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1 Introduct ion 

In this paper we consider the problem of model checking for different fragments 
of propositional #-Calculus. This logic was studied by many authors [4, 8] for 
specifying the properties of concurrent programs. It has been shown (see [12, 10, 
5]) to be as expressive of automata on infinite trees. Most of the known temporal 
and dynamic logics can be translated into this logic. 

The model checking problem for this logic was first considered in [6]. In that 
paper, the authors presented an algorithm that is of complexity O((mn) I+1) 
where m is the length of the formula, n is the size of the Kripke structure and 
l is the number of alternations of least and greatest fixed points in the given 
formula. Thus the complexity of the algorithm is exponential in the length of 
the formula. Since then there have been other algorithms [1, 3, 11] that were 
presented. Although some of these algorithms have lower complexity than the 
original algorithm, their complexity is still exponential. Algorithms of linear 
complexity (both in the size of the structure and the formula) were given [2] for 
the case when there is no alternation of least and greatest fixed points in the 
given formula. 

In this paper, we consider the model checking problem for different fragments 
of the #-calculus. We first consider two fragments called L1, L2 and give model 
checking algorithms for these fragments which are of complexity O(m2n) where 
m is the length of the formula and n is the size of the structure. The formulas 
in L1 and L2 allow arbitrary nesting of the least and greatest fixed points. 
However, they restrict how the modal operators and the boolean connectives 
can appear in the formula. The fragment L2 is shown to be exactly as expressi~ce 
as the branching time temporal logic ECTL* considered in [13]. ECTL* is the 
extended version of CTL* in which the path formulas have the same expressive 
power as w-regular expressions. 

We also consider the model checking problem for the full #-calculus and 
show that this problem is equivalent to the non-emptiness problem of parity 
tree automata considered in [9, 5]. More specifically, we show that the model 
checking problem for p-calculus is reducible to the non-emptiness problem for 
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parity tree automata of size O(mn) where m and n are as defined above. We 
also show that the non-emptiness problem of parity tree automata of size p is 
reducible to the model checking problem for #-calculus in which the size of the 
Kripke structure is O(p) and the length of the formula is O(p). This shows that 
there is an efficient algorithm for one of them iff there is such an algorithm for 
the other. 

The paper is organized as follows. Section 2 contains definitions and nota- 
tion. Section 3 presents the model checking algorithms for the logics L1 and 
L2. Section 4 contains the result showing the equivalence of the model checking 
problem for the full p-calculus and non-emptiness problem for the parity tree 
automata. 

2 Definitions and Notation 

In this section we define the syntax and semantics of the different fragments of 
the logic #-calculus. Let 7 ) and 2' be two disjoint sets of elements. The elements 
Of 7 9 will be called atomic propositions and are usually denoted by P, Q, ... The 
elements of X will be called variables and are usually denoted by x, y, .... The 
formulae of p-calculus are formed using the symbols from 7 9, X, the propositional 
connectives -~ and A, the modal operator <It>, and the symbol #. 

The set of well-formed formulas of p-calculus are defined inductively. The 
symbols true and false are well-formed formulas. Every atomic proposition and 
every variable are well-formed formulas. If f and g are well-formed formulas then 
-~f, f A g and <R>f are also well-formed formulas. In addition, if f is well-formed 
formula in which all the occurrences of the variable x are in the scope of an even 
number of negations then px ( f )  is also a well-formed formula. 

We say that a variable x is free variable in a formula f if there is an occurrence 
of x in f which is not in the scope of some px. Let free-vat(f) denote all the 
variables that are free in f .  A variable which appears in f and which is not free, 
is called a bound variable. A formula without any free variables is called a closed 
formula. A formula that has no variables will be called a constant. We define 
the semantics of the formulas in p-calculus with respect to a kripke structure. A 
kripke structure K is a triple (S, R, L) where S is a finite set of states, R _ S x S 
is a total binary relation (i.e. Vx3y(x, y) E R)), and L : S --* 2 9. With each state 
s, L associates a set of atomic propositions that are true in that state. Let f be a 
formula with free-var(f) -- (xl, ..., xk}. An evaluation p for f is a mapping that 
associates with each variable in free-var(f) a subset of S. If free-vat(f) is empty 
then there is a unique empty evaluation r for f .  For a given kripke structure K, 
we define a function A4(Kj) from the set of evaluations for f to the subsets of 
S, by induction on the structure of f as follows. 

