
A Structural Linearization Principle for
Processes

R. P. Kurshan 1 M. Merritt 1 A. Orda 2 S. R. Sachs 3

1 AT&T Bell Labs, Murray Hill, NJ 07974, USA
Dept. of Elec. Eng., Technion, Haifa 32000, Israel

3 Dept. of Elec. Eng. and CS, U. C. Berkeley, Berkeley, CA 94720, USA

Abs t rac t . In [1], an induction principle for processes was given which
allows one to apply model-checking techniques to parameterized families
of processes. A limitation of the induction principle is that it does not
apply to the case in which one process depends directly upon a param-
eterized number of processes, which number grows without bound. This
would seem to preclude its application to families of N processes intercon-
nected in a star topology. Nonetheless, we show that if the dependency
can be computed incrementally, then the direct dependency upon the
parameterized number of processes may be re-expressed recursively in
terms of a linear cascade of processes, yielding in effect a "linearization"
of the inter-process dependencies and allowing the induction principle to
apply.

1 Introduct ion

Finite state systems such as communication networks, distributed multi-processor
systems and hardware controllers, are many times specified as comprising of a
finite but unbounded number of components. In verifying sucha specification we
aim at showing that it performs a certain task regardless the actual (finite) num-
ber of components. Nevertheless, automatic verification systems (e.g., Cospan
[2]) cannot directly handle such verification problems, since they apply only to
a fixed state space, and in general they do not permit a quantification on the
number of processes. A simple solution might be to test the specification against
any possible number of components, up to the largest possible (practical) num-
ber; nonetheless, the number of states in a system increases geometrically wi th
the number of components, making this approach intractable.

A number of authors have deait with this problem. For example, Browne,
Clarke and Grumberg[3] introduced a method which uses an indexed form of
branching-time temporal logic, applicable to families of processes in case the
next-t ime operator is removed from the logic and process quantifiers are not
nested (so global properties of the system cannot be stated). A method due to
German and Sistla[4] applies to a linear-time temporal logic (again, without the
next-t ime operator). Although they can verify global properties, their decision
algorithm is doubly exponential in the process size. Shtadler and Grumberg[5]
propose a method which requires the user to formulate a "network grammar"

492

by which processes may be recursively defined. They also exclude the next-time
operator from their logic.

A solution approach to the above was presented in [1]: an Induction Principle
for processes was given which allows one to apply model-checking techniques
to parameterized families of processes. With the Induction Principle, one can
infer properties of systems of unbounded size through an automatic verification
carried on a system of fixed (and hopefully small) size. The Induction Principle
is based on providing an "invariant" process that carries out the inductive step.
Obviously, the invariant cannot depend on the actual size of the system. In
effect, the invariant encapsulates that part of the system's logic that would
enable a "hand-written" inductive proof. This verification process applies to any
w-regular property, (including global properties), and once an invariant is found,
the verification step is linear in the size of the process and the invariant.

A limitation of the Induction Principle is that it does not apply to the case in
which one process or one variable depends directly upon a parameterized number
of processes, which grows without bound. This is the case, for example, with a
star topology, in which a "hub" talks with each other component of the system;
as the system grows, the hub has to deal with a larger number of components,
meaning that its representation per :se depends on the system size. Indeed, this
would seem to preclude its application to families of N processes interconnected
in a star topology. In fact, such a limitation may seem natural, as in a star
topology, it is the "role" of the hub to accumulate information from the other N
components, thus no invariant independent of this number may exist, as required
for the Induction Principle to apply.

However, under certain circumstances there is a way out. In this paper we
show that if the direct dependency of the hub (or of a bounded number of
such processes) upon the parameterized number of processes can be computed
incrementally, then this dependency may be re-expressed recursively in terms
of a linear cascade of processes, yielding in effect a "linearization" of the inter-
process dependencies (linear in the sense of a cascade or shift register), allowing
the Induction Principle to apply. Throughout the paper we depict the problem
and its solution through an example of a distributed "doorway" algorithm for a
star-like topology [6].

