
Verifying T i m e d Behavior A u t o m a t a with
I n p u t / O u t p u t Critical Races*

David K. Probst and Hon F. Li
Depar tment of Computer Science

Concordia University
1455 de Maisonneuve Blvd. West

Montreal, Quebec H3G 1M8

Abs t r ac t . Timed behavior automata are finite-state generators of timed
behaviors, which are infinite timing-constrained pomsets of system events.
Automatic verification is not showing inclusion of infinitary timed string
languages. Rather, model checking starts by linking specification mir-
ror and implementation network; verification is showing satisfaction of
an infinite timing-constraint graph with recurrence structure. Branch-
ing controlled by input/output races models more interesting timing
properties such as timeout and exception handling. We show how to
mirror timed behavior automata with input/output races, and show
that constraint-graph satisfaction can still be computed efficiently by
linear-time shortest-path algorithms. The advantage of TBA over timed
w-automata is ease of mirroring. Untimed behavior automata [14] are
modified in two ways: (i) output actions are performed inside a timing
window relative to their enabling, and (ii)i t is assumed that input ac-
tions are performed inside a timing window relative to their enabling.
Failure and timeout semantics define the process response to violations
of this assumption protocol.

1 Introduction

Many researchers are developing formal methods for the specification, verifica-
tion and systematic design of reliable reactive systems, such as control and com-
munication systems and embedded real-time systems. Reactive systems are open
systems that mainta in an ongoing interaction with their environment. Interest
in verifying t iming properties has focused attention on proposMs for modelling,
specifying and reasoning about real-time systems [1-10]. Most work on t imed
reactive systems starts from a semantic model of limed behavior as a sequence
of t imed states. In this model, behaviors are infinite sequences of s ta tes - -where
states are s tamped by l i m e - - t h a t may occur in a possible run of the t imed
system. The computat ional model, i.e., the effective representation of realizable
t imed systems, is typically a t imed transition system or a t imed w-automaton

* This research was supported in part by NSERC grants A3363, A0921 and
MEF0040121, and by Micronet, A Network of Centres of Excellence. E-mail:
probst@crim.ca and probst@vlsi.concordia.ca.

425

[9]. In this paper, we develop an alternative to the standard approach, viz.,
the timed behavior automata introduced in [16], which are effective representa-
tions of realizable timed systems based on a model of partially-ordered, dense,
branching time. The main advantage of our computational model, TBA, is an
easily-applied, simple theory without state explosion.

In contrast to the standard approach, TBA starts from a semantic model
of timed behavior as a timing-constrained pomset of system events [11]. In this
model, behaviors are infinite pomsets of system events--where successor arrows
are stamped by ~ime bounds--that may occur in a possible run of the timed
system. Time bounds are necessary timing constraints among (possibly nonlocal)
system events. They refine two aspects of untimed pomsets and pomtrees, viz.,
(i)' necessary temporal precedences, and (ii) the requirement of justice (weak
fairness). The computational model is timed behavior automata, which are finite-
state generators of sets of infinite timing-constrained pomsets (equivalently, of
an infinite timing-constrained pomtree). Race-controlled branching is new in this
paper.

In TBA, there are minimum and maximum delays in the scheduling of en-
abled actions, and special "concentrators" to allow nonbinary delay constraints
to be verified efficiently by shortest-path algorithms in graphs. Using restricted
TBA, which disallows mixed-type critical races, we were able to prove timing
properties such as timing-window bounds on system responses, and show that
system inputs do not arrive too fast [16]. We achieved tractable (polynomial-
time) model checking of finite-state real-time systems. The question left posed
in [16] was whether extension of the branching structure of restricted TBA
to include more interesting timing properties such as timeout and exception
handling--by allowing mixed-type critical races to control TBA branching--
would substantially complicate the specification and verification picture. Intro-
ducing timing windows for input actions (for timeout) and allowing temporary
disruption of output actions (for exception handling) does not significantly in-
crease the difficulty of forming the mirror of a timed behavior automaton used
as a requirements specification. As a result, the additional complexity and state
explosion of timed w-automata are avoided.