- A4(g,p)(e) = {s: P E L(s)} where P is an atomic proposition; 
- A4(gd^g)(p)-" A4(gj)(p')N AJ(g,g)(p") where p~ and p" are restrictions of 

p to the free variables of f and g respectively; 

-- M(K,-~$)(R) "- S - J~/[(K,I)(P); 
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s' Put KJ)(P) such that  (s, s') e R}; 
- M(r,<R>f)(P) = {s :'~C ~ ( 

.M(g,,~f)(p) = ~ { S  _ S :  S' = M(K,I)(P') where p'(x) = S' and for all 

other y e free-var(f), p~(y) = p(y)}. 

In the above definition, it is to be noted that  the value of A~I(K,~I)(P) is 
given as a least fixed point. For a closed formula f ,  we say that  a state s in K 
satisfies f (written as K, s ~ f )  iff s e AA(Kj)(e). We define derived connectives 
defined as follows: f V g - --(-~f A --g), ] --~ g = (-~f V g), JR] f ----- --<R>--f, 
uy f (y )  =_ - ,#x(- , f ( - ,x)) .  It is to be noted that  while #x denotes the least fixed 
point uy denotes the greatest fixed pont operator. 

By using DeMorgan's laws, the identities -~uyf(y) =- #x(-,f(-~x)) and -- [R] f 
<l~>-,f, we can transform any formula into an equivalent formula in which all 
negations apply only to the atomic propositions. Such formulas will be called 
normalized formulas. In our paper we will be interested in these types of formu- 
las. A formula of the form # x f  ( resp., ux f )  will be called a #-formula (resp., 
u-formula). 

W i t h  a normalized formula f ,  we define an integer altdepth(f) .  Intutively, 
altdepth(f)  will be the maximum number of alternations of #s and ~,s in f .  
Formally, it is defined as follows. 

- For a #-formula f ,  al tdepth(f)  = 0 if f 
altdepth(f)  = 1 + max{altdepth(g) : g 

- For a u-formula f ,  al tdepth(f)  = 0 if f 

has no u-subformulas in it, otherwise 
is a u-subformula of f } .  
has no #-subformulas in it, otherwise 

altdepth(f)  = 1 + max{altdepth(g) : g is a #-subformula of f } .  
- For any formula f ,  define altdepth(f)  = 1 + max{altdepth(g) : g 

is a#-subformula or a u-subformula of f} .  

We assume throughout the paper that each variable appearing in a formula 
is bound at most once. This means that  we can not have two subformulas of the 
form #x(g) and #x(h) appearing in a formula. If this property is not satisfied, 
then by renaming the variables we can obtain an equivalent formula that  satisfies 
this property. 

For finite kripke structures, the least fixed point can be computed by iteration 
starting with an empty set and iterating until a fixed point is reached. Similarly, 
the greatest fixed point can be computed by starting from the  set containing 
all states and iterating until a fixed pont is reached. These results are due to 
Tarski/Knaster.  

Now, we define two fragments of the #-calculus L1 and L2 defined as follows. 
The set of L1 formulas are exactly those that  are formed using the following 
rules: 

1. All the members of 7 ) U X are Ll-formulas; i.e. all atomic propositions and 
all variables are Ll-formulas. 

2. If f is a Ll-formula that  does not have any variables appearing in it then -~f 
is also an Ll-formula. 

3. If f and g are Lt-formulas then f V g ,  <It>f, #x( f )  and yx( f )  are Lt-formulas. 
4. If f and g are Ll-formulas such that  at most one of them has variables 

appearing in it, then f A g is a Ll-formula. 
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Rule 2 states that  negations can only be applied to formulas which are con- 
stants. Rule 4 states that  if we have a conjunction only one of the conjuncts 
can have variables and all other conjuncts have to be constants. Due to these 
restrictions, when we normalize an Ll-formula, i.e. push the negations down, the 
resulting formula has the following property: all the [R]s only apply to constant 
formulas, and in any conjunction only one of the conjuncts can have variables 
appearing in it. This means that  an Ll-formula is almost like a linear-time for- 
ITlula. 