2 Doorway Algorithm Example

The Linearization Principle is illustrated by a distributed algorithm whose in-
terconnectivity has a star topology. In this section we present the algorithm and
describe the problems encountered with its formal verification; then, we outline
the solution approach to these problems, which is based on the Linearization
Principle presented in this paper.

2.1 The Doorway Algo r i t hm

In [6] several algorithms are presented for handling faulty shared memory. One of
these is the Doorway algorithm described herein. The doorway algorithm consists

493

of test-and-set (t&s) operations performed by some N processes (p1 . . . pN) on
four t&s registers, one of which may be faulty. The reader is referred to [6] for a
full description of a t&s register operation. For the purposes of this paper, the
following concise description suffices.

A process p i (i = 1 , . . . , n) interacts with a t&s register by presenting to
it a t&s request. The process is guaranteed to get a response within finite time
(even if the register is faulty). The response can be either win or lose. The first
response of a nonfaulty register must be win, and all subsequent ones must be
lose. A faulty register, on the other hand, may produce any sequence of win-lose
responses, It is assumed that a register (either faulty or nonfaulty) gives at most
one response at any given time, which corresponds and is forwarded to one of
the processes that have presented a t&s request to it.

The goal of the Doorway algorithm is to filter either one or two processes out
of the list of (at most) N processes that present t&s requests. These one/two
processes are later forwarded to a second algorithm (not discussed in this paper),
which chooses exactly one process as a final winner. As previously mentioned,
the Doorway algorithm is based on a construction of four t&s registers, of which
at most one may be faulty. For simplicity, it can also be assumed that, at any
given time, at most one register produces a win/lose response (however, it is
straightforward to adapt Ml that follows to the more general case where such an
assumption is not made). The doorway consists of two "half-doorways" D1 and
D2, each consisting of a pair of t&s registers.

The algorithm works as follows. A process that wants to pass through the
doorway presents a t&s request to the two registers of the first half-doorway D1.
If the process gets a win response from at least one of these two registers, it
moves on to the second half-doorway D2; otherwise, the process declares itself
as a "loser" of the doorway. A process moving to D~ presents a t&s request to
its two registers. If the process gets a win response from at least one of these two
registers, it declares itself as a "winner" of the doorway; otherwise, the process
declares itself as a "loser".

The task that the Doorway algorithm has to perform is stated as follows: if
there is some t&s request from some process pi (i = 1, 2 , . . . , n) then eventually
at least one and at most two processes among those that have requested declare
themselves as winners of the doorway, whereas all others that have requested
declare themselves as losers of the doorway.

2.2 T h e D o o r w a y P r o b l e m a n d i t s S o l u t i o n

Given a specific value for the number of Processes N, a formal verification tool
such as Cospan [2] can be used in order to verify that the Doorway algorithm
indeed performs its task (the reader is referred to [7] for a detailed discussion on
verification issues of t&s algorithms using Cospan). The problem comes when
one wants to verify this for any finite number N. One cannot hope to apply the
Induction Principle of [1] directly, since the Doorway algorithm suffers from the
deficiencies outlined in the previous section. This is depicted in the following.

494

Consider the following way of modeling the doorway scheme, depicted in
Figure 1. The four registers of the doorway are modeled by two "half-doorway"
processes D1 and D2, that produce "win" and "lose" signals. We have also N
processes pi (i = l, 2 , . . . , N), that may present t&s requests to each of the two
half-doorways, according to the signals received from the half-doorways and to
the Doorway algorithm. Between the half-doorways and the processes stands
a "selector" S, that selects the addressees of the half-doorways responses; i.e.,
whenever a half-doorway sends a "win" or "lose" signal, the selector should
choose one out of a list of processes that have presented a request to that half-
doorway and have not been answered yet. The signal is forwarded to the chosen
processor through a global variable X 0 Le., the response of the j-th half-doorway
to'the i-th process. The problem with the above lies in its intrinsic dependence

to p l

ooo
t

[I -Is

I_,, I L_ T_
1,4 ~ 1 7 6 1 7 6

to p l

~o pN

REQ.1 , R E Q . ~ Q

0

0

0

REQ_I , REQ.~ .~

17t
~o p N

Fig. I. Doorway as Star Topology

on the number N. For example, the selector S should communicate explicitly
with each of pl , , . . , pN, and thus it is a parametrical process that depends on
the number N. Another example are the global variables Xij, whose number
depend also on N. We seek a representation of the system, in which there is
no dependency on N, neither in terms of variables nor states nor transitions
between states.

