
Verifying quantitative real-time properties
of synchronous programs

M. Jourdan, F. Maraninchi and A. Ollvero
{j ourdan [maxanJ.nch:i.] o l ivero}~imag, f r

VERIMAG, B.P. 53X 38041 Grenoble Cedex - FRANCE

Abstract . ~re propose to apply the verification techniques available for
Timed Graphs [ACD90], and particularly the symbolic model-checking algo-
rithm of [HNSY92], to the Argos [Mar92] synchronous language. We extend
the language with a single delay construct that allows to express watchdogs
and timeouts, at any level in the parallel or hierarchic structure of a pro-
gram. We define the semantics of this extended language in terms of Timed
Graphs, and show that it is a "convenient" extension of the pure Argos syn-
chronous semantics. Indeed, for discrete time, the two semantics coincide.
The Timed Graph semantics can be viewed as a continuous time semantics
for Argos. We extend the Argos compiler and connect it to the KRO.~OS tool
which implements the abovementioned model-checking algorithm.

1 Introduction

The synchronous languages for real-time systems, like Lustre [CHPP87], Esterel
[BG88, BG92], Signal [GBBG85], Statecharts [Har87] and Argos [Mar92] tradition-
ally deal with multi/orm time. In particular, time is seen as an ordinary input of the
system, which may count meters as well as seconds. As a consequence, a timeout
structure implies counting the occurrences of a particular input event. The syn-
chronous languages are compiled into labeled transition systems. Verification may
be performed on this compiled form, applying model checking techniques, or ab-
stractions and comparisons modulo a well chosen equivalence relation. However, the
kind of property that may be verified in this context deals with qualitative aspects of
time only, i.e. with ordering of inputs and outputs. Nothing can be expressed about
the actual values of the delays~ for instance. Indeed~ there are essentially two ways of
compiling a t imeout structure: the different values of the counter, up to the bound
used in the program, can be expanded into states; or the counter may be compiled
into a runtime variable. The first solution gives rise to state explosion due to the
values of the delay bounds; the second solution solves this problem, but the usual
verification techniques cannot deal with runtlme variables, and can only be used to
verify time-independent properties on the control structure of the program.

On the other hand, Timed Graphs [ACD90] have been introduced, that allow
to represent time in automata, in a very concise way. A Timed Graph is an au-
tomaton, extended with a finite set of real-valued clocks. Verification may be per-
formed on Timed Graphs using model checking techniques. An algorithm is proposed
in [ACD90]. A symbolic model checking algorithm for TCTL [ACD90] (a real-time ex-
tension of the branching-thne logic CTL) is described in [HNSY92].

348

Timed Graphs cannot be used directly as a specification formalism, and it is
interesting to define the translation of a real-time language or formalism into Timed
Graphs. [NSY91] describes the translation of the algebra ATP.

In this paper, we propose to translate Argos into Timed Graphs. This language
has a small set of powerful constructs, that allows the description of a complex
system as a composition of automata. In particular, a single construct called refine.
ment is used to express exceptions, interruptions, suspensions, etc..This construct
introduces hierarchy in state/transition-based descriptions of reactive systems, and
is related to the notion of macro-state in Statecharts. The ability of this single con-
struct to describe all these control structures strongly relies on the synchronous
communication mechanism between the components involved in a refinement.

By allowing delays to be attached to the states of the basic automaton compo-
nents, we allow the expression of timeouts and watchdogs and a readable merge of
these constructs with the other control structures of the language.

The delay construction could be introduced as a macro-notation, which means
that its semantics would be defined formally by the syntactic translation of a tem-
porized Argos program into a "pure" Argos program. This could be done by adding
a timer component for each temporized state. A timer component is an aatomaton
which has one state for each possible value of the counter (between 0 and the bound
which appears in the program). The original program has to be modified, in order to
synchronize the timer components with the entering and leaving of the temporized
states. A timer counts the occurrences of a special input event. Bu t this makes sense
only ff we consider discrete time.

