
On model-checking for fragments of t -calculus

E. A. Emerson 1 and C. S. Jutla 2 and A. P. Sistla 3

1 Department of Computer Science, University of Texas at Austin, Austin, Texas
2 I.B.M. Thomas J. Watson Research Laboratories

3 Department of Electrical Engineering and Computer Science, University of Illinois
at Chicago, Chicago, IL 60680.

1 Introduct ion

In this paper we consider the problem of model checking for different fragments
of propositional #-Calculus. This logic was studied by many authors [4, 8] for
specifying the properties of concurrent programs. It has been shown (see [12, 10,
5]) to be as expressive of automata on infinite trees. Most of the known temporal
and dynamic logics can be translated into this logic.

The model checking problem for this logic was first considered in [6]. In that
paper, the authors presented an algorithm that is of complexity O((mn) I+1)
where m is the length of the formula, n is the size of the Kripke structure and
l is the number of alternations of least and greatest fixed points in the given
formula. Thus the complexity of the algorithm is exponential in the length of
the formula. Since then there have been other algorithms [1, 3, 11] that were
presented. Although some of these algorithms have lower complexity than the
original algorithm, their complexity is still exponential. Algorithms of linear
complexity (both in the size of the structure and the formula) were given [2] for
the case when there is no alternation of least and greatest fixed points in the
given formula.

In this paper, we consider the model checking problem for different fragments
of the #-calculus. We first consider two fragments called L1, L2 and give model
checking algorithms for these fragments which are of complexity O(m2n) where
m is the length of the formula and n is the size of the structure. The formulas
in L1 and L2 allow arbitrary nesting of the least and greatest fixed points.
However, they restrict how the modal operators and the boolean connectives
can appear in the formula. The fragment L2 is shown to be exactly as expressi~ce
as the branching time temporal logic ECTL* considered in [13]. ECTL* is the
extended version of CTL* in which the path formulas have the same expressive
power as w-regular expressions.

We also consider the model checking problem for the full #-calculus and
show that this problem is equivalent to the non-emptiness problem of parity
tree automata considered in [9, 5]. More specifically, we show that the model
checking problem for p-calculus is reducible to the non-emptiness problem for

1 This author's research is supported in part by the ONR grant N00014-89-J-1472 and
Texas Advanced Technology Program Grant 003658-250.

3 This authoffs research is supported in part by NSF grant CCR-9212183.

386

parity tree automata of size O(mn) where m and n are as defined above. We
also show that the non-emptiness problem of parity tree automata of size p is
reducible to the model checking problem for #-calculus in which the size of the
Kripke structure is O(p) and the length of the formula is O(p). This shows that
there is an efficient algorithm for one of them iff there is such an algorithm for
the other.

The paper is organized as follows. Section 2 contains definitions and nota-
tion. Section 3 presents the model checking algorithms for the logics L1 and
L2. Section 4 contains the result showing the equivalence of the model checking
problem for the full p-calculus and non-emptiness problem for the parity tree
automata.

2 Definitions and Notation

In this section we define the syntax and semantics of the different fragments of
the logic #-calculus. Let 7) and 2' be two disjoint sets of elements. The elements
Of 7 9 will be called atomic propositions and are usually denoted by P, Q, ... The
elements of X will be called variables and are usually denoted by x, y, The
formulae of p-calculus are formed using the symbols from 7 9, X, the propositional
connectives -~ and A, the modal operator <It>, and the symbol #.

The set of well-formed formulas of p-calculus are defined inductively. The
symbols true and false are well-formed formulas. Every atomic proposition and
every variable are well-formed formulas. If f and g are well-formed formulas then
-~f, f A g and <R>f are also well-formed formulas. In addition, if f is well-formed
formula in which all the occurrences of the variable x are in the scope of an even
number of negations then px (f) is also a well-formed formula.