Let L2 be the set of formulas obtained by using rules 2a and 4a, given below, 
in place of 2 and 4. 

2a. If f is a closed L2-formula then --f  is also an L2-formula. 
4a. If f and g are L2-formulas such that  at most one of them is an open formula 

then f A g is a L2-formula. 

It is to be noted that  the formula f in rule 2 should be a constant formula 
while in rule 2a it can be any closed L2-formula. Similarly, in rule 4, at least one 
of f and g has to be a constant, while in 4a, at least one of them has to be a 
closed formula. As a consequence, rules 2 and 4 are special cases of rules 2a and 
4a respectively. From this, it should be easy to see that L1 is a subset of L2. The 
expressive power of L2 is characterized by theorem 3.2 given in the next section. 

3 Model  Checking for the restricted Logics 

In this section, we present efficient procedure for model-checking for the two 
logics L1 and L2. First, we consider the logic L1 and present an efficient model- 
checking algorithm for this logic. This algorithm, as we show later, can be easily 
extended to the logic L2. 

Let f be a closed normalized Ll-formula. Let SF( f )  denote the set of sub- 
formulas of f .  The set SF( f )  can be defined inductively. Let K = (S, R, L) 
be a given kripke structure. We define a graph GK,I = (V, E), where V is 
the set of vertices and E is the set of edges, defined as follows. The node set 
V = {(s, g) : s E S, g E SF(f )} .  Essentially, there is one node in Y correspond- 
ing to each state in S and each subformula of  f .  The set of edges leaving the 
node (s, g) are, defined according to the outermost connective of the subformula 
g, as follows. 

- If g = P or g = -~P where P is an atomic proposition then there are no 
edges leaving (s, g). 

- If g = x where x is variable and g~ is the largest subformula of f such that  
g' = #x(g") or g' = ~,x(g"), then there is exactly one edge leaving (s, g) and 
this edge is to (s, g'). 

- If g = #x(g') or g = ux(g'), then there is an edge from (s, g) to (s, g') and 
this is the only edge from (s, g). 

- If g = g' A g" or g = g' V g', then there are two edges from (s,g), to the 
nodes (s, g') and (s, g"). 
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- I f g  = <R>g ~ or g = [R]g', then for each state s J such that (s ,s  ~) E R, there 
is an edge from (s, g) to (s', g'). 

A path  in GK,I is a finite sequence of nodes such that  there is an edge in 
E from each node in the path to the succeeding node. A path starting and 
ending with the same node is a cycle. A subformula g E S F ( f )  is called a/~- 
subformula (respectively, a u-subformula) if g is of the form p x ( f )  (respectively, 
ux( f ) ) .  We say that  a cycle C in G K j ,  is a u-cycle (respectively, #-cycle) if 
the longest subformula appearing in a node on C is v-subformula (respectively, 
#-subformula).  A node (s, g) in G K j  is called a A-node if g is of the form gl A g2 
or is of the form [R]gl; note that  in the later case gl will be a constant. A node 
(s, g) is called a V-node if g is of the form gl V g2 or is of the form <R>gl. 

O b s e r v a t i o n  3.1 The graph GK,$ satisfies the following properties. 

- Assume that there is an edge from (s, g) to (s', g~) in G K j .  
* I fg  = <R>g ~ org -- [RJg ~ then (s ,s  ~) E R; otherwise, s ~ = s. 
. I fg  is not a variable then g~ is a subformula ofg. I fg  is a variable then 

g is a subformula of gl. 
- For any node (s, g) in G K j ,  there is a path from (s, g) to a node on a cycle 

iff g has at least one variable in it (i.e. g is not a constant). 
- Let C be a cycle and (s, g) be a node on it such that g is the longest formula 

appearing in all the nodes on C. Then, g is a #-subformula or a u-subformula. 
In addition, all other subformulas appearing in some node on C themselves 
are subformulas of g. 