The solution for the doorway case is depicted in Figure 2, which describes a
linearization of the initial star topology. The figure shows the de-parametrization

495

of the selector S. The selector is distributed among N bits S i, each locally
assigned to an "outer-layer" of pi. Each S i selects (at every slot) a binary value,
which corresponds to pi being or not being selected at that slot. In order to have
a legal selection, we must make sure that exactly one process pi is selected at any
slot. This is accomplished by propagating the selections of the S i's backwards,
from S N up to $1: the propagation is performed by having a variable S~ at the
outer level of pi, whose value depends on that of S i and that of S~ +1. The role
of S~ is to report whether there were 0, 1 or more selections in the SJ bits in
the range Si-S N. Thus, the legal cases are those for which S~ - 1. We eliminate
the forbidden cases through automaton acceptance conditions (the structures to
which these apply must be linear, as well), The reason this construction works
is that the propagated signal is of bounded range, and thus independent of N.

W I N , L O S I ~

WIN , LOS P"

!

,p2 0 0 0 "q;

0 0 0 (
[

!

S i+I
0 O 0

O 0 0

Fig. 2. Doorway as Linear Topology: selector and X var's

Figure 2 also shows how the global variables Xij become local variables X~, of
the outer-layers of the Pi's' In a similar way requests from all the processes can
be accumulated along the chain and presented to the corresponding half-doorway
through a bounded-range signal.

In the following sections we shall discuss in detail the linearization of the
doorway scheme. The outcome of this linearization is a representation that can
be accommodated within the Induction Principle. The above example hints at
the properties of the doorway scheme that enabled its linearization e.g., the
ability to represent the legal and nonlegal cases of a distributed selector within
a bounded range. In the following section we formally discuss the Linearization
Principle and present the criteria needed for it to apply.

496

3 Linearization Principle

Linearization is applied to a system of processes (defined in Section 3.1) S(N) =
{p1,.. ", pM} (parameterized by N), when one or at most a bounded number of
the processes have O(M) dependencies upon the other processes, the remaining
processes having O(1) such dependencies. The effect of linearization is to re-
implement the dependencies recursiveiy, serving to "flatten" a star dependency
topology into a "linear" topology (like a cascade or shift register).

A system of the form S~(N) - {p1, . . ", pM; Xl, .- . , XK} consisting of pro-
cesses p1,.. ", pM and "system-level" variables xl, �9 �9 ", xg, which inter-connect

t h e processes, may be reduced to the form of S(N) by letting xl , . . . ,xK be
variables of respective (1-state) processes Q1, "." ", QK and setting

S(N) = {p1,.. . ,pM,Q1,.. . ,QK}.

Linearization is based upon augmenting the given system with variables (or
processes), whose values are defined in terms of a finite recursion. Those process
dependencies upon O(M) processes are replaced with respective dependencies
upon O(1) processes, including those added. When this is possible, we say S(N)
is linearizable.

We prove that a system of processes S(N) is linearizable if the process de-
pendencies can be computed incrementally.

3.1 P rocess Sys t ems

The concept of finite-state "process" is common to many models of coordination.
The Linearization Principle presented here applies to many of these models. We
characterize process in terms of variables. This characterization is equivalent to
the characterization in terms of Boolean algebra [8] used to support the devel-
opment of homomorphic reduction. The characterization in terms of variables
contains more details at an "implementational" level, as required for our de-
velopment of the Linearization Principle. Transformation of the Linearization
Principle to other process characterizations, such as those in terms of Boolean
algebra [8], traces [9, 10, 11, 12] or synchronization primitives [13] should be
straightforward (either by encoding these characterizations within this one, or
by re-casting the linearization Principle directly within the chosen framework).