The semantic model (notion of timed behavior) and the computational model
(class of automata used to generate or recognize timed behaviors) have a major
impact on the practicality of real-time model checking. The timed w-automata
school defines verification as showing language inclusion, and tests the emptiness
of the intersection of the implementation automaton and the complement of the
specification automaton. The problem is that nontrivial specification automata
do not complement well (problems range from exponential blowup to nonexis-
tence). With a weaker computational model, one can prove bounded-response
and bounded-invariance properties of timed transition systems (for example, us-
ing deductive bounded-operator reasoning). More practical but often deductive,
this approach has not been extended to more complicated real-time proper-
ties. The primary advantage of TBA is the ease of forming the complement
of the specification. Verification is showing satisfaction of an infinite timing-

426

constraint graph with recurrence structure [8]. By incorporating timeout and
exception handling into TBA, we broaden the class of real-time properties that
can be specified and verified (the broadened class is surprisingly wide), and
preserve tractable (polynomial-time) automatic verification. The satisfaction of
finite timing-constraint graphs is checked efficiently by shortest-path algorithms
in graphs. The recurrence structure provides finite checkability of the infinite
constraint graph.

In general, timing constraints in closed timed systems are enforced by some
mixture of bounded invariance (which refines "push-away" causality) and bounded
response (which refines "pull-back" justice). Refinement has a distinctive flavor
in partial-order representations, and is only partly from the qualitative to the
qtrantitative level of modelling. When timing assumptions are added to a prece-
dence automaton with justice, zero-valued push-away values become strictly-
positive real numbers, while "finite but unbounded" pull-back values (written
-oo) become strictly-negative real numbers. The branching structure in timed
behavior automata allows input/output races to control the resolution of some

nondeterministic choice. Timing constraints are independently specified for each
branch. Race-controlled branching (daemon choice) is in addition to any branch-
ing due to input or output choice. That is, TBA branching models both same-
type nondeterministic choice and mixed-type critical races.

As in [15-16], we assume some familiarity with [14], primarily for termination
of unfolding of networks of behavior automata. The following features of untimed
behavior automata are retained in timed versions: (i) a finite partial-order rep-
resentation that explicitly distinguishes concurrency, branching and recurrence,
and (ii) a state encoding that is both constraint comprehensive (includes all con-
straints) and state minimal (has fewest states). There is no time component in
state encodings, and there are no timed states.

2 Abstract Specification of Timed Reactive Systems

Abstract specifications refer to externally-visible computational behaviors. An
untimed behavior automaton generates sets of partially-ordered computations
with precedence constraints and justice (weak fairness) [12-14]. In the untimed
case, (i) no action may occur until it is enabled, and (ii) once enabled, an out-
put action must occur eventually. A timed behavior automaton generates sets
of partially-ordered computations with timing constraints among (possibly non-
local) events. There are minimum-delay and maximum-delay constraints, called
push-away and pull-back arrows, respectively. In the timed case, (i) no action
may occur until it has been continuously enabled for a minimum delay, and (ii)
once an action has been continuously enabled for a maximum delay, it must oc-
cur immediately. In the assumption/guarantee style of specification, violations of
timing constraints on input events are handled by failure and timeout semantics.

In restricted TBA, an output action remains scheduled during a timing win-
dow relative to its enabling, while an input action remains scheduled until it
occurs; in full TBA, input actions also have timing windows and output actions

427

may be briefly disrupted inside their timing windows. For a timed system to be
correct, the timing constraint graph produced by coupling specification mirror
mP to implementation network Net must be feasible.

A process P has disjoint sets of input and output ports. Ports may be the loci
of generalized control elements such as tests and conditions. Process behaviors
result from use of process P by P's environment. P's input actions are under the
control of P's environment, while P's output actions are under the control of P.
An input action may be process-scheduled testing of an environment-controlled
state predicate.

Safety properties constrain both the process and its environment. A safety vi-
olation is the performance of an action that is not scheduled. A process receiving
unsafe input obeys its failure semantics, liveness properties also constrain both
the process and its environment. A liveness violation is the nonperformance of
an enabled action before the expiration of its timing window. A process failing
to receive timely input obeys its timeout semantics.