We say that a variable x is free variable in a formula f if there is an occurrence
of x in f which is not in the scope of some px. Let free-vat(f) denote all the
variables that are free in f . A variable which appears in f and which is not free,
is called a bound variable. A formula without any free variables is called a closed
formula. A formula that has no variables will be called a constant. We define
the semantics of the formulas in p-calculus with respect to a kripke structure. A
kripke structure K is a triple (S, R, L) where S is a finite set of states, R _ S x S
is a total binary relation (i.e. Vx3y(x, y) E R)), and L : S --* 2 9. With each state
s, L associates a set of atomic propositions that are true in that state. Let f be a
formula with free-var(f) -- (xl, ..., xk}. An evaluation p for f is a mapping that
associates with each variable in free-var(f) a subset of S. If free-vat(f) is empty
then there is a unique empty evaluation r for f . For a given kripke structure K,
we define a function A4(Kj) from the set of evaluations for f to the subsets of
S, by induction on the structure of f as follows.

- A4(g,p)(e) = {s: P E L(s)} where P is an atomic proposition;
- A4(gd^g)(p)-" A4(gj)(p')N AJ(g,g)(p") where p~ and p" are restrictions of

p to the free variables of f and g respectively;

-- M(K,-~$)(R) "- S - J~/[(K,I)(P);

387

s' Put KJ)(P) such that (s, s') e R};
- M(r,<R>f)(P) = {s :'~C ~ (

.M(g,,~f)(p) = ~ { S _ S : S' = M(K,I)(P') where p'(x) = S' and for all

other y e free-var(f), p~(y) = p(y)}.

In the above definition, it is to be noted that the value of A~I(K,~I)(P) is
given as a least fixed point. For a closed formula f , we say that a state s in K
satisfies f (written as K, s ~ f) iff s e AA(Kj)(e). We define derived connectives
defined as follows: f V g - --(-~f A --g),] --~ g = (-~f V g), JR] f ----- --<R>--f,
uy f (y) =_ - ,#x(- , f (- ,x)) . It is to be noted that while #x denotes the least fixed
point uy denotes the greatest fixed pont operator.

By using DeMorgan's laws, the identities -~uyf(y) =- #x(-,f(-~x)) and -- [R] f
<l~>-,f, we can transform any formula into an equivalent formula in which all
negations apply only to the atomic propositions. Such formulas will be called
normalized formulas. In our paper we will be interested in these types of formu-
las. A formula of the form # x f (resp., ux f) will be called a #-formula (resp.,
u-formula).

W i t h a normalized formula f , we define an integer altdepth(f) . Intutively,
altdepth(f) will be the maximum number of alternations of #s and ~,s in f .
Formally, it is defined as follows.

- For a #-formula f , al tdepth(f) = 0 if f
altdepth(f) = 1 + max{altdepth(g) : g

- For a u-formula f , al tdepth(f) = 0 if f

has no u-subformulas in it, otherwise
is a u-subformula of f } .
has no #-subformulas in it, otherwise

altdepth(f) = 1 + max{altdepth(g) : g is a #-subformula of f } .
- For any formula f , define altdepth(f) = 1 + max{altdepth(g) : g

is a#-subformula or a u-subformula of f} .

We assume throughout the paper that each variable appearing in a formula
is bound at most once. This means that we can not have two subformulas of the
form #x(g) and #x(h) appearing in a formula. If this property is not satisfied,
then by renaming the variables we can obtain an equivalent formula that satisfies
this property.

For finite kripke structures, the least fixed point can be computed by iteration
starting with an empty set and iterating until a fixed point is reached. Similarly,
the greatest fixed point can be computed by starting from the set containing
all states and iterating until a fixed pont is reached. These results are due to
Tarski/Knaster.

Now, we define two fragments of the #-calculus L1 and L2 defined as follows.
The set of L1 formulas are exactly those that are formed using the following
rules:

1. All the members of 7) U X are Ll-formulas; i.e. all atomic propositions and
all variables are Ll-formulas.

2. If f is a Ll-formula that does not have any variables appearing in it then -~f
is also an Ll-formula.

3. If f and g are Lt-formulas then f V g , <It>f, #x(f) and yx(f) are Lt-formulas.
4. If f and g are Ll-formulas such that at most one of them has variables

appearing in it, then f A g is a Ll-formula.

388

Rule 2 states that negations can only be applied to formulas which are con-
stants. Rule 4 states that if we have a conjunction only one of the conjuncts
can have variables and all other conjuncts have to be constants. Due to these
restrictions, when we normalize an Ll-formula, i.e. push the negations down, the
resulting formula has the following property: all the [R]s only apply to constant
formulas, and in any conjunction only one of the conjuncts can have variables
appearing in it. This means that an Ll-formula is almost like a linear-time for-
ITlula.

