macro-expanslon and this discrete semantics for timed graphs, we have: 
S(~xp(Pt)) = D(S'(Pt))) where -- is a strong bisimulation. We write S(s = 
(QI.qo1,T1), ~)(S'(Pt)) = (Q2,qo2, T2) Recall that P~ = Exp(Pt) h a s  the form 

Pm]]CI[]C2H...IICn Y, where Pm and Pf have the same structure. So the states in 

Q1 have the form qHclllc~l[...llc, Y where q can be considered as a configuration of 
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boxes in Pt. On the other hand, the nodes of atg = S'(Pt)  are the configurations of 
boxes in Pt. Hence a state in Q2 has the form (q, ~ )  where ~ is a valuation of the 
timers and q is a configuration of ]at. Let 7~ C Q1 x Q2 be defined by: 

r~(qllcall~2ll...lleJ,(q',X)) r q = q ' ^  (active(box(xd, q) ~ c~ = .r 
which means that the states correspond to the same configuration q of Pt and that 
the valuation ~ and the timer components C1, ..., C ,  coincide on the relevant timers, 
i.e. the ones attached to the active boxes of q. S ~ is built in such a way that T~ is a 
bisimulation, i.e. (q01, q02) E ~ and 

m{o ,q~ and (ql,q~) e T~: 
(ql,q~) E T~ ==r ql ,n/o 

q, ,q~ :=~ 3q; s.t. q, ,q~ and (ql,q2) e T~. 

Translating paral lel  compos i t ion  
Let S'(Pi)  = (Qi, qoi, Ti, ~'i, Xi)  be the semantics of program Pi, for i E {I, 2}. 
Then s'(PallP~) -- (qlllO=,qotllqo2,T',),qallq2 �9 )'a(qa) ^ ~(q~),Xx u )(2) with 
Q~I[Q2 = {q~llq~,q~ E Q~,q2 E Q2} and T'  is defined from T~,T2 by: 

~1 Ct. 'nl/Ol .A1 . t  C=. rn=[o~ .A2 , t 
. . . . . . . . . .  --~.' ~tl ~ q2 -.r 

(ml = m2 = EMPTY) V (m I # EMPTY A m2 # EMPTY A (ml A m2 # false)) 
ql[lq2 c,^c~, ml^rn2/oluo: .AtUA2 ~.q, Iq' 

. 1 2 

[Pt] 

Note that XI ~nd X.~ are disjoint. CI A C2 cannot be the : false function, since the 
two functions have disjoint variable sets. Temporal (resp. nontemporal) transitions 
can be taken together. The two cannot be merged. 

Translating encapsulation 

Let S ' (P)  = (Q. qo,T, 5 r , X )  be the semantics of a program P. Then SI (P  Y') = 

�9 (Q~'--7, qoY,T',Aq"-P-.Y=(q),X) with Q'Y = {q-'~,q E Q} and T' is defined from T by: 

q c. m/o .A t ___yq , m # EMPTY, m + N Y C_ o h m -  N Y f'l o = 0 
[It1] 

q~---z c. m t & - y l / o - Y  .A d, q,Y 

q C. E M P T Y / o  .A t :. ~q, Y f 3 o = 0  

m 

q-"~" C. E M P T Y / o  .A q tY  
[zt2] 

Translating refinement 
Let S'(Ri)  = (Qi, qoi,Ti,~'i ,Xi) be the semantics of programs R1, . . . ,R , .  Then 
St(R(Q,qo,T,T) (R1, ..., R2 )) = (Q', q', T',  5 v', X')  with: 

Q' = {R(q,qo,=,r,7)(yl,. . . ,yn),x e Q, yi e Qi for i e [1, n]} 
q' = Req,qo.qo,r.w)(q0a ..... qa,) 
Y '  = AR(Q,qo,z,r,T)(yl .... , y , )  �9 (var(x) < T(x ) )  A .~,(y=) 
x '  = UL~ xi  u {vat(x),= e Q,~r(=)# + ~ }  
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and T '  is defined from T, TI ..... Tn by the following rules. [Rlat], [Rlbt] : both the 
automaton and the refining subprogram react. In [Rlat] the transition of the au- 
tomaton is not a temporal transition; in [Rlbt] it is. As for the parallel composition, 
temporal and nontemporal transitions cannot be merged. 

(qc, nl ,ol ,qd) E T, re C2.,n~/o2.A2 . ,  ~wC, 

m2 ~ EMPTY A (nl A m2) # false A nl # to 
R(Q,qo,q,,T,T)(rl,...,rn ) c2^(var(q~)<~r(c)), m^m2/o~uo2 .A2uX~u{var(q~)} , [Rlat] 

R(Q,qo ,qd,T,T) (q01, ..., qon ) 

(qc, tO, Ol,qd) E T, rc c:. EMPTY/o~ .A~ . ,  :-~1 C 

R(Q,qo,q~ ..., r , )  r EMPTY/o~u~ .a~uX~u{var(qd)}~. [Rlbt] 

R(Q,qo,qd,T,T) (q01, ..-, qon ) 

[R2t] : only the refining subprogram reacts. It can be either a temporal or a non- 
temporal transition. 