2.1 Formal C o n s t r u c t i o n of Behav io r A u t o m a t a

Timed behavior automata are constructed in four phases. Untimed versions are
succinct encodings of sets of infinite pomsets [12,13]; timed versions add tim-
ing constraints. First, there is a "small" deterministic finite-state machine D
that expresses the branching and recurrence structure of the process. In full
TBA, branching is caused by any of the following: (i) input choice, (ii) output
choice and (iii) input/output critical race. Second, there is an expansion of each
transition of dfsm D into an finite poset, with sockets to define poset concatena-
tion. Third, there is a labelling of successor arrows to define the state encoding.
Fourth, each successor arrow is replaced by a matched pair consisting of: (i) a
push-away arrow labelled with a strictly-positive real number, and (ii) a pull-
back arrow labelled with a strictly-negative real number. Maxima and minima
of presets are related to members of presets by special timing-constraint arrows
labelled with +0.

We sketch the formal definition of behavior automaton. Given disjoint alpha-
bets Act (process actions), Arr (successor arrow labels), Com (dfsm D transi-
tions) and Soc (sockets), define Pos as the set of finite labelled posets over Act
U Soc. Each member of Pos is a labelled poset (B,r,~), where (i) F is a partial
order over B C Act U Soc, and (ii) ~, : ~ --* Art assigns a label to each element'in
the successor relation ~ (the transitive reduction of F). A behavior automaton is
a 3-tuple (D,~,~b), where (i) D is a dfsm over Corn, (ii) ~: Corn --* Pos maps dfsm
transitions to labelled posets, and (iii) ~b: Soc --* powerset(Act) maps sockets to
sets of process actions. ~b defines which process actions may fill a socket when a
command is concatenated to a sequence of earlier commands. There is an imag-
inary reset action .. In timed behavior automata, successor arrows in posets are
replaced by matched pairs of push-away and pull-back arrows. When multiple
actions enable an action a, a's pull-back arrow is incident to the pseudoaction
that is the maximum of a's preset. Pseudoactions trivially extend the alphabet
Act, but may be removed by transitive closure and disjunction.

428

3 T i m e d B e h a v i o r A u t o m a t a

Figure 1 shows an untimed behavior automaton for a C-element, where the la-
bels on successor arrows provide a "state" encoding whose only function is to
terminate the unfolding of closed systems of coupled behavior automata dur-
ing verification. Separate specification of timing properties in TBA causes this
function--of labels--to be preserved unchanged. The untimed specification is
written in the standard assume/guarantee style, where the dashed arrows are
the assumption protocol and the solid arrows are the guarantee protocol. As long
as the environment satisfies the assumption protocol, the process will satisfy the
guarantee protocol. The failure semantics defines the process response to the
first occurrence of bad input. Two possibilities are: (i) the process becomes un-
defined, and (ii) the bad input is ignored. The brackets are a justice requirement
on the process; they assert that an enabled process output action must occur
eventually. There is no justice requirement on the environment; a process input
action may be enabled yet never occur. When timed behavior automata are con-
structed by adjoining timing assumptions to untimed behavior automata, justice
requirements are replaced by quantitative pull-backs to pseudoactions (maxima
of enabling presets).

nl ..~.a+~,,,~3 n5 ..~.a ~ , ~
. - +]1]

"~'b n6 ~'t~

Fig. 1. Untimed behaviour automaton for a C-element

Figure 2 shows a restricted timed behavior automaton for a timed wire (minus
the state-encoding labels) with push-away and pull-back arrows to specify timing
windows. The wire remains excited after input a for at least 2 units, but not
more than 5 units, before responding with output _b. We use matched pairs of
arrows: a push-away (bounded-invariance) arrow a ~ b labelled with +2, and a
pull-back (bounded:response) arrow a ~-- _b labelled with - 5 (upper bounds are
expressed as negative lower bounds in the opposite direction) [3]. Both push-
away and pull-back arrows in constraint graphs are minlmum-delay constraints.
The triangle inequality in constraint graphs is: to derive a timing label t on
an arbitrary a --+ b, find all directed paths from a to b, and compute the sum
of minimum delays along each path; if there are distinct sums, then take the
maximum.