Let L2 be the set of formulas obtained by using rules 2a and 4a, given below,
in place of 2 and 4.

2a. If f is a closed L2-formula then --f is also an L2-formula.
4a. If f and g are L2-formulas such that at most one of them is an open formula

then f A g is a L2-formula.

It is to be noted that the formula f in rule 2 should be a constant formula
while in rule 2a it can be any closed L2-formula. Similarly, in rule 4, at least one
of f and g has to be a constant, while in 4a, at least one of them has to be a
closed formula. As a consequence, rules 2 and 4 are special cases of rules 2a and
4a respectively. From this, it should be easy to see that L1 is a subset of L2. The
expressive power of L2 is characterized by theorem 3.2 given in the next section.

3 Model Checking for the restricted Logics

In this section, we present efficient procedure for model-checking for the two
logics L1 and L2. First, we consider the logic L1 and present an efficient model-
checking algorithm for this logic. This algorithm, as we show later, can be easily
extended to the logic L2.

Let f be a closed normalized Ll-formula. Let SF(f) denote the set of sub-
formulas of f . The set SF(f) can be defined inductively. Let K = (S, R, L)
be a given kripke structure. We define a graph GK,I = (V, E), where V is
the set of vertices and E is the set of edges, defined as follows. The node set
V = {(s, g) : s E S, g E SF(f)} . Essentially, there is one node in Y correspond-
ing to each state in S and each subformula of f . The set of edges leaving the
node (s, g) are, defined according to the outermost connective of the subformula
g, as follows.

- If g = P or g = -~P where P is an atomic proposition then there are no
edges leaving (s, g).

- If g = x where x is variable and g~ is the largest subformula of f such that
g' = #x(g") or g' = ~,x(g"), then there is exactly one edge leaving (s, g) and
this edge is to (s, g').

- If g = #x(g') or g = ux(g'), then there is an edge from (s, g) to (s, g') and
this is the only edge from (s, g).

- If g = g' A g" or g = g' V g', then there are two edges from (s,g), to the
nodes (s, g') and (s, g").

389

- I f g = <R>g ~ or g = [R]g', then for each state s J such that (s ,s ~) E R, there
is an edge from (s, g) to (s', g').

A path in GK,I is a finite sequence of nodes such that there is an edge in
E from each node in the path to the succeeding node. A path starting and
ending with the same node is a cycle. A subformula g E S F (f) is called a/~-
subformula (respectively, a u-subformula) if g is of the form p x (f) (respectively,
ux(f)) . We say that a cycle C in G K j , is a u-cycle (respectively, #-cycle) if
the longest subformula appearing in a node on C is v-subformula (respectively,
#-subformula). A node (s, g) in G K j is called a A-node if g is of the form gl A g2
or is of the form [R]gl; note that in the later case gl will be a constant. A node
(s, g) is called a V-node if g is of the form gl V g2 or is of the form <R>gl.

O b s e r v a t i o n 3.1 The graph GK,$ satisfies the following properties.

- Assume that there is an edge from (s, g) to (s', g~) in G K j .
* I fg = <R>g ~ org -- [RJg ~ then (s ,s ~) E R; otherwise, s ~ = s.
. I fg is not a variable then g~ is a subformula ofg. I fg is a variable then

g is a subformula of gl.
- For any node (s, g) in G K j , there is a path from (s, g) to a node on a cycle

iff g has at least one variable in it (i.e. g is not a constant).
- Let C be a cycle and (s, g) be a node on it such that g is the longest formula

appearing in all the nodes on C. Then, g is a #-subformula or a u-subformula.
In addition, all other subformulas appearing in some node on C themselves
are subformulas of g.

Now, we label the nodes of GK,I as follows. With each node u G V, we
maintain a variable label(u) that denotes the label of the node u. Each of these
variables takes one of the three values--true, false, N I L , and is initialized to the
value N I L . During the execution of the algorithm, the values of these variables
will be set to true or false. When once a variable is set to one of these two values,
it will never be changed. Furthermore, for any node u = (s, g), a t the end of the
execution of the algorithm, label(s, g) = true iff K , s ~ g.

