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Abs t r ac t .  Timed behavior automata are finite-state generators of timed 
behaviors, which are infinite timing-constrained pomsets of system events. 
Automatic verification is not showing inclusion of infinitary timed string 
languages. Rather, model checking starts by linking specification mir- 
ror and implementation network; verification is showing satisfaction of 
an infinite timing-constraint graph with recurrence structure. Branch- 
ing controlled by input/output races models more interesting timing 
properties such as timeout and exception handling. We show how to 
mirror timed behavior automata with input/output races, and show 
that constraint-graph satisfaction can still be computed efficiently by 
linear-time shortest-path algorithms. The advantage of TBA over timed 
w-automata is ease of mirroring. Untimed behavior automata [14] are 
modified in two ways: (i) output actions are performed inside a timing 
window relative to their enabling, and (ii)i t  is assumed that input ac- 
tions are performed inside a timing window relative to their enabling. 
Failure and timeout semantics define the process response to violations 
of this assumption protocol. 

1 Introduction 

Many researchers are developing formal methods for the specification, verifica- 
tion and  systematic design of reliable reactive systems, such as control and com- 
munication systems and embedded real-time systems. Reactive systems are open 
systems that  mainta in  an ongoing interaction with their environment.  Interest 
in verifying t iming properties has focused attention on proposMs for modelling, 
specifying and reasoning about  real-time systems [1-10]. Most work on t imed 
reactive systems starts  from a semantic model of limed behavior as a sequence 
of t imed states. In this model, behaviors are infinite sequences of  s ta tes - -where  
states are s tamped by l i m e - - t h a t  may  occur in a possible run of the t imed 
system. The computat ional  model, i.e., the effective representation of realizable 
t imed systems, is typically a t imed transition system or a t imed w-automaton  
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[9]. In this paper, we develop an alternative to the standard approach, viz., 
the timed behavior automata introduced in [16], which are effective representa- 
tions of realizable timed systems based on a model of partially-ordered, dense, 
branching time. The main advantage of our computational model, TBA, is an 
easily-applied, simple theory without state explosion. 

In contrast to the standard approach, TBA starts from a semantic model 
of timed behavior as a timing-constrained pomset of system events [11]. In this 
model, behaviors are infinite pomsets of system events--where successor arrows 
are stamped by ~ime bounds--that may occur in a possible run of the timed 
system. Time bounds are necessary timing constraints among (possibly nonlocal) 
system events. They refine two aspects of untimed pomsets and pomtrees, viz., 
(i)' necessary temporal precedences, and (ii) the requirement of justice (weak 
fairness). The computational model is timed behavior automata, which are finite- 
state generators of sets of infinite timing-constrained pomsets (equivalently, of 
an infinite timing-constrained pomtree). Race-controlled branching is new in this 
paper. 

In TBA, there are minimum and maximum delays in the scheduling of en- 
abled actions, and special "concentrators" to allow nonbinary delay constraints 
to be verified efficiently by shortest-path algorithms in graphs. Using restricted 
TBA, which disallows mixed-type critical races, we were able to prove timing 
properties such as timing-window bounds on system responses, and show that 
system inputs do not arrive too fast [16]. We achieved tractable (polynomial- 
time) model checking of finite-state real-time systems. The question left posed 
in [16] was whether extension of the branching structure of restricted TBA 
to include more interesting timing properties such as timeout and exception 
handling--by allowing mixed-type critical races to control TBA branching-- 
would substantially complicate the specification and verification picture. Intro- 
ducing timing windows for input actions (for timeout) and allowing temporary 
disruption of output actions (for exception handling) does not significantly in- 
crease the difficulty of forming the mirror of a timed behavior automaton used 
as a requirements specification. As a result, the additional complexity and state 
explosion of timed w-automata are avoided. 