Figure 3(b) shows the sensible way to quantify a justice requirement in a
partial-order representation with timing constraints. A pull-back constraint is
specified relative to an enabling condition (pseudoaction ~ is the last of d and
e). If fl is the last of a and b, then fl is a or b, and a pull-back to fl is a pull-back
to a or b. In Figure 3(b), there is no minimum delay from f_ to d or e. Rather,

429

a+ +2 +-] +0 +2 ~ : 0 + 0 ~ ~ b~.. a" ~ b -
0 : o ~ ~-5 ~-5

Fig. 2. Timed behavior automaton for a wire

either d - L _> - 6 or e - L >__ -6 : We say that pull-back arrows d ~ L and e *-- L
form a complete disjunctive set.

j J
e "

~ -6 f

(a) Intractable case (b) Tractable case

Fig. 3. Quantifying justice in a partial-order representation

Figure 4 shows a restricted timed behavior automaton for a timed C-element.
fl = max{a, b} and a = miu{a, b}. Action c remains scheduled during a t iming
window relative to fl, while c~ remains scheduled until it occurs. r - {o, a}. In
the appropriate context, the special push-away arrows with timing label +0 may
be read as zero-valued pull-back or push-away arrows in the opposite direction--
for the purposes of applying the triangle inequality--provided their assertions
are interpreted disjunctively. To derive a timing label t on a pull-back arrow
a #-- b, recursively find all complete disjunctive sets of directed paths from b to
a, and compute the sum of minimum delays along each path; if there are distinct
sums in a given disjunctive set, then take the minimum.

+6

:: . i

0 : o ~ ~ c_ a
-4

+ 0 ~ b

Fig. 4. Timed behavior automaton for a timed C-element

: 0

430

3.1 B r a n c h i n g C o n t r o l l e d b y I n p u t / O u t p u t Cr i t i ca l Races

Figure 5 shows a timed behavior automaton for a wire with timeout. The de-
terministic finite-state machine D underlying this automaton has a start node
(reached by reset action o) and two self-loops: a transition n for normal op-
eration, and a transition t for timeout. In Figure 5, both n and t have been
expanded into finite posets with timing constraints. Sockets define concatena-
tion of posets; here, both sockets satisfy r = {,,, b}. In t, socket o appears
in the middle of the poset. As long as the environment satisfies the assumption
protocol (given by the dashed arrows), the process will satisfy the guarantee
protocol (given by the solid arrows). Since the assumption protocol contains (i)
push-away arrows, (ii) pull-back arrows and (iii) race-controlled branching, we
will provide the semantics in stages.

n

c)
O

(_.)

+1 +2 "~
n = o ~-__=3::: > _ a < - 4 > b_

+4 >

= a o < - 6

Fig. 5. Timed behaviour automaton for a timeout wire

To deal with inputs that might arrive too fast, normal transition n has a
dashed push-away arrow from socket o to input action a labelled with +1. The
failure semantics is that earlier input may be ignored. To deal with inputs that
might arrive too slowly, there are two items: (i) timeout transition t has a dashed
push-away arrow from o to a labelled with +2, and (ii) normal transition n has
a dashed pull-back arrow from a to o labelled with -3 . The timeout semantics
is that the process maytime out as soon as 2 time units without input have
elapsed--relative to the most recent �9 or b_.--but must time out as soon as 3 time
units have elapsed. Any later input will be ignored until input is re-enabled. Be-
tween 2 and 3 time units, the decision to time out is taken nondeterministicaliy.

Mirror construction becomes clear as soon as we see what is required by the
requirements specification. The process may ignore input a in [0, 1). The process
must select n for input in [1, 2). The process may select either n or t for input
in [2, 3), but must select t after 3 time units. If either n or t is selected, then the
process must produce output _b in the specified timing window. We use mirror mP
of specification P as a conceptual implementation tester. The mirror provides
or withholds input to exercise each requirement of the assume/guarantee proto-
col. This means in particular that mP determines both (i) whether 1 is a lower
bound on ignoring input a, and (ii) whether 2 and 3 are lower and upper bounds
on noticing the absence of input a. It checks whether these constraints are sup-

431

ported by chains of implementation constraints. Correctness of race-controlled
branching is satisfaction of a timing-constraint graph, nothing more.