The aim of this paper is to define the structural translation of a temporized
Argos program into a Timed Graph, applying a slightly modified version of the
usual Argos semantics. The idea is to define the translation of a basic automaton
component with temporized states into a Timed Graph, and then to define the
semantics of the Argos constructs as operators on timed graphs. The Timed Graph is
built in such a way that a discrete interpretation of it would give a labeled transition
system B2, and B2 is bisimilar to B1 produced by the usual Argos semantics for the
pure program where the macro-notations are expanded.

Forgetting about the discrete time semantics of Argos, we can see the macro-
notation as a built-in feature, and take the semantics in terms of Timed Graphs as
the definition of the language.

Section 2 recalls the constructs of the Argos language. Section 3 gives the formal
semantics of pure Argos, the semantics in terms of Timed Graphs, and the compar-
ison between the two. Section 4 deals with the verification of timing properties. Tge
Argos compiler has been modified to allow the generation of Timed Graphs, and we
use the KRONOS too1 [NSY92] based upon the ideas of [HNSY92] to verify timing
properties expressed in TCTL. Section 5 is the conclusion.

2 T h e A r g o s c o n s t r u c t s

In this section, we recall the constructs of the Argos language, by commenting a
simplified version of the reflex game system. The complete description of the example
may be found in [BG92]. A more detailed presentation of the Argos language may

349

be found in/Mar92]. Detailing the behaviour of the program and the semantics of
the Argos constructs is beyond the scope of this paper. Section 3 gives a simplified
version of the Argos semantics (without error detection).

The program of Fig. 1 describes a system whose inputs are: onof f , co in ,
ready , s top , go and whose outputs are: l~mpON, lampOFF, f lashTILT, FlashGO,
s outG. The machine has to be started with input onog~. Then a coin must be
inserted (input coin). Then two users may play a reflex game: when the first player
(P1) is ready, he presses ready. (If he does not press it within L time units, the game
ends). A lamp at the back of the machine is switched on, and the second player (P2)
has to press the go button. (If he does not press it within L' time units, the machine
reacts as if he had pressed it). When P2 presses the go button, another lamp flashes
at the front of the machine, and P1 must press the s top button as fast as he can.
Then the game ends. (It also ends if P1 does not press s top within L' ~ time units).

If P1 presses s top before the go lamp flashes~ or exactly at the same instant~ the
game ends and the t i l t lamp flashes. In the Argos program of figure 1, the reader
should first ignore the events inG, outG, which will be explained in 4. Moreover,
the program does not describe the reflex time measure itself, but only the control
structure of the game.

The main structure of the program is a two-state automaton: OFF and t~N. The
ON state is refined by another two-state automaton: Game0ver and Game0n. Finally,
the GaraeOn state is refined by the parallel composition of two automata . These two
components represent the two players, s ta r t~ end~ exs and e r r o r are local to the
process refining ON.

The transition labels are of the form: input/output . Negation of events is de-
noted by overlining. The Argos communication mechanism is the synchronous broad-
cast of Esterel. When the system reacts to an external input, it may give rise to
several transitions~ in different automata, which are simultaneous. The components
of a parallel composition or refinement operation may communicate by synchronous
broadcast, if the output of one of them is the input of another one.

When the system enters a refined state~ the refining subprogram is started in its
initial state (denoted with an arrow without source), Leaving a refined state X "kills
the refining program P. It may be done by an interruption, or by the termination of
P. In this case, P emits an event to which the automaton reacts by leaving X.

The 0N state can only be left with input onoff . This event behaves as an
interruption of the whole ON behaviour.

The Game0n s ta te may be left in three ways: either the game ends normally,
after P1 has pressed stop: one of the parallel components emits ex i t ; or the same
component emits e r ro r , in one of the error situations listed above. In these two
cases, the Game0ver/Garae0n automaton leaves state Game0n and emits lamp0FF to
switch the lamp off. In case of an error, it also emits :flashTILT. Finally~ Game0n
may be left because the machine is switched off with input onoff .