We allow all process constructs to b e parameterized by an integer index.
For the system of processes S(N), N is the parameter. We will describe how to
construct a process S(N) which is a "parallel composition" of the system S(N).
Thus, S(N) defines an infinite family of (finite state) processes S(1), S(2),
The motive forapplying the Linearization Principle is to support computer-aided
verification of S(N) for all N, through application of the Induction Principle [1].
Verification always is with r~pect to a property or "specification" defined by
some process. Verification of S(N) with respect to the property or specification
defined by the process P(N) consists of the language-containment test

L(S(N)) C f_.(P(N)).

497

While for each N this is a finite test, and for sufficiently small N, the test may
be performed on a computer through exhaustive search, to check this for all N
requires an infinite test. The Induction Principle reduces this infinite test to a
finite test, under certain conditions. The Linearization Principle given here in
effect broadens those conditions, by providing a transformation from a broader
class of processes to the class in which the Induction Principle applies.

The foregoing motivates the following definitions.
Def in i t i on : A process is a function

P : V x D ~ ---* 2Vx (20) k

for some finite sets V = V(P) (the process states) and D (the domain of the
process variables, defined below), and integer k, subject to the following:

writing P(x) = (P0(x), ..., Pk(x)) for x = (x0 xk), for all i > 0, either
Pi(x) = {xi} or Pi is independent of xj for all j > i.

(Pi(x) is independent of zj if for each (fixed) value of (Z l , . . . , x j_l , xj+l , zk),
Pi is a constant function of zj ; otherwise, we say Pi(z) depends upon zj .)

We say z0 is the state of P, P0(z) is the state transition relation of P and
x l , . . . , xk are the (combinational) variables of P. The number of variables of P
is k(P) = k. The range of P is 2 v x (2~ k, rather than simply V x D k, in order
to support non-deterministic state transitions and variable assignments. Often
we will abuse notation and write a value in place of the singleton set containing
that value. Thus, for example, we may write Pi(z) = zi to mean Pi(z) = {zi}.
When Pi(x) = xi, zi (or Pi) is called an input to P; otherwise zi (Pi) is called
an output of P. Let k(P) denote the number of outputs of P. If k(P) = k(P),
P is said to be closed. We do not define the language ~(P) of the process P, as
that is not germane to our discussion of the Linearization Principle. However, in
order to place the above definition in context, we note that customarily, s is
defined in terms of successions of states (values of z0), each succession starting
with a state in a given set of initial states 1 C_ V, the succession possibly required
to satisfy some termination, acceptance (or "fairness") conditions, and such that
for each pair of consecutive states v, w in the given succession, there exists some
z = (v, xl, ..., xk) with

w E Po(x)

and

=~ ~ p~(x)

for all i > 0. (This makes sense on account of the variable independence as-
sumptions.) s is the set of sequences or strings t of successive values ti of
the vector (z m , . . . , xk) for some fixed m, each such sequence relative to a suc-
cession of states as described. The variables Xl , xm-1 (which may be inputs
or outputs) are internal variables, not represented in s

498

E x a m p l e l : a) Define the process P(x) with k(P) -- 3 and V(P) = D =
{ 0 , . . . , 2 3 2 - 1} for x = (Zo,xl ,x2, xa) by

Po(x) = xlx2 + (1 - xl)Xo ,

P, (.) = {0,1},

P 2 (x) - x2 ,

P 3 (=) = ~o �9

This process has a "control" variable xt which nondeterministically assumes the
values 0 or 1. If Xl = 1, P assigns the value of its input x2 as its next state;
otherwise its s tate remains unchanged. The process produces the value of its
current s tate in its output x3. The states v, w are consecutive if for xl - 0 or
X l = 1 and some x2,

W - " P o (v , x l , = 2 , y) - - X l Z 2 -~- (1 - = l) v .