At any t ime during the execution of the algorithm, if label(u) = N I L then
we say that node u is unlabeled at that time. We say that a path is unlabeled if
all the nodes on the path are unlabeled. Let n be the length of the formula f .
We execute the following algorithm on the graph G K j .

1 . For each node u E V, label(u) *- N I L .
2. For each g E S F (f) in increasing lengths of g, and for each s G S, update

label(u), where u = (s, g), as follows.
- g -- P : I f P e L(s) then label(u) . - true else label(u) *-- false.
- g -- "~P: I f P ~ L(s) then label(u) *-- true else label(u) ~-- false.
- g - - g ' A g ' o r g = [RJg':

I f for all successors u' of u it is the case that label(u I) = true then
label(u) ,-- true;
/ f for some successor u' of u such that label(u') = false then label(u) *-
false. In other cases, label(u) is unchanged (i.e. - N I L) .

390

_ g = g t V g , o r g = < R > g I :
I f for some successor u' of u label(u') = true then label(u) *--- true;
I f for all successors C of u it is the case that label(C) = false then
label(u) .-- false.
In other cases, label(u) is unchanged.

- None of the above: label(u) is unchanged.

3. For each unlabeled node u �9 V, if there exists an unlabeled path from u to
an unlabeled v-cycle then label(u) ~-- true.

4. For each unlabeled node u, label(u) ~ false.

T h e o r e m 3.1 After the execution of the above algorithm, for any node u =
(s, g) in G K j where g is a closed subformula, label(u) = true iff K, s ~ g.

In order to prove the above theorem, we need some lemmas. First, it is to
be noted that after the execution of step 2 of the above algorithm, the following
conditions are satisfied. For all nodes u in GK,! such that there is no path
connecting u to a node on a cycle, label(u) ~ N I L . Hence, for each node u =
(s, g) where g is a constant, label(u) ~ N I L . For this case, it should be easy to
see that label(s, g) = true iff K, s ~ g. Also, for every node u = (s, g) such that
label(s, g) = N I L , there is at least one successor node u' such that label(C) =
N I L . In addition, if g = g~ A g", then for one successor C, label(u') = true and
for the other successor u", label(u") -- N I L . Consider any node (s, g) such that
label(s, g) ~ N I L ' For any evaluation p over the free variables of g, the following
property holds: s E A4K,a(p)iff label(s) = true. For any node (s, g) where g is a
#-formula or a v-formula, label(s, g) = N I L .

In step 3 of the algorithm, all nodes lying on unlabeled v-cycles or all nodes
that have unlabeled paths to such cycles will be labeled true. Now, we prove
that step 3 of the above algorithm is sound. To do this, we need the following
lemmas.

L e m m a 1. Let u0, uz, ..., Uk be a path in GK,] after execution of step 2 of the
above algorithm where for each i = O, 1, ..., k - l , ui is a A-node or a V-node. Also,
let ui = (si, gi). Then, each gi is a subformula of go, and for any evaluation p on
the free-vat(go), i f sk E .MK,gk(p/) where p' is a restriction of p to free-var(gk),
then so E ./t4K,ao (p).

The above lemma can be proved by a simple induction on the length of go.

Lemma 2. Let u0, uz,..., uk be an unlabeled path in GK,$ after the execution of
step 2 of the above algorithm satisfying the following conditions: for each i > O,
ui "- (si, gi), g~ is a strict subformula of go and gk E free-vat(go). Then, for any
evahat ion p over free-va (go), if ,k e p(g) then ,o �9 MK.go(V).

The following lemma shows that step 3 of the above algorithm is sound.

391

L e m m a 3. Let

- no,u1, ...,uk = uo be an unlabeled v-cycle in GK,] after execution of step 2
of the above algorithm;

- = 9 0 for o < i < where go = vx(g') is the tongest sub/ormula
appearing in any node of the cycle;

- S ' = { s i : O < i < k,g~ = go} .

Then, for any evaluation p on the free-vat(go), S ~ C JVtK,go(p).