The semantic model (notion of timed behavior) and the computational model 
(class of automata used to generate or recognize timed behaviors) have a major 
impact on the practicality of real-time model checking. The timed w-automata 
school defines verification as showing language inclusion, and tests the emptiness 
of the intersection of the implementation automaton and the complement of the 
specification automaton. The problem is that nontrivial specification automata 
do not complement well (problems range from exponential blowup to nonexis- 
tence). With a weaker computational model, one can prove bounded-response 
and bounded-invariance properties of timed transition systems (for example, us- 
ing deductive bounded-operator reasoning). More practical but often deductive, 
this approach has not been extended to more complicated real-time proper- 
ties. The primary advantage of TBA is the ease of forming the complement 
of the specification. Verification is showing satisfaction of an infinite timing- 
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constraint graph with recurrence structure [8]. By incorporating timeout and 
exception handling into TBA, we broaden the class of real-time properties that 
can be specified and verified (the broadened class is surprisingly wide), and 
preserve tractable (polynomial-time) automatic verification. The satisfaction of 
finite timing-constraint graphs is checked efficiently by shortest-path algorithms 
in graphs. The recurrence structure provides finite checkability of the infinite 
constraint graph. 

In general, timing constraints in closed timed systems are enforced by some 
mixture of bounded invariance (which refines "push-away" causality) and bounded 
response (which refines "pull-back" justice). Refinement has a distinctive flavor 
in partial-order representations, and is only partly from the qualitative to the 
qtrantitative level of modelling. When timing assumptions are added to a prece- 
dence automaton with justice, zero-valued push-away values become strictly- 
positive real numbers, while "finite but unbounded" pull-back values (written 
-oo)  become strictly-negative real numbers. The branching structure in timed 
behavior automata allows input/output races to control the resolution of some 

nondeterministic choice. Timing constraints are independently specified for each 
branch. Race-controlled branching (daemon choice) is in addition to any branch- 
ing due to input or output choice. That is, TBA branching models both same- 
type nondeterministic choice and mixed-type critical races. 

As in [15-16], we assume some familiarity with [14], primarily for termination 
of unfolding of networks of behavior automata. The following features of untimed 
behavior automata are retained in timed versions: (i) a finite partial-order rep- 
resentation that explicitly distinguishes concurrency, branching and recurrence, 
and (ii) a state encoding that is both constraint comprehensive (includes all con- 
straints) and state minimal (has fewest states). There is no time component in 
state encodings, and there are no timed states. 

2 Abstract Specification of Timed Reactive Systems 

Abstract specifications refer to externally-visible computational behaviors. An 
untimed behavior automaton generates sets of partially-ordered computations 
with precedence constraints and justice (weak fairness) [12-14]. In the untimed 
case, (i) no action may occur until it is enabled, and (ii) once enabled, an out- 
put action must occur eventually. A timed behavior automaton generates sets 
of partially-ordered computations with timing constraints among (possibly non- 
local) events. There are minimum-delay and maximum-delay constraints, called 
push-away and pull-back arrows, respectively. In the timed case, (i) no action 
may occur until it has been continuously enabled for a minimum delay, and (ii) 
once an action has been continuously enabled for a maximum delay, it must oc- 
cur immediately. In the assumption/guarantee style of specification, violations of 
timing constraints on input events are handled by failure and timeout semantics. 

In restricted TBA, an output action remains scheduled during a timing win- 
dow relative to its enabling, while an input action remains scheduled until it 
occurs; in full TBA, input actions also have timing windows and output actions 
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may be briefly disrupted inside their timing windows. For a timed system to be 
correct, the timing constraint graph produced by coupling specification mirror 
mP to implementation network Net must be feasible. 

A process P has disjoint sets of input and output ports. Ports may be the loci 
of generalized control elements such as tests and conditions. Process behaviors 
result from use of process P by P's environment. P's input actions are under the 
control of P's environment, while P's output actions are under the control of P. 
An input action may be process-scheduled testing of an environment-controlled 
state predicate. 

Safety properties constrain both the process and its environment. A safety vi- 
olation is the performance of an action that is not scheduled. A process receiving 
unsafe input obeys its failure semantics, liveness properties also constrain both 
the process and its environment. A liveness violation is the nonperformance of 
an enabled action before the expiration of its timing window. A process failing 
to receive timely input obeys its timeout semantics. 

2.1 Formal C o n s t r u c t i o n  of  Behav io r  A u t o m a t a  

Timed behavior automata are constructed in four phases. Untimed versions are 
succinct encodings of sets of infinite pomsets [12,13]; timed versions add tim- 
ing constraints. First, there is a "small" deterministic finite-state machine D 
that expresses the branching and recurrence structure of the process. In full 
TBA, branching is caused by any of the following: (i) input choice, (ii) output 
choice and (iii) input/output critical race. Second, there is an expansion of each 
transition of dfsm D into an finite poset, with sockets to define poset concatena- 
tion. Third, there is a labelling of successor arrows to define the state encoding. 
Fourth, each successor arrow is replaced by a matched pair consisting of: (i) a 
push-away arrow labelled with a strictly-positive real number, and (ii) a pull- 
back arrow labelled with a strictly-negative real number. Maxima and minima 
of presets are related to members of presets by special timing-constraint arrows 
labelled with +0. 