T h e t i m e d cons t ruc t : the state WI~ (resp. WS, Wait) is temporized by the delay
L (resp. L ' ' , L') written between brackets. It has an outgoing transition whose label
is replaced by a square box. This is the timeout transition. The intuitive semantics
is as follows: once a temporized state is entered, it must be left before the indicated
amount of time has elapsed. The program can leave the state by taking a "normal"
transition, or has to take The special timeout transition, when the delay expires. The

350

~ o n o ~ / lampOFF,outG
onon f (OFF I -

FlashTilt, o u t ~ . - " ' ~ O v e r ~ II
f ~ ~ exit / lampOFF, II

~ s t o p ~ egn~ / ~ O N N

error/lampOFF, ~ -

.O,n,,O..,.../ . / . . . o . ~ II

n

Fig. 1. The reflex game

example shows timeouts only but the timed construct may be used to implement a
variety of timed constructs taken from other languages. A watchdo9 of delay d on a
subprograal P is described by refining a state X by P and temporizing X by d.

3 F r o m t e m p o r i z e d A r g o s p r o g r a m s t o T i m e d G r a p h s

We first give the semantics of "pure" Argos~ in terms of input/output-labeled tran-
sition systems. Then we extend this model with timers. We obtain a form of Timed
Graphs where the transition labels have additional actions, as in [NSY91]. These
actions are used to apply the semantics of the Argos contructs to Timed Graphs.

3.1 Syntax

We consider a globalset of event~ ct = {a, b, c, . . .} . .~(a) is the set of monomial8 with
variables in o. Negation is denotedby overlining and, for a monomial m E .M(a) =
al An2 A ... A an A bl A b2 A.. . A b, we denote by m + the set {al ,az , . . .an} and by

351

m - the set {bl,b2 ,bp}. We write m ~ fa].se iff m + A m - = 0. The restriction
miX] of a monomial m to a subset X C_ ~ is defined by: (m [X l) + = m + n X and

= n x .

"Pure" Argos p r o g r a m s
An automaton is a tuple A = (~, q0, T) where Q is a set of bozes, q0 is the initial
box and T C Q • .A/I(o~) • 2 (x • Q is the set of transitions. A program P E P is

of the form: P ::= RA(R1,... ,Rn) I PII P I p'V. R ::-- P I NIL. Each automaton
A --- (Q, qo, T) defines a parameterized refinement operator RA(), whose arity is Iql.
To relate a box in Q to its refining program, we identify the set ~ to the interval
[1..IQ[]. Then RA(R1,. . . ,Rn) is a program made with the automaton A, the box i
being refined by Ri. The Ri may be programs or the special value NIL, which means
that the box is not refined. [I denotes parallel composition; overlining denotes local
event declaration (Y C_ ~).

T e m p o r i z e d Argos p r o g r a m s
The automata of a temporized Argos program are of the form: ~ , q0, T~ 7"), where

�9 " �9 �9 �9 �9 e ~ �9 Is the set of boxes, q0 Is the mltlal box, T E Q • x 2 •
transitions. The input part of the label is an element of Af(r - M (o 0 U {to} (to for
t~meout). 7" : Q ---, lid" tJ {-I-or} is the function which expresses the temporization
of boxes. T(q) = + ~ if the box is not temporized. The programs have the same
syntax as before.

3.2 T h e semant ics of pu re Argos p r o g r a m s

We consider a version of ARGOS without error detection. The models we produce
may be nondeterministic and/or nonreactive. However, for correct programs, the
semantics given below coincide with the one detailed in [Mar92]. The semantics of
pure ARCos programs is given by the function ,5: P .-, ~olts where Eolts is the set
of input/output.labeled transition systems. Such a system is of the form (Q, qo,T)
where Q is a set of states, qo �9 Q is the initial state, T �9 Q x .~[(c~) x 2 c~ x Q is
the set of transitions. A transition t = (qs, m,o, qt) will be denoted by q, role 'qt
in the following. S is defined in a structural way. It is extended to NIL. For a correct
program P, the transition system S(P) is reactive, which means: Vq E Q, Vm E
./Vt(O'), 3q'.o s.t. q m/o_:q, (sometimes q' = q and o = 0).