Now, we label the nodes of GK,I as follows. With each node u G V, we 
maintain a variable label(u) that  denotes the label of the node u. Each of these 
variables takes one of the three values--true, false, N I L ,  and is initialized to the 
value N I L .  During the execution of the algorithm, the values of these variables 
will be set to true or false. When once a variable is set to one of these two values, 
it will never be changed. Furthermore, for any node u = (s, g), a t  the end of the 
execution of the algorithm, label(s, g) = true iff K , s  ~ g. 

At any t ime during the execution of the algorithm, if label(u) = N I L  then 
we say that  node u is unlabeled at that  time. We say that  a path is unlabeled if 
all the nodes on the path are unlabeled. Let n be the length of the formula f .  
We execute the following algorithm on the graph G K j .  

1 .  For each node u E V, label(u) *- N I L .  
2. For each g E S F ( f )  in increasing lengths of g, and for each s G S, update 

label(u), where u = (s, g), as follows. 
- g -- P :  I f  P e L(s) then label(u) . -  true else label(u) *-- false. 
- g -- "~P: I f  P ~ L(s) then label(u) *-- true else label(u) ~-- false. 
- g - - g ' A g ' o r g =  [RJg':  

I f  for all successors u' of u it is the case that  label(u I) = true then 
label(u) ,-- true; 
/ f  for some successor u' of u such that  label(u') = false then label(u) *- 
false. In other cases, label(u) is unchanged (i.e. - N I L ) .  
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_ g = g t V g ,  o r g = < R > g  I :  
I f  for some successor u' of u label(u') = true then label(u) *--- true; 
I f  for all successors C of u it is the case that  label(C) = false then 
label(u) .-- false. 
In other cases, label(u) is unchanged. 

- None of the above: label(u) is unchanged. 

3. For each unlabeled node u �9 V, if there exists an unlabeled path from u to 
an unlabeled v-cycle then label(u) ~-- true. 

4. For each unlabeled node u, label(u) ~ false. 

T h e o r e m  3.1 After the execution of the above algorithm, for any node u = 
(s, g) in G K j  where g is a closed subformula, label(u) = true iff K, s ~ g. 

In order to prove the above theorem, we need some lemmas. First, it is to 
be noted that  after the execution of step 2 of the above algorithm, the following 
conditions are satisfied. For all nodes u in GK,! such that  there is no path 
connecting u to a node on a cycle, label(u) ~ N I L .  Hence, for each node u = 
(s, g) where g is a constant, label(u) ~ N I L .  For this case, it should be easy to 
see that  label(s, g) = true iff K, s ~ g. Also, for every node u = (s, g) such that  
label(s, g) = N I L ,  there is at least one successor node u' such that  label(C) = 
N I L .  In addition, if g = g~ A g", then for one successor C, label(u') = true and 
for the other successor u", label(u") -- N I L .  Consider any node (s, g) such that  
label(s, g) ~ N I L '  For any evaluation p over the free variables of g, the following 
property holds: s E A4K,a(p)iff  label(s) = true. For any node (s, g) where g is a 
#-formula or a v-formula, label(s, g) = N I L .  

In step 3 of the algorithm, all nodes lying on unlabeled v-cycles or all nodes 
that  have unlabeled paths to such cycles will be labeled true. Now, we prove 
that  step 3 of the above algorithm is sound. To do this, we need the following 
lemmas. 

L e m m a  1. Let u0, uz, ..., Uk be a path in GK,] after execution of step 2 of the 
above algorithm where for each i = O, 1, ..., k - l ,  ui is a A-node or a V-node. Also, 
let ui = (si, gi). Then, each gi is a subformula of go, and for any evaluation p on 
the free-vat(go), i f  sk E .MK,gk(p/) where p' is a restriction of p to free-var(gk), 
then so E ./t4K,ao (p). 

The above lemma can be proved by a simple induction on the length of go. 