We sketch the formal definition of behavior automaton. Given disjoint alpha- 
bets Act (process actions), Arr (successor arrow labels), Com (dfsm D transi- 
tions) and Soc (sockets), define Pos as the set of finite labelled posets over Act 
U Soc. Each member of Pos is a labelled poset (B,r,~), where (i) F is a partial 
order over B C Act U Soc, and (ii) ~, : ~ --* Art assigns a label to each element'in 
the successor relation ~ (the transitive reduction of F). A behavior automaton is 
a 3-tuple (D,~,~b), where (i) D is a dfsm over Corn, (ii) ~: Corn --* Pos maps dfsm 
transitions to labelled posets, and (iii) ~b: Soc --* powerset(Act) maps sockets to 
sets of process actions. ~b defines which process actions may fill a socket when a 
command is concatenated to a sequence of earlier commands. There is an imag- 
inary reset action ..  In timed behavior automata, successor arrows in posets are 
replaced by matched pairs of push-away and pull-back arrows. When multiple 
actions enable an action a, a's pull-back arrow is incident to the pseudoaction 
that is the maximum of a's preset. Pseudoactions trivially extend the alphabet 
Act, but may be removed by transitive closure and disjunction. 
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3 T i m e d  B e h a v i o r  A u t o m a t a  

Figure 1 shows an untimed behavior automaton for a C-element, where the la- 
bels on successor arrows provide a "state" encoding whose only function is to 
terminate the unfolding of closed systems of coupled behavior automata dur- 
ing verification. Separate specification of timing properties in TBA causes this 
function--of labels--to be preserved unchanged. The untimed specification is 
written in the standard assume/guarantee style, where the dashed arrows are 
the assumption protocol and the solid arrows are the guarantee protocol. As long 
as the environment satisfies the assumption protocol, the process will satisfy the 
guarantee protocol. The failure semantics defines the process response to the 
first occurrence of bad input. Two possibilities are: (i) the process becomes un- 
defined, and (ii) the bad input is ignored. The brackets are a justice requirement 
on the process; they assert that an enabled process output action must occur 
eventually. There is no justice requirement on the environment; a process input 
action may be enabled yet never occur. When timed behavior automata are con- 
structed by adjoining timing assumptions to untimed behavior automata, justice 
requirements are replaced by quantitative pull-backs to pseudoactions (maxima 
of enabling presets). 

nl ..~.a+~,,,~3 n5 ..~.a ~ , ~  
. -  +]1 ] 

"~'b n6 ~'t~ 

Fig. 1. Untimed behaviour automaton for a C-element 

Figure 2 shows a restricted timed behavior automaton for a timed wire (minus 
the state-encoding labels) with push-away and pull-back arrows to specify timing 
windows. The wire remains excited after input a for at least 2 units, but not 
more than 5 units, before responding with output _b. We use matched pairs of 
arrows: a push-away (bounded-invariance) arrow a ~ b labelled with +2, and a 
pull-back (bounded:response) arrow a ~-- _b labelled with - 5  (upper bounds are 
expressed as negative lower bounds in the opposite direction) [3]. Both push- 
away and pull-back arrows in constraint graphs are minlmum-delay constraints. 
The triangle inequality in constraint graphs is: to derive a timing label t on 
an arbitrary a --+ b, find all directed paths from a to b, and compute the sum 
of minimum delays along each path; if there are distinct sums, then take the 
maximum. 