Para l le l compos i t i on
Let S(Pi) = (Qi, qoi,Ti) be the semantics of program Pi, for i E {1,2}.
Then `5(PlIIP2)= (Q, IIQ2,qo, Ilq02,T') with Q,IIQ2 = {qallq2,qa �9 Qx,q2 e Q2}
a n d T ' is defined from 2"1,2"2 by the following rule:

ql ' m,/o~ ,q~, q2 ,-n.~/o2 ,q~, rn.l Arn.2 ~ - f a l s e
[P pure]

The two components always react together. But one of them may take an empty-
output loop. Note that, if S(P1) and `5(P2) are reactive, then `5(PIHP2) is too.

352

Encapsu la t ion

Let ~ (P) = (Q, q0, T) be the semantics of a program P. Then S (P i~) = (~ ' , q-~, T I)

with QY = {qY, q E Q} and T' is defined from T by the following rule:

q m/o q,, m + t 3 y C _ o A r n _ A Y t 3 o = 0

q"-~ ,,,[a-Yl/o-v ,q,r"
[I pure]

This rule expresses the synchronous broadcast mechanism. Taking a program P
whose transition labels contains the elements of Y both as inputs and outputs,
it keeps only those transitions which correspond to correct cooperations between
the components: the events that are positively tested in the input part have to be
emitted (m + A Y _C o) and the events that are negatively tested have not to be
emitted (m- f'l Y t3 o = 0). Moreover the elements of Y are hidden.

Re f inemen t
Let ,..q(Ri) = (Qi, qoi, Ti) be the semantics of programs RI,..., R , .
Then S(R(q,qo,r)(R~ R2)) = (Q', q', T') with:

Q' = {R(Q,qo,z,T)(Yl,...,yn),X e Q, yi e Qi for i e [1,n]}
q' = R(Q:qD,qo,T) (qOl , ..., qo,)

and T I is defined from T, T1, ..., Ta by the following rules:

T1"12/O2 ~ q. t (qc, ml ,ol ,qd) 6 T, re "-e, ml Am2 ~ false
JR1 pure]

frl 1Al"tl 2 / O l t . Jo 2 ~ [
R(Q,qo,qc,r) (rl, ...,re, ..., rn) " ~M~(Q,qo,qd,r)tq01, .,., qon)

nonreact(qc, m2,T) , re m~/~
JR2 pure]

R(q,qo,q,,T)(rl re, ..., rn) m~/o; , RcQ,q0,qo,r)(rl,...,re r ,)

where: nonreact(qc, m2, T) r ~I ml s.t. (3qd, ol ,(q~,ml,o],qd) E T and ml A
m2 # f a l s e) and $(,~]L) = ({NIL},mL, T) where T is defined by: NIL m/$,NIL.

i

A state of the behaviour has the form: q ::= qllq]qY I R(q,q0,q~ �9
r ::= q I NIL. A box B is said to be active in a state q iff active(B, q):

active(B, ql IIq2)

active(B, qY)
active(B, R(q,q o,qr (rl, ..., re,...; r ,))

active(B, .~IL)

= active(B,ql) V active(B,q~)

= active(B,q)
= (B = qc) v ac t ive(B, to)
= false

All states of the behaviour are such that the subprograms refining inactive states
are set to their initial state. (this is due to the general reinitialization of the refining
subprograms in [R1 pure]). Hence the states are built in a canonical form, and the
behaviour is minimal in this sense.