Lemma 2. Let u0, uz,..., uk be an unlabeled path in GK,$ after the execution of 
step 2 of the above algorithm satisfying the following conditions: for each i > O, 
ui "- (si, gi), g~ is a strict subformula of go and gk E free-vat(go). Then, for any 
evahat ion p over free-va (go), if ,k e p(g ) then ,o �9 MK.go(V). 

The following lemma shows that  step 3 of the above algorithm is sound. 
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L e m m a  3. Let 

- no,u1, ...,uk = uo be an unlabeled v-cycle in GK,] after execution of step 2 
of the above algorithm; 

- = 9 0  for  o < i < where go = vx(g' )  is the tongest sub/ormula 
appearing in any node of the cycle; 

- S '  = { s i  : O < i < k,g~ = go} .  

Then, for any evaluation p on the free-vat(go), S ~ C JVtK,go(p). 

The remainder of the proof of theorem 3.1 and the proofs of the lemmas will 
be given in an extended version of this paper. 
C o m p l e x i t y  and  Express iveness  

Below, we discuss the complexity of the above algorithm. First, it is to be 
noted that the number of vertices in GK,], i.e. IYl, is O([SII/I). The number of 
edges in GKj ,  i,e. IEI = O([RIIfl + [Sl[fl). It is not difficult to see that steps 1, 
2, 4 and 5 can all be implemented in time linear in (IYl + IEI)- 

Step 3 can be implement ed using an algorithm of complexity O(I f l(IYl+lEI)). 
This algorithm works as follows: It first identifies all nodes that lie on unlabeled 
v-cycles. This is done as follows. 

For each v-subformula g of f and in the increasing lengths of g, consider the 
restriction of GK,I to unlabeled nodes of the form (s, g~) where gt is a subformula 
of g. For each strongly connected component C of the restricted graph, find the 
type of the longest subformula in any node of C; if this formula is a v-formula 
then mark all the nodes of C as nodes lying on a v-cycle. 

In the full paper we will show that the above algorithm correctly identifies 
M1 the nodes that lie on unlabeled v-cycles. After this, it is straightforward to 
find nodes that have unlabeld paths to such cycles. Each iteration of the above 
algorithm can be implemented using an algorithm of complexity O(IV I + IEI). 
Hence, all the iterations together take time O(If](IYl + IEI)). 

Thus, the overall complexity of the algorithm is O([fl(IvI + IZl)). Substitut- 
ing for lYl and IZl in terms of ISI and l//], we see that the overall complexity of 
the above algorithm is O([fl2(ISI + IRD). 

The above algorithm can be naturally be extended to the logic L2 with the 
same complexity. We will present this in the full paper. Thus, model checking 
for L2 can also be done in time O(Ifl2(ISI + IR[)). 

We compare the expressive power of the logics to well known branching 
time temporal logics. Consider the branching time temporal logic CTL*. Let the 
ECTL* (given in [13]) denote the extended version of the logic CTL* where each 
path formula can be as expressive as w-regular expressions. 

T h e o r e m  3.2 The logic L2 is as expressive as ECTL *. 

P r o o f  We give an outline of the proof. First, we show that any ECTL* formula 
of the form E(p) where E is the existential path quantifier and p is an w-regular 
expression can be translated in to the logic L1. To achieve this, we translate 
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p into a Buchi automaton A on infinite strings. It is well known that linear p- 
calculus, i.e. p-calculus interpreted over infinite strings is as expressive as Buchi 
automaton on infinite strings. The logic L1 is similar to the linear p-calculus. 
We can apply the same techniques used as in the case of linear p-calculus, to 
show that for any Buchi automaton A we can obtain a formula f in L1 such 
that f is satisfied at a state in a Kripke structure iff there exists an infinite path 
from that state that is accepted by A. Applying this translation inductively, we 
can show that any formula of the logic ECTL* can be translated in to the logic 
L2. 