Correctness is a preorder in the untimed case [12-14]. This remains true in the
timed case. We show this for the specification in Figure 5. The implementation
lower bound for necessarily accepting input must be less than or equM to the
specification lower bound for necessarily accepting input. The implementation
timeout decision window--that is, the interval between lower and upper bounds
for timing out--must be contained within the specification timeout decision
window. The implementation oulput window--that is, the interval between lower
and upper bounds for performing an output action--must be contained within
the corresponding specification output window, for either timeout or normal
operation.

4 Composi t ion of T imed Behavior A u t o m a t a

We construct an extremely simple implementation network to study both com-
position and verification. The network fails in several ways to implement the
specification in Figure 5.

Figure 6 shows a timed behavior automaton for a fork with timeout. There
are two self-loops in dfsm D: a normal transition n and a timeout transition t.
Both sockets satisfy r = {o, fl}. Again, socket o is in the middle of t. The
fork may ignore input in the interval [0, 1). The fork may time out if 6 time units
without input have elapsed, but must time out if 7 time units have elapsed. All
times are relative to the most recent �9 or ft.

n

�9

t

+1 b-1 +0

13

t = a "<-+6

Fig. 6. Timed behaviour automaton for a timeout fork

432

Figure 7 shows a timed behavior automaton for a C-element with an ac-
knowledgment protocol. There is recurrence but no branching in dfsm D. The
socket satisfies r = {.,c}. The C-element may ignore input in the interval
[0, 1) relative to the most recent �9 or c.

0" o ___+1__> a

a

+0,1
/ +2

:0

Fig. 7. Timed behaviour automaton for a C-element with an acknowledgment protocol

Figure 8 shows a fragment of the timing-constraint graph produced when the
outputs of the timed fork become the inputs of the timed C-element. This creates
a" timeout wire. Figure 8 contains constraint information from two branches of
the closed-system pomtree. The central horizontal line is normal operation; the
upper and lower lines are timeout. The pair of dashed arrows shows the timeout
decision window of the fork relative to its output/~. When is the earliest that the
network could time out relative to c? Since - 4 + 6 = 2, the network cannot time
out before 2 time units. When is the latest it could time out? Since - 7 + 2 = -5 ,
the network must time out after 5 time units. That is, the network timeout
decision window is [2, 5]. In both cases, we have been following chains of arrows
regardless of type between upper a and central c. When the network does time
out, since - 4 + 5 + 2 = 3 and - 4 + - 5 + 2 = -7 , we deduce the timing bounds on
network timeout output c. The network timeout output window is [3,7]. Here,
we have been following chains of arrows regardless of type between central c and
lower c. The fork may ignore input in the interval [0, 1) relative to/3, so the
network may ignore input earlier than output c. Here, we have observed that _c
is at least 2 time units after ;3. We do not know the dashed push-away from c to
a that is necessary to prevent all component failure.

5 Correctness and Race-Controlled Branching

We define correctness of a timed system by using mirror mP of specification P as
a conceptual implementation tester. We form closed real-time system S by linking
mirror mP to implementation Net. Unfolding the resulting finite-state generator
of closed system S produces a timing-constrained pomtree with constraints from
all assumption and guarantee protocols. The timing-constrained pomtree is in
fact a timing-constraint graph. Correctness is defined as satisfaction of this graph
taking into account the semantics of race-controlled branching.

In restricted TBA, mirror mP is formed by inverting the type of P's ac-
tions and the'assumption/guarantee interpretation of P's arrows, turning P's

a
+2

J

-4

4 3 3

+6
l
I r-
I i ~7

:v_+2 c-]
> 13 -4

-~'a

a
+2

J

-"-4
+ 2 c__]

13<_4---

+5 > 13<+2~ c7
-5 -4

Fig~ 8. Pomtree fragment: timeout fork composed with timed C-element

dashed arrows into solid arrows and vice versa. Brackets on mP actions and spe-
cial arrows are preserved unchanged. Since each instance of branching in closed
real-time system S is under the control of either mirror mP or some component
of implementation Net, we can check whether intraprocess guarantee protocols
support interprocess assumption protocols in pomtree S. Dashed arrows coming
from implementation components are proof obligations to show that these com-
ponents do not receive unsafe input. Dashed arrows coming from mirror mP are
proof obligations to show that the implementation does not violate the guarantee
protocol of the spedfication.