The remainder of the proof of theorem 3.1 and the proofs of the lemmas will
be given in an extended version of this paper.
C o m p l e x i t y and Express iveness

Below, we discuss the complexity of the above algorithm. First, it is to be
noted that the number of vertices in GK,], i.e. IYl, is O([SII/I). The number of
edges in GKj , i,e. IEI = O([RIIfl + [Sl[fl). It is not difficult to see that steps 1,
2, 4 and 5 can all be implemented in time linear in (IYl + IEI)-

Step 3 can be implement ed using an algorithm of complexity O(I f l(IYl+lEI)).
This algorithm works as follows: It first identifies all nodes that lie on unlabeled
v-cycles. This is done as follows.

For each v-subformula g of f and in the increasing lengths of g, consider the
restriction of GK,I to unlabeled nodes of the form (s, g~) where gt is a subformula
of g. For each strongly connected component C of the restricted graph, find the
type of the longest subformula in any node of C; if this formula is a v-formula
then mark all the nodes of C as nodes lying on a v-cycle.

In the full paper we will show that the above algorithm correctly identifies
M1 the nodes that lie on unlabeled v-cycles. After this, it is straightforward to
find nodes that have unlabeld paths to such cycles. Each iteration of the above
algorithm can be implemented using an algorithm of complexity O(IV I + IEI).
Hence, all the iterations together take time O(If](IYl + IEI)).

Thus, the overall complexity of the algorithm is O([fl(IvI + IZl)). Substitut-
ing for lYl and IZl in terms of ISI and l//], we see that the overall complexity of
the above algorithm is O([fl2(ISI + IRD).

The above algorithm can be naturally be extended to the logic L2 with the
same complexity. We will present this in the full paper. Thus, model checking
for L2 can also be done in time O(Ifl2(ISI + IR[)).

We compare the expressive power of the logics to well known branching
time temporal logics. Consider the branching time temporal logic CTL*. Let the
ECTL* (given in [13]) denote the extended version of the logic CTL* where each
path formula can be as expressive as w-regular expressions.

T h e o r e m 3.2 The logic L2 is as expressive as ECTL *.

P r o o f We give an outline of the proof. First, we show that any ECTL* formula
of the form E(p) where E is the existential path quantifier and p is an w-regular
expression can be translated in to the logic L1. To achieve this, we translate

392

p into a Buchi automaton A on infinite strings. It is well known that linear p-
calculus, i.e. p-calculus interpreted over infinite strings is as expressive as Buchi
automaton on infinite strings. The logic L1 is similar to the linear p-calculus.
We can apply the same techniques used as in the case of linear p-calculus, to
show that for any Buchi automaton A we can obtain a formula f in L1 such
that f is satisfied at a state in a Kripke structure iff there exists an infinite path
from that state that is accepted by A. Applying this translation inductively, we
can show that any formula of the logic ECTL* can be translated in to the logic
L2.

To prove that every formula in L2 can be translated into ECTL*, it is enough
to show that L1 can be translated into ECTL*. This translation can be applied
inductively, to show that any formula of L2 can also be translated into ECTL*.
Given a formula f in L1, we can construct a Buchi automaton A on infinite
strings, and from this obtain an equivalent ECTL* formula of the form E(p)
where p is an w-regular expression. �9

We can also use the following alternate approach for model-checking for
formulas in L1 which will have the same complexity. We briefly describe this
method. The proof of Theorem 3.2 shows that for each formula f in L1 there
exists a formula of the form E(p) in ECTL*, where p is a path formula, such
that f is equivalent to E(p). In fact, from f , we can construct a parity string
automaton A I (see the next section for the definition of parity automaton) with
the following property: f is satisfied at a node so in a Kripke structure iff there
exists an infinite path from so that is accepted by A]. The number of states in
the automaton A] will be O(Ifl) and the number of sets in the accepting condi-
tion will be O(If]). Now to check if the formula f is satisfied at state so of K, we
simply consider K as a string automaton and construct the product automaton
of A.t and K, and check for non-emptiness of this product automaton. The size
of the product automaton ,which will also be a parity string automaton, will be
O((ISI + IRI)Ill), and the number of sets in the accepting condition will be O(Ifl)
(in fact, the graph GK,$ constructed in our algorithm is itself can be considered
as the product automaton). Checking non-emptiness for parity string automaton
can be done using a procedure, similar to the one used for step 3 of the previous
algorithm, of complexity linear in the product of the size of the automaton and
the number of sets in the acceptance condition. The complexity of this method
will also be O(Ifl2(ISI + IRI)).