(Thus, every pair of states V, w are consecutive.) If xt is taken to be internal,
then s consists of successions of pairs (ai, bi) where bi+l = ai or bi+l = hi.

b) Let Q(z) be the process with k(Q) = 3 and V(Q) = D as above, defined
by

Q o (z) = =o + x l z 2 ,

Q l (x) = =1 ,

Q 2 (=) = = 2 ,

Q ~ (~) = ~o .

(Say, ar i thmetic is modulo 232.) This process takes the product of inputs xl , z2
and adds that to its current state x0, whose value it produces in output x3. The
states v, w are consecutive if for some a l , x2

w = Q o (v , z l , =2, v) = v + ~:1z2 �9

Thus, v, w are consecutive as long as w > v. If xl is taken to be internal, then
s consists of successions of pairs (ai,bi) where ai is arbi t rary and bi+l =
bi + ciai for some ci > 0. ,

D e f i n i t i o n : A process system is a finite set of processes S = {p1, ..., pM}
sharing a common set of states, V(S), and a common variables domain, say D.
The variables of S are the variables of the processes in S. A parallel composi~iou
of the system of processes S is a process S with states V(S) = V(S) M, vari-

ables domain D and M ^ i _ k(S) _< M i 1?~_lk(P) < 2?~=lk(P) variables, subject to the

following: for k = k(S) and y = (v, yl, ..-, yk), where v = (Vl, ..., VM) E V(S) M,
and for some k(Pi)-dimensional vector]~ whose components are (not necessarily
unique) elements of the set Yl, ..., Yk, i - 1 , M, it is required that for each
i > 0 ,

Si(Y) = PJ(vj, ~) (1)

499

Y2 :
Y3:

Thus, for y = ((v, w), Yl, Y~, Y3),

for some j, n > 0 (i.e., each variable of S is a variable of S); furthermore, it is
required that if)~, - ym (i.e., Y,n is the s-th component of 1~) then either P]
is an input to PJ (P](x) = xs) or S'n(Y) = PJs(vj,Yj) (i.e., ym is in fact the
s-th variable of PJ); finally, it is required that for each output P~ of S there is
a unique i for which (1) holds, and the state transition relation So of S satisfies

S0(Y) = P01(Vl, }'1) • x poM(VM, YM) (2)

(where x denotes Cartesian product), provided

y, e S,(y) (3)

for a l l i > 0. I f (l) holds, and for some m,s , Y, ns = yi, then, for s < t, we say
p~ depe.ds upon P.~ if P~(=) depends upon = , .

Thus, the variables of S are the variables of S (or, more precisely, each
component Si of S (i > 0) i s equal to a (non-state) component of some p 1
evaluated on a subset of the arguments of S). Since S is a process, these variables
must satisfy the independence assumption for processes. The association (1)
defines the interconnectivity of the processes in S: if Yi is a component of Ym and
m r j , then p m takes as "input: the n-th variable of PJ. In this case, the output
Yi of the parallel composition S is internal iff both P~ and the corresponding
input of p m are internal. (Unsubstituted inputs retain their character- internal
or not- in S.)

E x a m p l e 2: Let S = {P, Q}, where P and Q are taken from example 1. We
may define a parallel composition S of P and Q as follows. In this composition
we define a closed process (no inputs) in which the following output-input match
is made:

output ~ input

Yl: P1 --* Q1
P3 --~ Q2
Q3 --* P2

Y0 = S0 (y) = (P0(v , Yl , !13, "), Q o(w , y l , y2 , ")) = (yy y3 + (1 - yl) v , w + y l y2)

Yl = SI (Y) = P l (v , Yl, Y3, ") = {0, 1}

U2 = ~2(Y) = P3(v , u l , u3, .) =

y3 = ~ 3 (y) = Q~(w, y l , y2, .) = w.

Here, "." indicates that the choice of variable is arbitrary. Since yl = P1 is
internal,/:(S) consists of successions of pairs (ai, bi) of values of (Y2, Y3), where
ai+l = bi and bi+l = ai + bi or ai+l = ai and bi+l = bi. If each succession is
initialized at v = 1, w = 1, then (until bi first surpasses 232) /:(~) consists of
Fibonacci pairs "computed asynchronously" (i.e., with arbitrary repetitions).