In full TBA, mirror formation is only slightly more elaborate. We perform
type inversion as before, but put a different interpretation on some solid arrows in
mirror mP. Consider mP solid arrows incident to or from mirrored input actions
in normal and timeout transitions at daemon choice points. The push-away solid
arrow in normal transition n of mP should guarantee that there is no input safety
violation in any implementation component. The pull-back solid arrow in normal
transition n of mP should be an upper bound on when implementation Net must
time out. The push-away solid arrow in timeout transition t of mP should be a
lower bound on when implementation Net may time out.

5.1 Safety Correc tness

Consider a dashed push-away arrow representing the assumption that inputs do
not arrive too fast to (i) an implementation component (input safety violation),
or (ii) mirror mP (output lower-bound violation). For each dashed push-away
arrow a --* b with timing label t, there must be a solid directed path from a to
b whose weight is at least t. Portions of the solid path may consist of chains of
solid pull-back arrows. One solid path from a to b with appropriate weight is
sufficient to verify the dashed push-away constraint.

434

5.2 Liveness Cor rec tness

Consider a set of dashed pull-back arrows representing the assumption by mP
that the implementation does not produce an output too slowly (output .upper-
bound violation). This is a complete disjunctive set of dashed pull-back arrows
from a bracketed system action c to each member of its noncausal preset A
= pre(c). Each dashed pull-back arrow a ~ c, a E A, must be supported by
the weakest solid pull-back chain a ~ c in the complete disjunctive set of solid
directed pull-back paths from c to a. By well-behavedness, there is only one
such disjunctive set for each action a E A. All the solid directed paths in a
complete disjunctive set are necessary to verify the dashed pull-back constraint.
This condition presupposes the liveness correctness of the untimed system, viz.,
the causal preset of c as determined by solid push-away chains must not be a
proper superset of the noncausal preset of c as determined by dashed push-away
arrows [14].

5.3 Race -Con t ro l l ed Branch ing Cor rec tness

In mirror mP, consider the (newly) solid arrows that define the timeout decision
window and the (newly) dashed arrows that define the timeout output window,
viz., the solid push-away arrow in ~, the solid pull-back arrow in n, and the
matched pair of dashed arrows in t. Branching correctness means that both
(i) the implementation decision window is contained within the specification
decision window, and (ii) the implementation output window is contained within
the specification output window.

6 Verification Example

The characteristic feature of the model-checking algorithms in [13-16] is that,
in the recursive generation of system actions in closed system S, M1 branching
is caused by the output choice of some process, possibly mP. In race-controlled
branching, this is no longer the case. Specification P may contain a branch
point whose outgoing transitions are selected by (i) whether timeout does occur,
or (ii) whether an exception is raised. A daemon in mP systematically trys
both possibilities at each race-controlled branch point. Suppose timeout does
not occur. Then, there is an mP-assumed upper bound on the interval with6ut
input; is it guaranteed? Suppose timeout does not occur~ Then, there is an
mP-assumed lower bound on the interval without input; is it guaranteed? The
daemon generates mirrored input actions, and then asserts timing-constraint
assumptions. In daemon choice, mP assumptions must be supported by Net
guarantees.

Rather than systematically describing the modifications to the restricted-
TBA verification algorithm [16] when race-controlled branching is incorporated,
we work the following verification example. Figure 5 (a timeout wire) is the
specification, and Figures 6 and 7 (i.e., a timeout fork linked to a timed C-
element) is the implementation network. The first task is to determine whether

435

input-failure lower bounds of implementation components are guaranteed when
implementation Net is driven by specification mirror mP (i.e., when there is
a solid push-away arrow from c to a labelled with ,4,1). Adding this arrow to
Figure 8, we easily verify the (fork) assumed/3 to a separation of ,4,1 (2 -4-1 >__ 1),
and the (C-element) assumed c to ~ separation of -t-1 (1 -4- 1 > 1). Although

is not shown in Figure 8, there is a push-away arrow from a to o~ labelled
with +1. However, the network output window [4, 8] is not contained within
the specification output window [2, 4]. Only one of the two chains of Net solid
arrows supports the corresponding mP dashed arrow [16]. ImplementationNet
is incorrect.