353

3.3 The semantics of temporized Argos programs
in terms of Timed Graphs

The semantics of temporized ARGOS programs in terms of Timed Graphs is given
by the function $1: ~t ~ A T ~ where ~)t is the set of temporized Argos programs
and ~4T~ is the set of Action Timed Graphs. The Action Timed Graphs we use here
are of the form (Q, q0, T, .~', X) where Q is a set of nodes, qo E Q is the initial node,
X is a set of integer variables called timers, T C Q x C(X) x Ad(ol) U {EMPTY} X
2 a X 7s x Q is the set of transitions. C(X) is the set of boolean expressions
built from the variables of X foUowing the grammar: c ::= z < k [z = k where
k is an nonnegative integer constant and z E X (timed graphs allow more general
conditions), R A (X) is the set of reset actions. A reset action r E R A (X) is a subset
of X, which contains the variables to be reset When the transition is taken. The
other variables are unchanged. A transition t -- (qs, C, m, o, r, qt) will be denoted by
qs c. m/o "~qt in the following..~" : Q - -* r gives the labeling of nodes by

invariant properties.

P r i n c i p l e of t he t r a n s l a t i o n
We consider a global set of real variables X. We suppose that all the boxes of the
basic automaton components are distinct and that there exists a one-to-one function
var which associates an element of X to each automaton box. Conversely, boz(z),
for x E X. ~ves the automaton box to which the timer z is attached. (When a
box is not temporized, the bound is +0r This wiU introduce conditions of the form
x < + ~ (resp. x = +oc) in the timed graph. These conditions are replaced by t r u e
(resp. fa2se) and the variable x never appears in the timed graph.)

The idea is to do the following, for each temporized box:

Argos Action Timed Graph
/02 resets

'" vat(A) - J v a r (A) <d ~ . ~ A
- f "~ ~ r~)=d) EMPTY/O2

m l ~ ~ A [d] J ~ ~ ~
(var(A)<d) ml /o l . . .

The input part of a transition label may be m E .M(a) or a special input denoted
by EMPTY. In the sequel, a transition is said to be temporal if the input part of
its label is EMPTY, nontemporal otherwise, The EMPTY input is used as a marker
to identify the timeout transitions which are taken without external input, and to
avoid combining them with nontemporal transitions, when applying the semantics
of the Argos constructs (see [P tempo] and [R* tempo] below). Note that a temporal
transition may have outputs. The S ' semantic function is defined in such a way that
S(exp(e,)) = D(S'(Pt)) where:
�9 gxp is the expansion of the d e l l ' construct, considered as a macro-notation:
s is a pure Argos program containing a special "time" event X;
�9 We need to compare S(s ~ which is a labeled transition system contain-
ing X, to S'(Pt) - - which is a timed graph, where time is implicit. For this purpose,
we use a "discrete time" semantics D of the Timed Graphs we obtain as models of
the temporized Argos programs. For a timed graph atg, :P(atg) will be a labeled

354

transition system containing X.
�9 = is the strong bisimulation.

The expansion of t he mac ro -no t a t i on
The macro-notation may be expanded in such a way that the pure Argos program

corresponding to Pt is of the form: Pml]CIlIC~[I...IIC, Y where the Ci are timer com-
ponents (one for each temporized box in Pt) and Pm is obtained from Pt by adding
some communication with the timer components (the boxes and transitions axe not
modified. The transition labels are modified). The timer component Cx for a box
X[d] is the automaton (Q = [0, d - 1], q0 -- 0, T) where:
T = {(i, x A r - " C ~ x / $, i + 1),(i, r ese tx /O,0) , i < d - 1 } U
{(d - I, ~set ^ ~/0, 0), (d - I, X/~ox, 0)}.
Y ---- {resetu, r u e [1, hi}. X is the external event introduced to model discrete
time; we consider that the time event never occurs simultaneously with another input
event: in the global behaviour, the input part of the transitions is X or m E A4(c~).
The timer sends tox to Pm when it expires. It is reset (with resel;x) when the box
X to which it is attached becomes active. When this box is not active, the timer is
not set to an idle value: it loops, counting time events modulo its bound, sending
timeout events which are ignored.