Figure 3(b) shows the sensible way to quantify a justice requirement in a 
partial-order representation with timing constraints. A pull-back constraint is 
specified relative to an enabling condition (pseudoaction ~ is the last of d and 
e). If fl is the last of a and b, then fl is a or b, and a pull-back to fl is a pull-back 
to a or b. In Figure 3(b), there is no minimum delay from f_ to d or e. Rather, 
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Fig. 2. Timed behavior automaton for a wire 

either d -  L _> - 6  or e -  L >__ -6 :  We say that  pull-back arrows d ~ L and e *-- L 
form a complete disjunctive set. 

j J  
e " 

~ -6 f 

(a) Intractable case (b) Tractable case 

Fig. 3. Quantifying justice in a partial-order representation 

Figure 4 shows a restricted timed behavior automaton for a timed C-element. 
fl = max{a, b} and a = miu{a, b}. Action c remains scheduled during a t iming 
window relative to fl, while c~ remains scheduled until it occurs. r - {o, a}. In 
the appropriate context, the special push-away arrows with timing label +0 may 
be read as zero-valued pull-back or push-away arrows in the opposite direction-- 
for the purposes of applying the triangle inequality--provided their assertions 
are interpreted disjunctively. To derive a timing label t on a pull-back arrow 
a #-- b, recursively find all complete disjunctive sets of directed paths from b to 
a, and compute the sum of minimum delays along each path; if there are distinct 
sums in a given disjunctive set, then take the minimum. 

+6 

:: . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

0 :  o ~ ~ c_ a 
-4 

+ 0  ~ b 

Fig. 4. Timed behavior automaton for a timed C-element 

: 0  
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3.1 B r a n c h i n g  C o n t r o l l e d  b y  I n p u t / O u t p u t  Cr i t i ca l  Races  

Figure 5 shows a timed behavior automaton for a wire with timeout. The de- 
terministic finite-state machine D underlying this automaton has a start  node 
(reached by reset action o) and two self-loops: a transition n for normal op- 
eration, and a transition t for timeout. In Figure 5, both n and t have been 
expanded into finite posets with timing constraints. Sockets define concatena- 
tion of posets; here, both sockets satisfy r = {,,, b}. In t, socket o appears 
in the middle of the poset. As long as the environment satisfies the assumption 
protocol (given by the dashed arrows), the process will satisfy the guarantee 
protocol (given by the solid arrows). Since the assumption protocol contains (i) 
push-away arrows, (ii) pull-back arrows and (iii) race-controlled branching, we 
will provide the semantics in stages. 

n 

c) 
O 

(_.) 

+1 +2 "~ 
n = o  ~-__=3::: > _ a < - 4  > b_ 

+4 > 

= a  o < - 6  

Fig. 5. Timed behaviour automaton for a timeout wire 

To deal with inputs that  might arrive too fast, normal transition n has a 
dashed push-away arrow from socket o to input action a labelled with +1. The 
failure semantics is that  earlier input may be ignored. To deal with inputs that  
might arrive too slowly, there are two items: (i) timeout transition t has a dashed 
push-away arrow from o to a labelled with +2, and (ii) normal transition n has 
a dashed pull-back arrow from a to o labelled with -3 .  The timeout semantics 
is that the process maytime out as soon as 2 time units without input have 
elapsed--relative to the most recent �9 or b_.--but must time out as soon as 3 time 
units have elapsed. Any later input will be ignored until input is re-enabled. Be- 
tween 2 and 3 time units, the decision to time out is taken nondeterministicaliy. 

Mirror construction becomes clear as soon as we see what is required by the 
requirements specification. The process may ignore input a in [0, 1). The process 
must select n for input in [1, 2). The process may select either n or t for input 
in [2, 3), but must select t after 3 time units. If either n or t is selected, then the 
process must produce output _b in the specified timing window. We use mirror mP 
of specification P as a conceptual implementation tester. The mirror provides 
or withholds input to exercise each requirement of the assume/guarantee proto- 
col. This means in particular that  mP determines both (i) whether 1 is a lower 
bound on ignoring input a, and (ii) whether 2 and 3 are lower and upper bounds 
on noticing the absence of input a. It checks whether these constraints are sup- 
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ported by chains of implementation constraints. Correctness of race-controlled 
branching is satisfaction of a timing-constraint graph, nothing more. 

Correctness is a preorder in the untimed case [12-14]. This remains true in the 
timed case. We show this for the specification in Figure 5. The implementation 
lower bound for necessarily accepting input must be less than or equM to the 
specification lower bound for necessarily accepting input. The implementation 
timeout decision window--that is, the interval between lower and upper bounds 
for timing out--must  be contained within the specification timeout decision 
window. The implementation oulput window--that is, the interval between lower 
and upper bounds for performing an output action--must be contained within 
the corresponding specification output window, for either timeout or normal 
operation. 