Because this is only an example, we proceed to determine whether race-
cotttrolled branching is correct. From Section 4, the network timeout decision
window is [2, 5]. This is not contained in the specification timeout decision win-
dow [2, 3]. mP says the lower bound on noticing the absence of input is 2; Net.
agrees (- 4 + 6 > 2). mP says the upper bound is 3; Net disagrees (-7-4-4-2 ~ -3) .
The network does not time out too soon, but may time out too late. Is the
network timeout output window correct?

We determine whether input lower bounds of implementation components
are guaranteed when the fork times out. The first fork timeout leads to network
timeout output, since the C-element does not fail for this input (-4 -4- 5 > 1).
From Section 4, which assumed no failure, the network timeout output window is
[3, 7]. This is not contained in the specification timeout output window [4, 6]. mP
says the lower bound on producing output is -4-4; Net disagrees (-4 -4- 5 + 2 ~ 4).
mP says the upper bound is , 6 ; Net disagrees (-4,4,-5,4, 2 ~ -6) . The network
satisfies neither bound. Changing the input-failure lower bound of the C-element
from -t-1 to +2 shows that this example is less trivial than it appears, and might
be developed into a benchmark. The interesting part is repetitive timeout by the
fork until its input is no longer ignored by the C-element. With a lower bound of
-4-2, the network output window changes from [3, 7] to [8, 12]. The possibility of
internal failure during timeout leads to moderately interesting algorithm design:

If the implementation had been correct, then the termination table would
have contained two states of closed system S [14]. These two states differ only
in whether mP and fork are both at the end of transition n or both at the end
of transition t.

7 E x c e p t i o n H a n d l i n g

Timing windows for input actions give rise to timeout, while (temporary) dis-
ruption of output actions gives rise to exception handling. Both are mixed-type
(input/output) critical races. The notion behind timeout is ~trgency (certain ac-
tions must be performed by certain times), while the notion behind exception
handling is importance (at any moment, a process must be performing its most
important task). In some sense, exception handling is the dual of timeout. Time-
out means that after output _b is produced, either new input is received in timing
window 1, or else new output is produced in timing window 2. Exception han-

436

dling means that after input a is received, either more important input c is
received before b is produced, or the original timing-window guarantee for b is
met: We change this to make exception handling the strict dual of timeout. After
input a is received, either exceptional input c is received in timing window 1, or
else normal output b is produced in timing window 2.

This is not the standard intuition, viz., that an executing task ~U defines a
floating window during which a priority interrupt is enabled (i.e., from task ini-
tiation to normal termination of YT). Instead, we use a fixed upper bound on the
interval, starting at input a, during which the production of b may be disrupted
by the arrival of c; this models the commit time to _b. To avoid paradox, the
commit time should be less than or equal to the lower bound for the production
of'_b.

8 Conclusion

The new idea in this paper is the fusion of (i) timing windows for input actions,
and (ii) timing-constraint graphs with recurrence structure. Since early and late
inputs are discarded, an input action occurs inside its timing window or not at all.
Actions--including those involved in race-controlled branching--are generated
without reference to the passage of time. Constraint checking is independent
of generation. Timing constraints do not make model checking harder. During
verification, alJ branching in closed system S is caused by either (i) process output
choice, or (ii) mP daemon choice. In both instances, "causally enabled" system
actions are recursively generated before timing constraints are asserted.

In the interleaving approach, there are two ways to add timing constraints to
untimed behaviors (i.e., sequences of untimed states): either (i) add constraints
locally between adjacent states (as in timed transition systems), or (ii) add con:
straints globally between arbitrary states (as in timed w-automata) [7]. Adding
timing constraints globally is necessary to model real real-time systems. For ex-
ample, the login procedure of Nicollin and Sifakis needs input choice, as well
as both local and global timeout [10]. Adding global constraints to w-automata
leads to complex theory and difficult implementation. Automatic verification
with timed automata is currently impractical because partition of the uncount-
able state space into finitely many regions produces unmanageably large regions.
Timed behavior automata combine (i) the flexibility of global timing constraints,
(ii) a simple theory, and (iii) minimal state explosion. Even with race-controlled
branching, time advancement is not used to generate timed behaviors during
verification. This avoids the additional state explosion due to time in other ap-
proaches. We have no interest in which sequences of timed states actually occur;
we only verify timing constraints.