The discrete semantics of Action Timed Graphs
We denote by .~ E N" a waluation of the ,~riables in X = {xl, ...x,,}. X[i] is the
value of Zi in .~. For k e N, k e N" is defined by k[i] = k, V ie [1, hi.
/)((Q, qo, T,Y,X)) = (Q x ~",(qo,6),T') and T' (denoted by ---,) is defined by:

~(q)(2 + f)
(q,X) ~/~;(q,:: + f)

[D1]

q C. EMPTY/o .r , _t C t ~
,,, _.q, ~ +i')

(q,)~) x/o :(qf, r(X~- 1))
[D2]

q ~.m/o., ' m c(•) ~.q ~ ~ EMPTY~

(q,2) "/~ . ,~q,r(2))
[Da]

, [0 if xi E r
where r(]~')[i] - [~'[i] otherwise

T h e bis imulat ion
With this macro-expanslon and this discrete semantics for timed graphs, we have:
S(~xp(Pt)) = D(S'(Pt))) where -- is a strong bisimulation. We write S(s =
(QI.qo1,T1), ~)(S'(Pt)) = (Q2,qo2, T2) Recall that P~ = Exp(Pt) h a s the form

Pm]]CI[]C2H...IICn Y, where Pm and Pf have the same structure. So the states in

Q1 have the form qHclllc~l[...llc, Y where q can be considered as a configuration of

355

boxes in Pt. On the other hand, the nodes of atg = S'(Pt) are the configurations of
boxes in Pt. Hence a state in Q2 has the form (q, ~) where ~ is a valuation of the
timers and q is a configuration of]at. Let 7~ C Q1 x Q2 be defined by:

r~(qllcall~2ll...lleJ,(q',X)) r q = q ' ^ (active(box(xd, q) ~ c~ = .r
which means that the states correspond to the same configuration q of Pt and that
the valuation ~ and the timer components C1, ..., C , coincide on the relevant timers,
i.e. the ones attached to the active boxes of q. S ~ is built in such a way that T~ is a
bisimulation, i.e. (q01, q02) E ~ and

m{o ,q~ and (ql,q~) e T~:
(ql,q~) E T~ ==r ql ,n/o

q, ,q~ :=~ 3q; s.t. q, ,q~ and (ql,q2) e T~.

Translating paral lel compos i t ion
Let S'(Pi) = (Qi, qoi, Ti, ~'i, Xi) be the semantics of program Pi, for i E {I, 2}.
Then s'(PallP~) -- (qlllO=,qotllqo2,T',),qallq2 �9)'a(qa) ^ ~(q~),Xx u)(2) with
Q~I[Q2 = {q~llq~,q~ E Q~,q2 E Q2} and T' is defined from T~,T2 by:

~1 Ct. 'nl/Ol .A1 . t C=. rn=[o~ .A2 , t
. --~.' ~tl ~ q2 -.r

(ml = m2 = EMPTY) V (m I # EMPTY A m2 # EMPTY A (ml A m2 # false))
ql[lq2 c,^c~, ml^rn2/oluo: .AtUA2 ~.q, Iq'

. 1 2

[Pt]

Note that XI ~nd X.~ are disjoint. CI A C2 cannot be the : false function, since the
two functions have disjoint variable sets. Temporal (resp. nontemporal) transitions
can be taken together. The two cannot be merged.

Translating encapsulation

Let S ' (P) = (Q. qo,T, 5 r , X) be the semantics of a program P. Then SI (P Y') =

�9 (Q~'--7, qoY,T',Aq"-P-.Y=(q),X) with Q'Y = {q-'~,q E Q} and T' is defined from T by:

q c. m/o .A t ___yq , m # EMPTY, m + N Y C_ o h m - N Y f'l o = 0
[It1]

q~---z c. m t & - y l / o - Y .A d, q,Y

q C. E M P T Y / o .A t :. ~q, Y f 3 o = 0

m

q-"~" C. E M P T Y / o .A q tY
[zt2]

Translating refinement
Let S'(Ri) = (Qi, qoi,Ti,~'i ,Xi) be the semantics of programs R1, . . . ,R , . Then
St(R(Q,qo,T,T) (R1, ..., R2)) = (Q', q', T', 5 v', X') with:

Q' = {R(q,qo,=,r,7)(yl,. . . ,yn),x e Q, yi e Qi for i e [1, n]}
q' = Req,qo.qo,r.w)(q0a qa,)
Y ' = AR(Q,qo,z,r,T)(yl , y ,) �9 (var(x) < T(x)) A .~,(y=)
x ' = UL~ xi u {vat(x),= e Q,~r(=)# + ~ }

356

and T ' is defined from T, TI Tn by the following rules. [Rlat], [Rlbt] : both the
automaton and the refining subprogram react. In [Rlat] the transition of the au-
tomaton is not a temporal transition; in [Rlbt] it is. As for the parallel composition,
temporal and nontemporal transitions cannot be merged.

(qc, nl ,ol ,qd) E T, re C2.,n~/o2.A2 . , ~wC,

m2 ~ EMPTY A (nl A m2) # false A nl # to
R(Q,qo,q,,T,T)(rl,...,rn) c2^(var(q~)<~r(c)), m^m2/o~uo2 .A2uX~u{var(q~)} , [Rlat]

R(Q,qo ,qd,T,T) (q01, ..., qon)

(qc, tO, Ol,qd) E T, rc c:. EMPTY/o~ .A~ . , :-~1 C

R(Q,qo,q~ ..., r ,) r EMPTY/o~u~ .a~uX~u{var(qd)}~. [Rlbt]

R(Q,qo,qd,T,T) (q01, ..-, qon)

[R2t] : only the refining subprogram reacts. It can be either a temporal or a non-
temporal transition.

(m2 -- EMPTY) V (m2 ~ EMPTY A nonreact(qc, m2,T)),rc c:. m~/o2 .a~ +,
[R2t]

R(Q,qo,q,,T,T) (ri, ..., rc, ..., rn) C;A(var(q+)<T(c)). rn;/o2 .A~ ~

R(q,+o,q,,r,r)(~,..., ~' , ~ .)

where: nonreact(qc, m~,T) r /3m 1 s.t. (3qd, Ol,(qe, ml,Ol,qd) e T and rn 1 A
m2 # false)
3'(NIL) = ({NIL}, NIL, T, Ax �9 NIL,{~), where T is defined by: NIL true. m/r .ry NIL

4 V e r i f i c a t i o n o f r e a l - t i m e p r o p e r t i e s

We propose to veri~" the following quantitative real-time property on the reflex
game program: a reflex measure never takes more than L + L ' + L" units of time.
Expressed ill terms of program boxes,, the property is: the system never spends more
than L + L' + L" units of time in box GameOn.

• and outG have been added to make She entering and leaving of the GameOn
box observable in the global behaviour of the program. To obtain the labeled Timed
Graph of Fig. 2, the temporized reflex game has been compiled into a Timed Graph,
according to the ,9' semantic function; and then abstracted. All transition labels
whose output sets contain inG (resp. outG) have been replaced by the atomic label
inG (resp. outG). Note that no transition outputs both of them. The other transitions
are labeled with an invisible action tau. In TCTL, the property may be expressed by:
V n (a f t e r (s ==~ VO<LeL,+L. a f t e r (outG)) where a f t e r (x) characterizes the
set of states reached by executing a transition labeled by x.

The Argos compiler [MV92] has been extended to implement the 8 ' semantics.
A prototype without error detection may be used to connect the AKGONAUTE de-
velopment environment to the KRONOS tool. To verify the above property; one has

357

to replace the constants L, L' and L" by actual integer values, and to write the
property in an appropriate syntax. KRONOS takes the timed graph and the property
as its inputs, and produces a symbolic description of the set of states which verify
the property. The main point is that the complexity of the computation does not
depend on the actual values of the constants.