4 Composi t ion  of T imed Behavior A u t o m a t a  

We construct an extremely simple implementation network to study both com- 
position and verification. The network fails in several ways to implement the 
specification in Figure 5. 

Figure 6 shows a timed behavior automaton for a fork with timeout. There 
are two self-loops in dfsm D: a normal transition n and a timeout transition t. 
Both sockets satisfy r = {o, fl}. Again, socket o is in the middle of t. The 
fork may ignore input in the interval [0, 1). The fork may time out if 6 time units 
without input have elapsed, but must time out if 7 time units have elapsed. All 
times are relative to the most recent �9 or ft. 

n 

�9 

t 

+1 b-1 +0 

13 

t = a  "<-+6 

Fig. 6. Timed behaviour automaton for a timeout fork 
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Figure 7 shows a timed behavior automaton for a C-element with an ac- 
knowledgment protocol. There is recurrence but no branching in dfsm D. The 
socket satisfies r = {.,c}. The C-element may ignore input in the interval 
[0, 1) relative to the most recent �9 or c. 

0" o ___+1__> a 

a 

+0,1 
/ +2 

:0 

Fig. 7. Timed behaviour automaton for a C-element with an acknowledgment protocol 

Figure 8 shows a fragment of the timing-constraint graph produced when the 
outputs of the timed fork become the inputs of the timed C-element. This creates 
a" timeout wire. Figure 8 contains constraint information from two branches of 
the closed-system pomtree. The central horizontal line is normal operation; the 
upper and lower lines are timeout. The pair of dashed arrows shows the timeout 
decision window of the fork relative to its output/~. When is the earliest that the 
network could time out relative to c? Since - 4  + 6 = 2, the network cannot time 
out before 2 time units. When is the latest it could time out? Since - 7 + 2  = -5 ,  
the network must time out after 5 time units. That is, the network timeout 
decision window is [2, 5]. In both cases, we have been following chains of arrows 
regardless of type between upper a and central c. When the network does time 
out, since - 4 + 5 + 2  = 3 and - 4 + - 5 + 2  = -7 ,  we deduce the timing bounds on 
network timeout output c. The network timeout output window is [3,7]. Here, 
we have been following chains of arrows regardless of type between central c and 
lower c. The fork may ignore input in the interval [0, 1) relative to/3, so the 
network may ignore input earlier than output c. Here, we have observed that _c 
is at least 2 time units after ;3. We do not know the dashed push-away from c to 
a that is necessary to prevent all component failure. 

5 Correctness and Race-Controlled Branching 

We define correctness of a timed system by using mirror mP of specification P as 
a conceptual implementation tester. We form closed real-time system S by linking 
mirror mP to implementation Net. Unfolding the resulting finite-state generator 
of closed system S produces a timing-constrained pomtree with constraints from 
all assumption and guarantee protocols. The timing-constrained pomtree is in 
fact a timing-constraint graph. Correctness is defined as satisfaction of this graph 
taking into account the semantics of race-controlled branching. 

In restricted TBA, mirror mP is formed by inverting the type of P's ac- 
tions and the'assumption/guarantee interpretation of P's arrows, turning P's 
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Fig~ 8. Pomtree fragment: timeout fork composed with timed C-element 

dashed arrows into solid arrows and vice versa. Brackets on mP actions and spe- 
cial arrows are preserved unchanged. Since each instance of branching in closed 
real-time system S is under the control of either mirror mP or some component 
of implementation Net, we can check whether intraprocess guarantee protocols 
support interprocess assumption protocols in pomtree S. Dashed arrows coming 
from implementation components are proof obligations to show that these com- 
ponents do not receive unsafe input. Dashed arrows coming from mirror mP are 
proof obligations to show that the implementation does not violate the guarantee 
protocol of the spedfication. 

In full TBA, mirror formation is only slightly more elaborate. We perform 
type inversion as before, but put a different interpretation on some solid arrows in 
mirror mP. Consider mP solid arrows incident to or from mirrored input actions 
in normal and timeout transitions at daemon choice points. The push-away solid 
arrow in normal transition n of mP should guarantee that there is no input safety 
violation in any implementation component. The pull-back solid arrow in normal 
transition n of mP should be an upper bound on when implementation Net must 
time out. The push-away solid arrow in timeout transition t of mP should be a 
lower bound on when implementation Net may time out. 