(m2 -- EMPTY) V (m2 ~ EMPTY A nonreact(qc, m2,T)),rc c:. m~/o2 .a~ +, 
[R2t] 

R(Q,qo,q,,T,T ) (ri, ..., rc, ..., rn ) C;A(var(q+)<T(c)). rn;/o2 .A~ ~ 

R(q,+o,q,,r,r)(~,..., ~' . . . .  , ~ . )  

where: nonreact(qc, m~,T) r /3m 1 s.t. (3qd, Ol,(qe, ml,Ol,qd) e T and rn 1 A 
m2 # false) 
3'(NIL) = ({NIL}, NIL, T, Ax �9 NIL,{~), where T is defined by: NIL true. m/r .r .. ..y NIL 

4 V e r i f i c a t i o n  o f  r e a l - t i m e  p r o p e r t i e s  

We propose to veri~" the following quantitative real-time property on the reflex 
game program: a reflex measure never takes more than L + L '  + L" units of time. 
Expressed ill terms of program boxes,, the property is: the system never spends more 
than L + L' + L" units of time in box GameOn. 

• and outG have been added to make She entering and leaving of the GameOn 
box observable in the global behaviour of the program. To obtain the labeled Timed 
Graph of Fig. 2, the temporized reflex game has been compiled into a Timed Graph, 
according to the ,9' semantic function; and then abstracted. All transition labels 
whose output sets contain inG (resp. outG) have been replaced by the atomic label 
inG (resp. outG). Note that no transition outputs both of them. The other transitions 
are labeled with an invisible action tau. In TCTL, the property may be expressed by: 
V n ( a f t e r  (s ==~ VO<LeL,+L. a f t e r  (outG)) where a f t e r  (x) characterizes the 
set of states reached by executing a transition labeled by x. 

The Argos compiler [MV92] has been extended to implement the 8 '  semantics. 
A prototype without error detection may be used to connect the AKGONAUTE de- 
velopment environment to the KRONOS tool. To verify the above property; one has 
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to replace the constants L, L' and L" by actual integer values, and to write the 
property in an appropriate syntax. KRONOS takes the timed graph and the property 
as its inputs, and produces a symbolic description of the set of states which verify 
the property. The main point is that  the complexity of the computation does not 
depend on the actual values of the constants. 

~ ~  outG 

/ 
z := 0 = L " )  ou 

= L> / / /  ';,/.g,;7-- / 
{z :=0} " ' ' " l i , / Y  t~ L - - '  , . . /~ ' :  = L') tau 

(: < z') {y -= o} 

Fig. 2. The abstracted Timed Graph of the reflex game 

< L") 

Remark: KRONOS assumes that time is continuous. It is adequate for proving 
properties when the delay construct of Argos is considered to be a new essential 
feature: S '  may be viewed as a continuous time semantics for Argos. However, if we 
consider the delay construct as a macro-notation, its interpretation is discrete. The 
properties proved for continuous time are not  necessarily true for discrete time, and 
the user should be aware of this problem when thinking of the delay construct as a 
discrete time construct. However, for an interesting class of properties called safety 
properties, a property which is true for continuous time is also true for discrete time. 
The property we gave as an example is a safety property. 

5 Conclusion 

The Argos synchronous language for real-time systems may be viewed as a set of 
constructs that  allows to describe a complex system as a composition of automata.  
A single construct is used to introduce hierarchy. It is used for describing interrupts, 
exceptions, suspensions... In this paper, we showed that  a delay construct can be 
added to the language in a very simple way. The idea is to associate time bounds 
with the states of the basic automaton components. This simple extension allows 
the description of timeouts and watchdogs, merged with the other control struc- 
tures of the language in a very clean way. The semantics of this extended Argos is 
a slightly modified version of the semantics presented in [Mar92]. The models are 
Timed Graphs, and tile Argos constructs are extended to such objects. The Argos 
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compiler has been extended in order to produce Timed Graphs, and the KEONOS 
tool may be used to verify quantitative real-time properties on Argos programs. 

Although Argos, being a synchronous language, naturally deals with multiform 
time, the approach presented here only deals with monoform time. One of the time 
scales used in a program is distinguished, and used to apply the delay construct. Even 
if the approach cannot be extended to multiform time in a simple way, due to the kind 
of algorithms applied to timed graphs, the benefit for a development environment like 
ARGONAUTE is unquestionable. For an approach which allows to deal with multiform 
time, see "Delay analysis in synchronous programa" by N. Halbwachs, same volume. 
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