To prove that every formula in L2 can be translated into ECTL*, it is enough 
to show that L1 can be translated into ECTL*. This translation can be applied 
inductively, to show that any formula of L2 can also be translated into ECTL*. 
Given a formula f in L1, we can construct a Buchi automaton A on infinite 
strings, and from this obtain an equivalent ECTL* formula of the form E(p) 
where p is an w-regular expression. �9 

We can also use the following alternate approach for model-checking for 
formulas in L1 which will have the same complexity. We briefly describe this 
method. The proof of Theorem 3.2 shows that for each formula f in L1 there 
exists a formula of the form E(p) in ECTL*, where p is a path formula, such 
that f is equivalent to E(p). In fact, from f ,  we can construct a parity string 
automaton A I (see the next section for the definition of parity automaton) with 
the following property: f is satisfied at a node so in a Kripke structure iff there 
exists an infinite path from so that is accepted by A]. The number of states in 
the automaton A] will be O(Ifl) and the number of sets in the accepting condi- 
tion will be O(If] ). Now to check if the formula f is satisfied at state so of K, we 
simply consider K as a string automaton and construct the product automaton 
of A.t and K, and check for non-emptiness of this product automaton. The size 
of the product automaton ,which will also be a parity string automaton, will be 
O((ISI + IRI)Ill), and the number of sets in the accepting condition will be O(Ifl) 
(in fact, the graph GK,$ constructed in our algorithm is itself can be considered 
as the product automaton). Checking non-emptiness for parity string automaton 
can be done using a procedure, similar to the one used for step 3 of the previous 
algorithm, of complexity linear in the product of the size of the automaton and 
the number of sets in the acceptance condition. The complexity of this method 
will also be O(Ifl2(ISI + IRI)). 

4 R e l a t i o n s h i p  b e t w e e n  M o d e l  C h e c k i n g  a n d  A u t o m a t a  

In this section we explore the relationship between the model checking problem 
for p-calculus and the emptiness problem for automata on infinite trees. More 
specifically, we show that the model checking problem for the complete logic 
p-calculus is euquivalent under linear reductions to the emptiness problem of a 
particular type of automata on infinite trees, called parity automata. This shows 
that there is an efficient model checking algorithm for #-calculus iff there is a n  
efficient algorithm for checking emptiness of parity automata. 
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A corollary of the above result is that  the model checking problem for formu- 
las of p-calculus which are of the form vy(g) where g is in normal form and # is 
the only fixed point operator appearing in g, is equivalent to the non-emptiness 
problem for Buchi tree automata  

First, we define parity tree automata (introduced in [5, 9]). A parity tree 
automaton A on infinite binary tree is a 5-tuple (Z, Q, q0, 6, F)  where S is the 
input alphabet, Q is the set of automaton states, q0 is the initial states, 5 : 
(Q x Z )  -+ 2 Q• is the next move relation and F = (F0, F1, ..., Fk) where 
F0, F1, ..., F~ is a sequence of mutually disjoint subsets of Q. F is called the 
acceptance condition. Note that,  for any a E Z and q E Q, ~(q, a) is a set of 
pairs of the form (q', q ')  where q' and q"  are automaton states; Intuitively, if 
the au tomaton  is in state q and reads input a in the current node then the state 
of the automaton on the left child is going to be q' and its state on the right 
child is going to be q ' .  We denote the infinite binary tree by the set {0, 1)*. The 
empty string denotes the root of the tree and the two children of x are x0 and 
xl .  An infinite path ~ in the tree is an infinite sequence of nodes starting with 
root node and such that  each succeeding node is a child of the preceding node. 

An input to the automaton is a marked infinite binary tree which is a function 
r : {0, 1)* -* S.  A run of r of A on input r is a function r : {0,1}* --+ Q, 
associating a state of the automaton with each node of the tree, such that  r(e) = 
q0, and for any x e {0, 1}* (r(xO), r (xl))  E 6(r(x), r(x)) .  For a run r and an 
infinite path a = cr0,al, . . . ,hi, . . . ,  we let r(tr) denote the infinite sequence of 
automaton states r(tr0), ..., r(a~), .... The run r is accepting if for every infinite 
path a, the following condition is satisfied: there exists an even number l, 0 < 
I < k, such that  some state in Fl appears infinitely often in r(a) and each of 
the states in the set (Uz<j<~ Fj) only appears finitely often in r(a).  We say that  
the automaton A accepts an input r i f f  there exists an accepting run r of the 
automaton on the input v. 