4 R e l a t i o n s h i p b e t w e e n M o d e l C h e c k i n g a n d A u t o m a t a

In this section we explore the relationship between the model checking problem
for p-calculus and the emptiness problem for automata on infinite trees. More
specifically, we show that the model checking problem for the complete logic
p-calculus is euquivalent under linear reductions to the emptiness problem of a
particular type of automata on infinite trees, called parity automata. This shows
that there is an efficient model checking algorithm for #-calculus iff there is a n
efficient algorithm for checking emptiness of parity automata.

393

A corollary of the above result is that the model checking problem for formu-
las of p-calculus which are of the form vy(g) where g is in normal form and # is
the only fixed point operator appearing in g, is equivalent to the non-emptiness
problem for Buchi tree automata

First, we define parity tree automata (introduced in [5, 9]). A parity tree
automaton A on infinite binary tree is a 5-tuple (Z, Q, q0, 6, F) where S is the
input alphabet, Q is the set of automaton states, q0 is the initial states, 5 :
(Q x Z) -+ 2 Q• is the next move relation and F = (F0, F1, ..., Fk) where
F0, F1, ..., F~ is a sequence of mutually disjoint subsets of Q. F is called the
acceptance condition. Note that, for any a E Z and q E Q, ~(q, a) is a set of
pairs of the form (q', q ') where q' and q" are automaton states; Intuitively, if
the au tomaton is in state q and reads input a in the current node then the state
of the automaton on the left child is going to be q' and its state on the right
child is going to be q ' . We denote the infinite binary tree by the set {0, 1)*. The
empty string denotes the root of the tree and the two children of x are x0 and
xl . An infinite path ~ in the tree is an infinite sequence of nodes starting with
root node and such that each succeeding node is a child of the preceding node.

An input to the automaton is a marked infinite binary tree which is a function
r : {0, 1)* -* S. A run of r of A on input r is a function r : {0,1}* --+ Q,
associating a state of the automaton with each node of the tree, such that r(e) =
q0, and for any x e {0, 1}* (r(xO), r (xl)) E 6(r(x), r(x)) . For a run r and an
infinite path a = cr0,al, . . . ,hi, . . . , we let r(tr) denote the infinite sequence of
automaton states r(tr0), ..., r(a~), The run r is accepting if for every infinite
path a, the following condition is satisfied: there exists an even number l, 0 <
I < k, such that some state in Fl appears infinitely often in r(a) and each of
the states in the set (Uz<j<~ Fj) only appears finitely often in r(a). We say that
the automaton A accepts an input r i f f there exists an accepting run r of the
automaton on the input v.

A Buchi automaton is a parity tree automaton in which the accepting con-
dition F is of length one, i.e. it has only one set. Note that this definition is
equivalent to the standard definition of Buchi tree automaton.

T h e o r e m 4.1 Given a kripke structure K = (S, R, L) and any p-calculus for-
mula f and a stale so E S, we can oblain a parity tree automaton A of size
O((ISl + IRI)Ifl) in time O((IS I § tRI)lfl)such that

- the number of sets in the acceptance condition of A is less than or equal to
al tdepth(f) + 1, and

- A accepts at least one input iff K, so ~ f .

P r o o f We briefly sketch the proof here. Let f be the given p-calculus formula
and K be the given Kripke structure. First we construct the graph GK,y = (V, E)
as given in the previous section. Recall that each node in V is of the form
(s, h) where s ~ S and h is a subformula of f . The edge set E is as defined in
the previous section. For example, when h is of the form [R] h', then for each
(s, s') E R there is an edge from (s, h) to (s, h') in E. We call a node (s, h) in
V to be an A-node if h is of the form hi A h2 or is of the form JR] hi and (s, h)