The concept of "parallel composition" described above supports both the
"synchronous product" illustrated in example 2, and "interleaving": the parallel

500

composition is interleaving provided for each component in (2), Pio(Vl,...) = vi
for all but at most one value of i, when (3) is satisfied. (See [14] for details.)

We assume that for each system of processes, some (fixed) parallel compo-
sition is defined (although which specific one, is not of interest here). Under
suitable termination or acceptance semantics, a parallel composition with no
internal variables satisfies the Language Intersection Property: Z:(,~) = s N
�9 . . Iq ~ (pM) . The Language Intersection Property, in turn, gives a convenient
means for reorganizing process systems: if S = {p1, ..., pro, ..., pM} is a system
of processes, then so are T = {p1, ..., pro} and U = {:~, pro+l, ..., pM}, and un-

A A

der consistent substitution of outputs for inputs (1), L~(S) = ~(U). Through such
a reorganization, one can directly generalize those assertions of the Linearization
Principle which apply to one process (see below), to several processes.

3.2 L i n e a r i z a t i o n

Definition: A system of processes T(N) = {QI,..., QM} is linear if k(Q i) =
0(1) for all i. Say T(N) is a linearization of a parameterized system of processes
S(N) = {p1, ..., pM} if T(N) is linear and s = s Say S(N) is
linearizable if it admits of a linearization.

Def in i t ion : A function f : D n ---. D is associative if there exist fi : D 2 ~ D
(i = 1 , . . . , n - 1) such that for zi = fi(xi, Zi+l) (zn = xn), f (x) = Zl.

Def in i t ion : A variable x of a parameterized process is of bounded computa-
tion if the number of variables upon which x depends, is bounded.

T h e o r e m l . A system S(N) = {p1 , . . . ,pM} is linearizable if

(a) k(P i) = 0(1) for all i > 1;
(b) k(P 1) = O(M);
(c) every variable and the state of p1 either is of bounded computation, or is

associative;
(d) the number of variables of p1 not of bounded computation, is bounded.

P r o o f : (sketch) First, we add an internal variable to p1 which is assigned the
value of the state P01, to enable variables which depend upon it to be moved
out of p1. We distribute among p2 , . . . , pU all variables of p1 which are of
bounded computation. This leaves 0(1) variables remaining in p1. Since there
are only O(M) variables in the system, each of the remaining variables of p1
can depend upon at most O(M) variables. Therefore, for each of these 0(1)
remaining variables x, we can use associativity to introduce an additional O(M)
internal variables zi, i = 1, ;. . , M, associating each zi with Pi, and then use
the recursion guaranteed by associativity and zl to assign x. The resulting x
has the same value as before, and is of bounded computation. Repeating this
construction for each such x gives the required result, n

501

3.3 Mechan ica l I m p l e m e n t a t i o n

There is a potential for algorithmic linearization of a process system which meets
the conditions of the above theorem. Processes whose number of variables is
parameterized on N may be identified syntactically. Thus, it may be checked
syntactically if the specified system meets the required conditions. If so, the
construction of the theorem may be followed to give a linearization.

While most functions D'* .--* D are not associative (of the ID]I DI" such func-
tions, only]Dt '*lDI2 are associative), probably most if not all functions which
would arise as parameterized variables of a a process in an engineering setting
would be associative. To recognize these algorithmically would probably require
that the user adhere to a pre-defined syntax when defining such parameterized
variables. However, this may be a very natural requirement.

It may be convenient syntactically to identify the reassigned variables with
respective "enveloping" processes, for each of the O (M) system processes. Like-
wise, we may identify syntactically components of expressions which depend
upon O (M) variables, and replace each of these by new respective variables
corresponding to the constructed recursion.

In order to verify that variables which are not of bounded computation (easily
identified syntactically, through the presence of the parameter N), it may be
necessary to use an interface to a theorem-prover (such as the interface described
in [15]).