5.1 Safety Correc tness  

Consider a dashed push-away arrow representing the assumption that inputs do 
not arrive too fast to (i) an implementation component (input safety violation), 
or (ii) mirror mP (output lower-bound violation). For each dashed push-away 
arrow a --* b with timing label t, there must be a solid directed path from a to 
b whose weight is at least t. Portions of the solid path may consist of chains of 
solid pull-back arrows. One solid path from a to b with appropriate weight is 
sufficient to verify the dashed push-away constraint. 
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5.2 Liveness Cor rec tness  

Consider a set of dashed pull-back arrows representing the assumption by mP 
that the implementation does not produce an output too slowly (output .upper- 
bound violation). This is a complete disjunctive set of dashed pull-back arrows 
from a bracketed system action c to each member of its noncausal preset A 
= pre(c). Each dashed pull-back arrow a ~ c, a E A, must be supported by 
the weakest solid pull-back chain a ~ c in the complete disjunctive set of solid 
directed pull-back paths from c to a. By well-behavedness, there is only one 
such disjunctive set for each action a E A. All the solid directed paths in a 
complete disjunctive set are necessary to verify the dashed pull-back constraint. 
This condition presupposes the liveness correctness of the untimed system, viz., 
the causal preset of c as determined by solid push-away chains must not be a 
proper superset of the noncausal preset of c as determined by dashed push-away 
arrows [14]. 

5.3 Race -Con t ro l l ed  Branch ing  Cor rec tness  

In mirror mP, consider the (newly) solid arrows that define the timeout decision 
window and the (newly) dashed arrows that define the timeout output window, 
viz., the solid push-away arrow in ~, the solid pull-back arrow in n, and the 
matched pair of dashed arrows in t. Branching correctness means that both 
(i) the implementation decision window is contained within the specification 
decision window, and (ii) the implementation output window is contained within 
the specification output window. 

6 Verification Example 

The characteristic feature of the model-checking algorithms in [13-16] is that, 
in the recursive generation of system actions in closed system S, M1 branching 
is caused by the output choice of some process, possibly mP. In race-controlled 
branching, this is no longer the case. Specification P may contain a branch 
point whose outgoing transitions are selected by (i) whether timeout does occur, 
or (ii) whether an exception is raised. A daemon in mP systematically trys 
both possibilities at each race-controlled branch point. Suppose timeout does 
not occur. Then, there is an mP-assumed upper bound on the interval with6ut 
input; is it guaranteed? Suppose timeout does not occur~ Then, there is an 
mP-assumed lower bound on the interval without input; is it guaranteed? The 
daemon generates mirrored input actions, and then asserts timing-constraint 
assumptions. In daemon choice, mP assumptions must be supported by Net 
guarantees. 

Rather than systematically describing the modifications to the restricted- 
TBA verification algorithm [16] when race-controlled branching is incorporated, 
we work the following verification example. Figure 5 (a timeout wire) is the 
specification, and Figures 6 and 7 (i.e., a timeout fork linked to a timed C- 
element) is the implementation network. The first task is to determine whether 
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input-failure lower bounds of implementation components are guaranteed when 
implementation Net is driven by specification mirror mP (i.e., when there is 
a solid push-away arrow from c to a labelled with ,4,1). Adding this arrow to 
Figure 8, we easily verify the (fork) assumed/3 to a separation of ,4,1 (2 -4-1 >__ 1), 
and the (C-element) assumed c to ~ separation of -t-1 (1 -4- 1 > 1). Although 

is not shown in Figure 8, there is a push-away arrow from a to o~ labelled 
with +1. However, the network output window [4, 8] is not contained within 
the specification output window [2, 4]. Only one of the two chains of Net solid 
arrows supports the corresponding mP dashed arrow [16]. ImplementationNet 
is incorrect. 

Because this is only an example, we proceed to determine whether race- 
cotttrolled branching is correct. From Section 4, the network timeout decision 
window is [2, 5]. This is not contained in the specification timeout decision win- 
dow [2, 3]. mP says the lower bound on noticing the absence of input is 2; Net. 
agrees ( - 4 + 6  > 2). mP says the upper bound is 3; Net disagrees (-7-4-4-2 ~ -3) .  
The network does not time out too soon, but may time out too late. Is the 
network timeout output window correct? 