394

has at least two successors (i.e. edges to two distinct nodes); we call it to be
an atomic node if h is P or -~P for some atomic proposition P and all other
nodes in V are called V-nodes. Note that if (s, h) is an V-node then h can be
a variable, or a/~-subformula, or a u-subformula, or a subformula of the form
[R] h j and (s, h) has only one successor. We make the following assumption. Any
non-atomic node has at most two successors, i.e. two edges leaving it. If this
condition is not satisfied, we can introduce new intermediate nodes and edges
so that this property is satisfied; actually, for each node u with k successors, if
k > 2 then we introduce k - 2 additional new nodes and k - 2 additional edges.
As a consequence, the size of GK,y = [VI + [El at most doubles. The type of a
new node that is introduced in the previous step is same as that of u, i.e. it is a
A-laode if u is a A-node, etc. After this, each A-node has exactly two successors,
while a V-node has either one or two successors.

The automaton A = (2Y, Q, q0, 6, F) is defined as follows. The states set Q of
the automaton is simply V, the initial state q0 is (so, f) , the input alphabet S
has only one symbol, say symbol a. The transitions of A are defined as follows.
For any node u = (s, h), 8(u, a) consists of the following pairs: if u is an atomic
node (i.e. h = P or h = -~P) then $(u,a) = {(u,u)}; if h is V-node then
~(u, a) = {(v, v) : (u, v) E E}; if h is a A-node then ~(u, a) = {(v, v ') : v and v'
are the successors of u}.

We define the acceptance condition F = (F0, F1, ..., F(k-D) as follows. Let T
be the set of all of g E SF(f) such that g is/~-subformula or is a u-subformula.
First, arrange the members of T into a sequence so that for any two distinct h,
g in T where h is a subformula of g, h appears before g. After this, group all
subformulas of same type that appear contiguously in the above sequence into
one set and obtain a sequence Co, C1, ..., C(i_ 1) of sets of subformulas that forms
a parti t ion of T satisfying the following properties:

- Each Ci contains subformulas of the same type, i.e. all of them are #-
subformulas or all of them are u-subformulas. In addition, for each i < (I -1) ,
C~ and C(i+l) contain different types of formulas.

- For any g, h E T where g and h are of different type and g is a subformula
of h, if g appears in some set Ci then h appears in a late r set, i.e. h appears
in Cj for some j > i.

We define F = (F0, F1, ..., F(k-1)) according to the following three cases.

Co c o n t a i n s u - s u b f o r m u l a s : In this case k = I. F0 = (S x Co) U U where U is
the set of all atomic nodes u such that u is of the form (s, P) and P E L(s),
or is of the form (s, -~P) and P ~ L(s). For 0 < i < k, Fi = S x Ci.

Co c o n t a i n s / ~ - s u b f o r m u l a s a n d l > 1: In this case k = l - 1. F0 = (S • C1) U
U where U is same as in the previous case. For 0 < i < k, Fi = S • Ci+l.

Co c o n t a i n s / ~ - s u b f o r m u l a s a n d l = 1~ o r T is e m p t y : In this case k = 1.
F0 = U where U is as in the previous cases.

The last of the above cases occurs if the formula has no us. It can be shown
that the automaton A accepts at least one input iff K, so ~ f . It is also not

395

difficult to see that the size of the automaton, which is the sum of the number
of states, the total number of transitions and the sum of the cardinalities of all
sets in F, is O((ISI + IRI)III).

[]

T h e o r e m 4.2 Given a parity tree automaton A = (S , Q, qo, 6, F), we can obtain
a Kripke structure K whose size is linear in the size of A and a It-calculus
formula f which is linear in the length of the acceptance condition, and a state
so in K, such that

- altdepth(f) = 1+ the number of sets in F, and
- A accepts at least one input iff K, so ~ f .

P r o o f This theorem follows from the results of [5]. However, for the sake of
completeness, we outline the major steps of the proof.

Without loss of generality, we can assume that the alphabet of A is a sin-
gleton consisting of the symbol a. Let the acceptance condition F be given
by (F1, F2, ...,Fk-1) (note that index of the first set in F is 1). Let F0 =
Q - U l < i < k Fi. Now, consider the sets F0, F1, ..., Fk-1. Corresponding to each Fi,
We use an atomic proposition Pi. We give the informal description of the Kripke
structure K = (S,/~i L). S has the following elements. We call each element of S
as a node and each element of R as an edge. Corresponding to each automaton
state s, there is one node in S which is also denoted by s. For such a node s, if
s E Fi ,for some i < k, then L(s) = {Pi}, otherwise L(s) is the empty set.