4 Application to the Doorway Example

4.1 Linear iza t ion of the doo rway

In a previous section we outlined the way in which the doorway system is lin-
earized. We are now ready to complete this description; due to length constraints,
we shall describe only the "core" of the system. We note that we are implicitly
addressing a specification in s/r code[2], which corresponds to finite state syn-
chronous systems.

The half-doorways Dl (l = 1,2) are simple state-machines that produce
win/lose signals according to the Doorway Algorithm. When a half-doorway
is faulty, it may produce any sequence of such signals. Each half-doorway re-
ceives as input a corresponding signal R~, which is passed to it from the first
"envelope" process E P 1 (see below). This signal indicates to Dl whether some
process P~, i = l , . - - N , is requesting from D~.

For each process pi we define an "envelope" process E P i. The envelope E P i
contains the following entities:

- The basic process pi, which presents requests to each of the two half-
doorways, gets win/lose responses through the X-variables (see below), ac-
cording to the Doorway Algorithm.

- Local "win/lose" variables X[(l = 1,2), indicating whether pi has won or
lost in the half-doorway Dl.

502

- A local "selector" process S i with a binary selection, which decides whether
E P i is choosing pi to be active at a given slot of time.

- A ternary "propagation variable" S~, whose value describes whether there
are 0, 1 or more processes in the range [1..N] choosing themselves (i.e., whose
local selector is set).

- A binary variable K i which is set when any of the processes EPJ in the range
[i..N] selects itself and receives a response win or lose from a half-doorway
Dz (l = 1,2), even though it didn't make a request to the responding half-
doorway, resulting in the erroneous event that one PJ in the range [i..N]
might win or lose even though it is not requesting.

- "Request propagation" variables R~ (l = 1, 2), indicating whether a process
in the range [i..N] is requesting from the half-doorway Di.

Note that the value of a "propagation" variable (S~p, K i , R~) depends on that of a
local variable and on that of another propagation variable (e.g., S~ is determined
by S i andS~+l).

In order to finally establish our linearized doorway system, we have to get
rid of some bad events caused by the distributed fashion in which selections
are made. This is done by the incorporation of "Kill" processes, which can be
thought of as additional processes that interact with EP[1] and avoid the bad
selections by looking at the values of its variables.

4.2 Formal Specif icat ion and Verification of the Linear Doorway

As previously mentioned, Cospan[2] was chosen as the framework for the speci-
fication and verification of the linearized doorway.

The modeling of the linear doorway in Cospan consists in specifying a system
of processes. Each process P consists of a declarations and a body. In the former,
the finite sets V(P) (process states) and D (variables domain) are defined as
well as the initial states of P. Also, undesirable process behavior can be removed
by defining sets of states which the process must eventually leave (acceptance
conditions). In the body, the actions of the process are captured by a transition
structure with a (possibly) non-deterministic set of variables associated with
every state.

As mentioned previously, a faulty half-doorway produces arbitrary responses,
which in Cospan is modeled via the "free" construct. A "freed" process arbi-
trarily produces any of the variables defined for its domain D. Thus, either
half-doorway may be specified to be "free" according to run time parameters.

The tasks that we require the linear doorway system to perform were de-
scribed in a previous section. Their modeling in Cospan also consists of specifying
them as processes. The only difference between a process which is a component
of a system of processes and a process which specifies a task lies on the inter-
pretation of the acceptance conditions.

Having specified the doorway system S = { D1, D2, p1, p2 . . . p g } and each
of the tasks T j , Cospan calculates their parallel composition S (N) as defined in

503

section 3.1, and proceeds to test language containment for each task indepen-
dently.

We proceed by stating the Induction Principle[i]. Let < be a partial order
on processes (e.g., one induced by a language containment order); let | be a
composition operator on processes, monotonic with respect to <; let r be a
unary shift operator on processes, which distributes over | and preserves the
relation <. We then have:

I n d u c t i o n P r inc ip l e : Given two sets of processes, {pl ,p2 , . . . ,pg} and
{q t ,q2 . . . ,qN} , and an integer 1 < m < N, such that for all m < i < N,
pi+t = r and qi+l = r if

@im=t pi <_ qm (4)
J

and
qm | pm+l < qm+t (5)

then | _i _ qN
i=lP <

Thus, by proving two propositions about arrays of fixed size m, we may draw
a conclusion about an array of arbitrary size N. In particular, qN < T implies
~N ,~i i=le _ < T, that is: in order to verify that the system | performs task T
it is sufficient to verify that qN performs T. qi is called the process invarian~.