We determine whether input lower bounds of implementation components 
are guaranteed when the fork times out. The first fork timeout leads to network 
timeout output, since the C-element does not fail for this input ( -4  -4- 5 > 1). 
From Section 4, which assumed no failure, the network timeout output window is 
[3, 7]. This is not contained in the specification timeout output window [4, 6]. mP 
says the lower bound on producing output is -4-4; Net disagrees ( -4  -4- 5 + 2 ~ 4). 
mP says the upper bound is , 6 ;  Net disagrees (-4,4,-5,4, 2 ~ -6) .  The network 
satisfies neither bound. Changing the input-failure lower bound of the C-element 
from -t-1 to +2 shows that this example is less trivial than it appears, and might 
be developed into a benchmark. The interesting part is repetitive timeout by the 
fork until its input is no longer ignored by the C-element. With a lower bound of 
-4-2, the network output window changes from [3, 7] to [8, 12]. The possibility of 
internal failure during timeout leads to moderately interesting algorithm design: 

If the implementation had been correct, then the termination table would 
have contained two states of closed system S [14]. These two states differ only 
in whether mP and fork are both at the end of transition n or both at the end 
of transition t. 

7 E x c e p t i o n  H a n d l i n g  

Timing windows for input actions give rise to timeout, while (temporary) dis- 
ruption of output actions gives rise to exception handling. Both are mixed-type 
(input/output) critical races. The notion behind timeout is ~trgency (certain ac- 
tions must be performed by certain times), while the notion behind exception 
handling is importance (at any moment, a process must be performing its most 
important task). In some sense, exception handling is the dual of timeout. Time- 
out means that after output _b is produced, either new input is received in timing 
window 1, or else new output is produced in timing window 2. Exception han- 
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dling means that after input a is received, either more important input c is 
received before b is produced, or the original timing-window guarantee for b is 
met: We change this to make exception handling the strict dual of timeout. After 
input a is received, either exceptional input c is received in timing window 1, or 
else normal output b is produced in timing window 2. 

This is not the standard intuition, viz., that an executing task ~U defines a 
floating window during which a priority interrupt is enabled (i.e., from task ini- 
tiation to normal termination of YT). Instead, we use a fixed upper bound on the 
interval, starting at input a, during which the production of b may be disrupted 
by the arrival of c; this models the commit time to _b. To avoid paradox, the  
commit time should be less than or equal to the lower bound for the production 
of'_b. 

8 Conclusion 

The new idea in this paper is the fusion of (i) timing windows for input actions, 
and (ii) timing-constraint graphs with recurrence structure. Since early and late 
inputs are discarded, an input action occurs inside its timing window or not at all. 
Actions--including those involved in race-controlled branching--are generated 
without reference to the passage of time. Constraint checking is independent 
of generation. Timing constraints do not make model checking harder. During 
verification, alJ branching in closed system S is caused by either (i) process output 
choice, or (ii) mP daemon choice. In both instances, "causally enabled" system 
actions are recursively generated before timing constraints are asserted. 

In the interleaving approach, there are two ways to add timing constraints to 
untimed behaviors (i.e., sequences of untimed states): either (i) add constraints 
locally between adjacent states (as in timed transition systems), or (ii) add con: 
straints globally between arbitrary states (as in timed w-automata) [7]. Adding 
timing constraints globally is necessary to model real real-time systems. For ex- 
ample, the login procedure of Nicollin and Sifakis needs input choice, as well 
as both local and global timeout [10]. Adding global constraints to w-automata 
leads to complex theory and difficult implementation. Automatic verification 
with timed automata is currently impractical because partition of the uncount- 
able state space into finitely many regions produces unmanageably large regions. 
Timed behavior automata combine (i) the flexibility of global timing constraints, 
(ii) a simple theory, and (iii) minimal state explosion. Even with race-controlled 
branching, time advancement is not used to generate timed behaviors during 
verification. This avoids the additional state explosion due to time in other ap- 
proaches. We have no interest in which sequences of timed states actually occur; 
we only verify timing constraints. 

We expect the addition of race-controlled branching to the current imple- 
mentation of restricted TBA--in the POM verification system--to present no 
major programming difficulties [16]. 