~ ~ outG

/
z := 0 = L ") ou

= L> / / / ';,/.g,;7-- /
{z :=0} " ' ' " l i , / Y t~ L - - ' , . . /~ ' : = L') tau

(: < z') {y -= o}

Fig. 2. The abstracted Timed Graph of the reflex game

< L")

Remark: KRONOS assumes that time is continuous. It is adequate for proving
properties when the delay construct of Argos is considered to be a new essential
feature: S ' may be viewed as a continuous time semantics for Argos. However, if we
consider the delay construct as a macro-notation, its interpretation is discrete. The
properties proved for continuous time are not necessarily true for discrete time, and
the user should be aware of this problem when thinking of the delay construct as a
discrete time construct. However, for an interesting class of properties called safety
properties, a property which is true for continuous time is also true for discrete time.
The property we gave as an example is a safety property.

5 Conclusion

The Argos synchronous language for real-time systems may be viewed as a set of
constructs that allows to describe a complex system as a composition of automata.
A single construct is used to introduce hierarchy. It is used for describing interrupts,
exceptions, suspensions... In this paper, we showed that a delay construct can be
added to the language in a very simple way. The idea is to associate time bounds
with the states of the basic automaton components. This simple extension allows
the description of timeouts and watchdogs, merged with the other control struc-
tures of the language in a very clean way. The semantics of this extended Argos is
a slightly modified version of the semantics presented in [Mar92]. The models are
Timed Graphs, and tile Argos constructs are extended to such objects. The Argos

358

compiler has been extended in order to produce Timed Graphs, and the KEONOS
tool may be used to verify quantitative real-time properties on Argos programs.

Although Argos, being a synchronous language, naturally deals with multiform
time, the approach presented here only deals with monoform time. One of the time
scales used in a program is distinguished, and used to apply the delay construct. Even
if the approach cannot be extended to multiform time in a simple way, due to the kind
of algorithms applied to timed graphs, the benefit for a development environment like
ARGONAUTE is unquestionable. For an approach which allows to deal with multiform
time, see "Delay analysis in synchronous programa" by N. Halbwachs, same volume.

R e f e r e n c e s

[ACD90] R. Alur, C. Courcoubetis, and D, Dill. Model-checking for real-time systems. In
Proceedings of the fifth annual IEEE symposium on LogicJ In Computer Science,
pages 414-425, Philadelphle, PA, USA, June 1990.

[BG88] G. Berry and G. Gonthier. The ESTEREL Synchronow Programming Lan.
guage: Design, Semantics, Implementation. Technical Report, 842, INRIA,
1988.

[BG92] O. Berry and G. Oonthier. The Esterel synchronous programming language: de-
sign, semantics, implementation. Science Of Computer Programming, 19(2):87-
152, 1992.

[CHPP87] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. L~STaE, a declarative language
for programming synchronous systems. In l~th Symposfitm on Principles of
Programming Languages, january 1987.

[GBBG85] P. Le Guernic, A. Benveniste, P. Bournal, and T. Gauthler. Signal: A Data
Flow Oriented Language for Signal Processing. Technical Report, IRISA report
246, IRISA, Rennes, France, 1985.
D. Harel. Statecharts : a visual approach to complex systems. Science of Com-
puter Programming, 8:231-275, 1987.
T. Henzinger: X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking
for real-timesystems. In IICS'9~, June 1992.
F. Maraninchi. Operational and compositional semantics of synchronous au-
tomaton compositions. In CONCUR, LNCS 630, Springer Verlag, august 1992.
F. Maraninchi and M. Vachon. An experience in compiling a mixed impera-
tive/declarative language for reactive systems. In International WorkJhop on
Compiler Construction (poster session), Springer Verlag, LNCS 641, october
1992.

[NSu X. Nicollin, J. Sifakis, and S. Yovine. From ATP to Timed Graphs and Hybrid
Systems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg,
editors, LNCS 600, proceeding., of REX Workshop "Real.Time: Theory in Prac-
tice ,. Mook, The Nederlands., Springer Verlag, June 1991.
X. NicoUin, J. Sifakis, and S. Yovine. Compiling real-time specifications into
timed automata. IEEE Transactions on Soflloare Engineering, special i, sue on
Specification and Anal~si~ of Real-Time S~/stems, 1992.

[H~87]

[H SY92]

[Mar92]

[MY92]

[sY921