We expect the addition of race-controlled branching to the current imple-
mentation of restricted TBA--in the POM verification system--to present no
major programming difficulties [16].

437

References

1. M. Abadi and L. Lamport, An old.fashioned recipe for real time, in W.-P. de
Roever, (Ed.), Real-Time: Theory in Practice, REX Workshop on Real-Time, Pro-
ceedings, Lecture Notes in Computer Science 600, Springer-Verlag, 1992, pp. 1-27.

2. R. Alur, C. Courcoubetis and D. Dill, Model checking .for real-time systems, in
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, IEEE
Computer Society Press, 1990, pp. 414-425.

3. R. Ahr, Techniques for automatic verification of real-time systems, Ph.D. Thesis,
Stanford University, Report STAN-CS-91-1378, August 1991.

4. R. Casley, R.F. Crew, J. Meseguer and V.R. Pratt, Temporal structures, Math.
Structures in Computer Science, 1:2, July 1991, pp. 179-213.

5'. W.-P. de Roever, (Ed.), Real-Time: Theory in Practice, REX Workshop on Real-
Time, Proceedings, Lecture Notes in Computer Science 600, Springer-Verlag, 1992.

6. D.L. Dill, Timing assumptions and verification of finite.state concurrent systems,
in J. Sifakis, (Ed.), Automatic Verification Methods for Finite State Systems, Pro-
ceedings, First Workshop on Computer-Aided Verification, Lecture Notes in Com-
puter Science 407, Springer-Verlag, 1990, pp. 197-212.

7. T.A. Henzinger, The temporal specification and verification of real-time systems,
Ph.D. Thesis, Stanford University, Report STAN-CS-91-1380, August 1991.

8. F. Jahanian and A.K.-L. Mok, A graph-theoretic approach for timing analysis and
its implementation, IEEE Trans. on Computers, C-36-'8, August 1987, pp. 961-
975.

9. O. Maler, Z. Manna and A. Pnueli, From timed to hybrid systems, in W.-P. de
Roever, (Ed.), Real-Time: Theory in Practice, op. cit., pp. 447-484.

10. X. Nicollin, 3. Sifakis and S. Yovine, From ATP to timed graphs and hybrid systems,
in W.-P. de Roever, (Ed.), Real-Time: Theory in Practice, op. cir., pp. 549-572.

11. V.R. Pratt, Modelling concurrency with partial orders, Int. Journal of Parallel
Prog., 15:1, February 1986, pp. 33-71.

12. D.K. Probst and H.F. Li, Abstract specification, composition and proof of cor-
rectness of delay-insensitive circuits and systems, Concordia University, Report
CONC-CS-VLSI-88-2, April 1988 (Revised March 1989).

13. D.K. Probst and H.F. Li, Using partial-order semantics to avoid the state explosion
problem in asynchronous systems, in E.M. Clarke and R.P. Kurshan, (Eds.), Second
Workshop on Computer-Aided Verification, June 1990, DIMACS Series, Vol. 3,
1991, pp. 15-24. Also Lecture Notes in Computer Science 531, Springer-Verlag,
1991, pp. 146-155.

14. D.K. Probst and H.F. Li, Partial-order model checking: A guide for the perplexed,
in K.G. Larsen and A. Skou, (Eds.), Third Workshop on Computer-Aided Verifi-
cation, Proceedings, Department of Mathematics and Computer Science, Aalborg
University, Report IR-91-5, July 1991, pp. 405-416. Also Lecture Notes in Com-
puter Science 575, Springer-Verlag, 1992, pp. 322-331.

15. D.K. Probst and L.C. Jensen, Controlling state explosion during automatic ver-
ification of delay-insensitive and delay-constrained VLSI systems using the POM
verifier, in S. Whitaker, (Ed.), Proceedings of the 3rd NASA Symposium on VLSI
Design, Moscow, ID, October 1991, pp. 8.2.1-8.2.8.

16. D.K. Probst and H.F. Li, Verifying timed behavior automata with nonbinary de-
lay constraints, in G.v. Bochmann and D.K. Probst, (Eds.), Fourth Workshop on
Computer-Aided Verification, Participants' Proceedings, July 1992, pp. 121-134.
Also Lecture Notes in Computer Science 663, Springer-Verlag, 1993, pp. 123-136.