A Buchi automaton is a parity tree automaton in which the accepting con- 
dition F is of length one, i.e. it has only one set. Note that  this definition is 
equivalent to the standard definition of Buchi tree automaton. 

T h e o r e m  4.1 Given a kripke structure K = (S, R, L) and any p-calculus for- 
mula f and a stale so E S, we can oblain a parity tree automaton A of size 
O((ISl + IRI)Ifl) in time O((IS I § tRI)lfl)such that 

- the number of sets in the acceptance condition of A is less than or equal to 
al tdepth( f )  + 1, and 

- A accepts at least one input iff K, so ~ f .  

P r o o f  We briefly sketch the proof here. Let f be the given p-calculus formula 
and K be the given Kripke structure. First we construct the graph GK,y = (V, E)  
as given in the previous section. Recall that  each node in V is of the form 
(s, h) where s ~ S and h is a subformula of f .  The edge set E is as defined in 
the previous section. For example, when h is of the form [R] h', then for each 
(s, s') E R there is an edge from (s, h) to (s, h') in E. We call a node (s, h) in 
V to be an A-node if h is of the form hi A h2 or is of the form JR] hi and (s, h) 
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has at least two successors (i.e. edges to two distinct nodes); we call it to be 
an atomic node if h is P or -~P for some atomic proposition P and all other 
nodes in V are called V-nodes. Note that if (s, h) is an V-node then h can be 
a variable, or a/~-subformula, or a u-subformula, or a subformula of the form 
[R] h j and (s, h) has only one successor. We make the following assumption. Any 
non-atomic node has at most two successors, i.e. two edges leaving it. If this 
condition is not satisfied, we can introduce new intermediate nodes and edges 
so that  this property is satisfied; actually, for each node u with k successors, if 
k > 2 then we introduce k - 2 additional new nodes and k - 2 additional edges. 
As a consequence, the size of GK,y = [VI + [El at most doubles. The type of a 
new node that  is introduced in the previous step is same as that  of u, i.e. it is a 
A-laode if u is a A-node, etc. After this, each A-node has exactly two successors, 
while a V-node has either one or two successors. 

The automaton A = (2Y, Q, q0, 6, F )  is defined as follows. The states set Q of 
the automaton is simply V, the initial state q0 is (so, f ) ,  the input alphabet S 
has only one symbol, say symbol a. The transitions of A are defined as follows. 
For any node u = (s, h), 8(u, a) consists of the following pairs: if u is an atomic 
node (i.e. h = P or h = -~P) then $(u,a)  = {(u,u)}; if h is V-node then 
~(u, a) = {(v, v) : (u, v) E E}; if h is a A-node then ~(u, a) = {(v, v ' ) :  v and v' 
are the successors of u}. 

We define the acceptance condition F = (F0, F1, ..., F(k-D) as follows. Let T 
be the set of all of g E SF( f )  such that  g is/~-subformula or is a u-subformula. 
First, arrange the members of T into a sequence so that  for any two distinct h, 
g in T where h is a subformula of g, h appears before g. After this, group all 
subformulas of same type that  appear contiguously in the above sequence into 
one set and obtain a sequence Co, C1, ..., C(i_ 1) of sets of subformulas that  forms 
a parti t ion of T satisfying the following properties: 

- Each Ci contains subformulas of the same type, i.e. all of them are #- 
subformulas or all of them are u-subformulas. In addition, for each i < ( I -1 ) ,  
C~ and C(i+l) contain different types of formulas. 

- For any g, h E T where g and h are of different type and g is a subformula 
of h, if g appears in some set Ci then h appears in a late r set, i.e. h appears 
in Cj for some j > i. 

We define F = (F0, F1, ..., F(k-1)) according to the following three cases. 

Co c o n t a i n s  u - s u b f o r m u l a s :  In this case k = I. F0 = (S  x Co) U U where U is 
the set of all atomic nodes u such that  u is of the form (s, P )  and P E L(s), 
or is of the form (s, -~P) and P ~ L(s). For 0 < i < k, Fi = S x Ci. 