We now apply the Induction Principle to the doorway example. Denote p0 =
Dt | Dz, pi _. E P[i - 1] for 1 < i < N. We choose the following invariant:

qi = pO ~pi | | (~pi-3~i-4

where/5 is a modified version of p, whose variables are freed except for some of
its "propagation" variables which are not allowed to take values which causes
task T to fail. The shift operation on the processes pi is defined as:

- for i = 0: r = pi;
- for 0 < i < N: r = pi+l;
- for Vi: r =/51+1;

i.e., r is an identity map for the doorway and maps all other processes to their
successors.

Choosing m = 4 we have that the "induction base" (4)
pO 1 pi pO | pi | < i=4 | ~o

holds trivially because ifi ~ allows qi to have more behaviors than p0 1 i | P �9 The
"inductive step" (5) which is verified with Cospan i s :

pO ~1 pi p5 2 i=4 @/~0 @ _< p0 | pi | ~l

Thus, by verifying that qN _< T we have that p0 | <T.
We note that a linearizable star topology presents a very simple case for the

Induction Principle. The reason for this property is that the processes pi,s (for
i > 0), all connected to the hub, do not talk with each other, making the C-shifts
be in fact "out of the picture". This indeed is not the case in other applications
of the Induction Principle (e.g., the Dining Philosophers' problem discussed in
[1]), for which finding proper r and qi,s may prove to be a hard task.

504

References

1. R. P. Kurshan and K. McMillan, "A structural induction theorem for processes,"
in Proceedings of 8th A CM Syrup. on Principles of Distributed Computing, pp. 239-
247, 1989.

2. Z. Har'El and R. P. Kurshan, "Modelling concurrent processes," in Proceedings of
lnternat. Conf. Syst. Sci. Eng., pp. 382-385, 1988.

3. M. C. Browne, E. M. Clarke, and O. Grumberg, "Reasoning about networks with
many identical finite state processes," in In A CM Syrup. Principles of Distributed
Computing 5, 1986.

4. S. M. German and A. P. Sistla, "Reasoning about systems with many processes,"
GTE Laboratories Inc., Waltham, Massachusetts, 1988.

5'. Z. Shtadler and O. Grumberg, "Network grammars, communication behaviors and
automatic verification," LNCS, vol. 407, pp. 151-165, 1989.

6. Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld, "Computing with faulty
shared memory," in Proceedings of 11th A CM Symp. on Principles of Distributed
Computing, 1992.
R. P. Kurshan, M. Merritt, A. Orda, and S. R. Sachs, "Formal verification of a
distributed algorithm for accessing faulty shared memory," (in preparation), 1993.
R. P. Kurshan, "Analysis of discret e event coordination," LNCS, vol. 430, pp. 414-
453, 1990.
D. Dill, Trace Theory for Automatic Hierarchical Verification. MIT Press, 1989.
M. Hennessy, Algebraic Tehory of Processes. MIT Press, 1988.
R. Milner, A Calculus for Communicating Systems (volume 9~ of LNCS).
Springer-Verlag, 1980.
N. Lynch and M. Turtle, "Hierarchical correctness proofs for distributed algo-
rithms," in Proceedings of 6th A CM Syrup. on Principles of Distributed Computing,
pp. 137-151, 1987.
C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.
R. P. Kurshan, Automata-Theoretic Verification of Coordinating Processes. UC
Berkeley Lecture Notes, 1992.
R. P. Kurshan and L. Lamport, "Verification of a multiplier: 64 bits and beyondi"
preprint, 1993.

7.

8.

9.
i0.
II .

12.

13.
14.

15.