Corresponding to each pair of states (sl,s2), such that (sl,s2) e 8(s,a)
for some state s, S has a node which we denote by the triple (s, sl, s2) and
L((s, sl, 82)) = L(s). R has the following edges. Corresponding to the above
transition, there is an edge from the node s to the node (s, sl, s2) and there are
edges from (s, sl, s2) to sl and to sg.. f is given by the following formula:
Ak-lz~-IAk-2zk-~...Aozo(Vo<~<k Pi A <R>I'R'I zi)

where Ak-1...A0 is an alternating sequence #s and vs ending with It. Now,
take so = q0. From the results of [5], it follows that K, so ~ f if[A accepts at
least one input. []

Coro l l a ry4 . The model checking problem for formulas of the form uz f where
f is in normalized form and has no further vs appearing in it is equivalent,.to
checking non-emptiness of Buchi tree automata.

T h e o r e m 4.3 The model checking problem for the full It-calculus is in NPf3co-
NP: Formally, the set of encodings of all triples (K, so, f) satisfying the following
condition is in NPNco-NP: K is a Kripke structure, so is a state in K and f is
a It-calculus formula such that K, So ~ f .

5 Conclus ion

In this paper we considered two different fragments of #-calculus, logics L1 and
Lz. We gave model checking algorithms for logics L1 and L2 which are of corn-

396

plexity O(m2n) where m is the length of the formula and n is the size of the
structure. We have shown that the logic L2 is as expressive as ECTL* given
in [13]. In additions to these results, we have shown that the model checking
problem for the p-calculus is equivalent to the non-emptiness problem of parity
tree automata.

It will be interesting to investigate if there is a model checking algorithm for
the logics L~ and L2 which is only of complexity O(mn) instead of O(m2n). Of
course, determining if the model checking problem for the full g-calculus is in P
or not, is also an open problem.

References

1. R. Cleave land, Tableux-based model checking in the propositional #-calculus
, Acta Inf0rmatica, 27:725-747, 1990.

2. R. Cleaveland and B. Steffen, A linear-time model-checking]or alternation
free modal #-calculus, Proceedings of the 3rd workshop on Computer Aided
Verification, Aalborg, LNCS, Springer-Verlag, July 1991.

3. R. Cleaveland and B. Steffen, Faster model.checking]or modal g-calculus,
Proceedings of the 4th workshop on Computer Aided Verification, Montreal,
July 1991.

4. E. A. Emerson, E. M. Clarke, Characterizing correctness properties of par-
allel programs Using Fixpoints, Proceedings of the International Conference
on Automata, Languages and Programming, 1980.

5. E.A. Emerson and C. S. Jutla, Tree Automata, Mu-caleulus and Determi-
nacy, Proceedings of the 1991 IEEE Symposium on Foundations of Com-
puter Science.

6. E. A. Emerson and C. Leis, Efficient model-checking in fragments o] #-
calculus, Proceedings of Symposium on Logic in Computer Science, 1986.

7. E. A. Emerson and C. Leis, Modalities]or Model Checking, Science of Com-
puter Programming, 1987.

8. D. Kozen, Results on the propositional g-calculus, Theoretical Computer
Science, 27, 1983.

9. A.W. Mostowski, Regular Expressions]or Infinite trees and a standard]orm
of automata, in: A. Skowron, ed., Computation Theory, LNCS, vol 208, 1984,
Springer-Verlag.

10. D. NiwinSki, Fixed-points Vs. Infinite Generation, Proceedings of the Third
IEEE Symposium on Logic in Computer Science, 1988.

11. C. Stifling, D. Walker, Local model-checking in modal g-calculus, Proceed-
ings of TAPSOFT, 1989.

12. R. S. Streett and E. A. Emerson, An automata theoretic decision procedure
for Propositional g-calculus , Proceedings of the International Conference
on Automata, Languages and Programming, 1984.

13. M. Vardi and P. Wolper, Yet Another Process Logic, Proceedings of the
workshop on Logics of Programs, Pittsburgh, 1983, also appeared in Lecture
Notes in Computer Science.