437 

References 

1. M. Abadi and L. Lamport, An old.fashioned recipe for real time, in W.-P. de 
Roever, (Ed.), Real-Time: Theory in Practice, REX Workshop on Real-Time, Pro- 
ceedings, Lecture Notes in Computer Science 600, Springer-Verlag, 1992, pp. 1-27. 

2. R. Alur, C. Courcoubetis and D. Dill, Model checking .for real-time systems, in 
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, IEEE 
Computer Society Press, 1990, pp. 414-425. 

3. R. Ahr,  Techniques for automatic verification of real-time systems, Ph.D. Thesis, 
Stanford University, Report STAN-CS-91-1378, August 1991. 

4. R. Casley, R.F. Crew, J. Meseguer and V.R. Pratt, Temporal structures, Math. 
Structures in Computer Science, 1:2, July 1991, pp. 179-213. 

5'. W.-P. de Roever, (Ed.), Real-Time: Theory in Practice, REX Workshop on Real- 
Time, Proceedings, Lecture Notes in Computer Science 600, Springer-Verlag, 1992. 

6. D.L. Dill, Timing assumptions and verification of finite.state concurrent systems, 
in J. Sifakis, (Ed.), Automatic Verification Methods for Finite State Systems, Pro- 
ceedings, First Workshop on Computer-Aided Verification, Lecture Notes in Com- 
puter Science 407, Springer-Verlag, 1990, pp. 197-212. 

7. T.A. Henzinger, The temporal specification and verification of real-time systems, 
Ph.D. Thesis, Stanford University, Report STAN-CS-91-1380, August 1991. 

8. F. Jahanian and A.K.-L. Mok, A graph-theoretic approach for timing analysis and 
its implementation, IEEE Trans. on Computers, C-36-'8, August 1987, pp. 961- 
975. 

9. O. Maler, Z. Manna and A. Pnueli, From timed to hybrid systems, in W.-P. de 
Roever, (Ed.), Real-Time: Theory in Practice, op. cit., pp. 447-484. 

10. X. Nicollin, 3. Sifakis and S. Yovine, From ATP to timed graphs and hybrid systems, 
in W.-P. de Roever, (Ed.), Real-Time: Theory in Practice, op. cir., pp. 549-572. 

11. V.R. Pratt, Modelling concurrency with partial orders, Int. Journal of Parallel 
Prog., 15:1, February 1986, pp. 33-71. 

12. D.K. Probst and H.F. Li, Abstract specification, composition and proof of cor- 
rectness of delay-insensitive circuits and systems, Concordia University, Report 
CONC-CS-VLSI-88-2, April 1988 (Revised March 1989). 

13. D.K. Probst and H.F. Li, Using partial-order semantics to avoid the state explosion 
problem in asynchronous systems, in E.M. Clarke and R.P. Kurshan, (Eds.), Second 
Workshop on Computer-Aided Verification, June 1990, DIMACS Series, Vol. 3, 
1991, pp. 15-24. Also Lecture Notes in Computer Science 531, Springer-Verlag, 
1991, pp. 146-155. 

14. D.K. Probst and H.F. Li, Partial-order model checking: A guide for the perplexed, 
in K.G. Larsen and A. Skou, (Eds.), Third Workshop on Computer-Aided Verifi- 
cation, Proceedings, Department of Mathematics and Computer Science, Aalborg 
University, Report IR-91-5, July 1991, pp. 405-416. Also Lecture Notes in Com- 
puter Science 575, Springer-Verlag, 1992, pp. 322-331. 

15. D.K. Probst and L.C. Jensen, Controlling state explosion during automatic ver- 
ification of delay-insensitive and delay-constrained VLSI systems using the POM 
verifier, in S. Whitaker, (Ed.), Proceedings of the 3rd NASA Symposium on VLSI 
Design, Moscow, ID, October 1991, pp. 8.2.1-8.2.8. 

16. D.K. Probst and H.F. Li, Verifying timed behavior automata with nonbinary de- 
lay constraints, in G.v. Bochmann and D.K. Probst, (Eds.), Fourth Workshop on 
Computer-Aided Verification, Participants' Proceedings, July 1992, pp. 121-134. 
Also Lecture Notes in Computer Science 663, Springer-Verlag, 1993, pp. 123-136. 