Co c o n t a i n s / ~ - s u b f o r m u l a s  a n d  l > 1: In this case k = l -  1. F0 = (S • C1) U 
U where U is same as in the previous case. For 0 < i < k, Fi = S • Ci+l. 

Co c o n t a i n s / ~ - s u b f o r m u l a s  a n d  l = 1~ o r  T is e m p t y :  In this case k = 1. 
F0 = U where U is as in the previous cases. 

The last of the above cases occurs if the formula has no us. It can be shown 
that  the automaton A accepts at least one input iff K, so ~ f .  It is also not 
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difficult to see that the size of the automaton, which is the sum of the number 
of states, the total number of transitions and the sum of the cardinalities of all 
sets in F,  is O((ISI + IRI)III). 

[] 

T h e o r e m  4.2 Given a parity tree automaton A = ( S ,  Q, qo, 6, F), we can obtain 
a Kripke structure K whose size is linear in the size of A and a It-calculus 
formula f which is linear in the length of the acceptance condition, and a state 
so in K, such that 

- altdepth(f) = 1+ the number of sets in F, and 
- A accepts at least one input iff K, so ~ f .  

P r o o f  This theorem follows from the results of [5]. However, for the sake of 
completeness, we outline the major steps of the proof. 

Without loss of  generality, we can assume that the alphabet of A is a sin- 
gleton consisting of the symbol a. Let the acceptance condition F be given 
by (F1, F2, ...,Fk-1) (note that index of the first set in F is 1). Let F0 = 
Q - U l < i < k  Fi. Now, consider the sets F0, F1, ..., Fk-1. Corresponding to each Fi, 
We use an atomic proposition Pi. We give the informal description of the Kripke 
structure K = (S,/~i L). S has the following elements. We call each element of S 
as a node and each element of R as an edge. Corresponding to each automaton 
state s, there is one node in S which is also denoted by s. For such a node s, if 
s E Fi ,for some i < k, then L(s) = {Pi}, otherwise L(s) is the empty set. 

Corresponding to each pair of states (sl,s2), such that (sl,s2) e 8(s,a) 
for some state s, S has a node which we denote by the triple (s, sl, s2) and 
L((s, sl, 82)) = L(s). R has the following edges. Corresponding to the above 
transition, there is an edge from the node s to the node (s, sl, s2) and there are 
edges from (s, sl, s2) to sl and to sg.. f is given by the following formula: 
Ak-lz~-IAk-2zk-~...Aozo(Vo<~<k Pi A <R>I'R'I zi) 

where Ak-1...A0 is an alternating sequence #s and vs ending with It. Now, 
take so = q0. From the results of [5], it follows that K, so ~ f if[ A accepts at 
least one input. [ ]  

Coro l l a ry4 .  The model checking problem for formulas of the form uz f where 
f is in normalized form and has no further vs appearing in it is equivalent,.to 
checking non-emptiness of Buchi tree automata. 

T h e o r e m  4.3 The model checking problem for the full It-calculus is in NPf3co- 
NP: Formally, the set of encodings of all triples (K, so, f )  satisfying the following 
condition is in NPNco-NP: K is a Kripke structure, so is a state in K and f is 
a It-calculus formula such that K, So ~ f .  

5 Conclus ion  

In this paper we considered two different fragments of #-calculus, logics L1 and 
Lz. We gave model checking algorithms for logics L1 and L2 which are of corn- 
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plexity O(m2n) where m is the length of the formula and n is the size of the 
structure. We have shown that  the logic L2 is as expressive as ECTL* given 
in [13]. In additions to these results, we have shown that  the model checking 
problem for the p-calculus is equivalent to the non-emptiness problem of parity 
tree automata.  

It will be interesting to investigate if there is a model checking algorithm for 
the logics L~ and L2 which is only of complexity O(mn) instead of O(m2n). Of 
course, determining if the model checking problem for the full g-calculus is in P 
or not, is also an open problem. 
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