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Abs t rac t .  Thanks to a variety of new techniques, state-space explo: 
ration is becoming an increasingly effective method for the verification 
of concurrent programs. One of these techniques, hashing without col- 
lision detection, was proposed by I-Iolzmann as a way to vastly reduce 
the amount of memory needed to store the explored state space. Un- 
fortunately, this reduction in memory use comes at the price of a high 
probability of ignoring part of the state space and hence of missing ex- 
isting errors. In this paper, we carefully analyze this method and show 
that, by using a modified strategy, it is possible to reduce the risk of er- 
ror to a negligible amount while maintaining the memory use advantage 
of Holzmann's technique. Our proposed strategy has been implemented 
and we describe experiments that confirm the excellent expected results. 

1 Introduct ion 

The sceptic often dismisses state-space exploration as a simple-minded, bru- 
tal, and hence ineffective concurrent program verification technique. Indeed, 
this technique is based on the straightforward idea of exploring all possible be- 
haviors of the concurrent program and relies more on raw computing power 
than on intricate mathematics. Nevertheless, its effectiveness on a large class 
of problems is becoming more and more apparent as tools are being developed 
[BCD85, RRSV87, Hol91]. Moreover, combining the mere powerful methodical- 
ness of state-space exploration with even limited subtlety can yield very impres- 
sive results. 

There are two main ways to use computing power more effectively for state- 
space exploration. The first is to tackle directly the central problem of this tech- 
nique: the huge number of states of most systems. This is done by showing that ,  
under some conditions, one can reliably analyze a system with many fewer states. 
Examples of this approach are abstraction techniques [Wo186, CGL92, BBLS92] 
and "partial-order" techniques [Val90, GW91a, GW91b, tIGP92, McM92]. The 
former replace the system to be analyzed by a simpler one, the latter a t tempt  
to avoid the explosion of the state space due to the modelling of concurrency by 
interleaving. 
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The second approach is to squeeze as much performance as possible out of 
the technique. "On the fly" methods are a step in this direction [Ho185, VW86, 
:I:189, FM91, CVWY92]. They are based on the observation that  for many state- 
exploration based verification problems including deadlock detection, temporal  
logic model-checking and testing bisimulation equivalence, one just  needs to 
visit the entire state-space without ever having to store it entirely for further 
use. This allows substantial improvements in the amount  of memory required 
to implement the search through the state-space. Indeed, if as usual one uses a 
depth-first search, one only needs to store the current search stack and, in order 
to avoid duplicate work, a table containing the states that  have already been 
visited. 

Hashing without collision detection is an idea introduced by Holzmann for 
minimizing the amount of memory necessary for keeping the table of visited 
states [Ho188, Hol91]. The table is a table of bits all initially set to 0. To add a 
state to the table, one hashes the state description into an address in the table 
and sets the bit at this address to 1. To determine if a state is in the table, one 
applies the hash function t o  the state and checks whether the bit appearing at 
the computed address is 1. Of course, the drawback of the method is that  the 
hash function can compute the same address for distinct states and hence one 
can wrongly conclude that  a state has been visited, whereas one has actually 
encountered a hash collision. It has been argued that this is not too serious 
because the probability of collision can be kept small if the table is not too full. 
Moreover, repeating the search with different hash functions can further reduce 
the probability of collisions. Alternatively, as advocated by Holzmann, one can 
use two hash functions and store two bits in the table for each state. One then 
only concludes that a state is present in the table if the bits at both the computed 
addresses are set to 1. 

In this paper, we first look at the simple analysis of the probability of colli- 
sions in the scheme proposed by Holzmann. Our conclusion which is confirmed 
by experiments with Holzmann's SPIN system is that,  even if the ratio of num- 
ber of states to table entries is less than 1%, as recommended for good results in 
[Hol91], the probability of collision is unacceptably high and states are missed in 
such searches. We then analyze two vari .ants of the method. The first is simply 
to increase further the  number of hash functions. The second is to increase the 
number of bits stored in the table and to use a collision resolution scheme for 
the values stored. Then, assuming a fixed size memory, we compute opt imum 
values for the number of hash functions in the first scheme and for the number 
of bits stored in the table in the second scheme. For these optimal values, the 
analysis shows that  both techniques yield essentially the same result which is 
dramatically bet ter  than what can be achieved with Holzmann's scheme. Col- 
lision probabilities of 10 -3 or even 10 -6 can easily be obtained while memory 
use is of the order of 40-100 bits per stored state. Compared with Holzmann's 
scheme, collision probability is thus drastically reduced whereas memory use is 
essentially unchanged (assuming a ratio of number of states to table size of no 
more than 1%). 



61 

We then discuss the pragmatic consequences of our analysis and make a 
practical recommendation. We have implemented our recommendation in the 
context of the SPIN system and our experiments perfectly confirm the theoretical 
analysis. 

2 S t a t e - S p a c e  E x p l o r a t i o n  a n d  i t s  M e m o r y  R e q u i r e m e n t s  

The exact problem we consider is the following. We are given a program P 
represented by an initial state so and a function succs(s) which yields the set 
of immediate successors of any sate s. The problem is to explore all reachable 
states of the program in order to check for some property. Since it i~ irrelevant 
to our present purpose, we ignore the property to be checked and focus on the 
search process. The algorithm used for the search is described in Fig. 1 where 
the variable Stack denotes a stack structure and the variable T denotes a lookup 
table. 

1. Initialize: Stack := [so]; T := {So}; 
2. Loop: while Stack ~ ~ do 

begin 
s := pop(Stack); 
for all s' e succs(s) do 

begin 
if s' ~ T then 

begin 
insert s' in T; 
push s' onto Stack; 
end 

end 
end 

Fig. :~. Search algorithm 

The memory requirements of this algorithm are thus a stack and a table. 
The stack is sequentially accessed and has its length bounded by the depth of 
the state-space graph. It is usually not the crucial element from a memory usage 
point of view. On the other hand, the table has to allow direct access to its 
elements and will eventually contain the whole state-space. It is thus essential 
to carefully choose the corresponding data structure. 

The natural  choice is a hash table. However, the state descriptors that  have 
to be stored in this table are often rather large (of the order of a 100 bytes). 
Thus, on a typical computer with 64 Mbytes of memory, one is limited to only 
several hundreds of thousand states. 
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To improve on this rather drastic limit, Holzmann has suggested the following 
strategy. One uses a table of bits T such that  that  initially T[i] = 0 for all i. 
To access this table, one uses a hash function h, and storing a state s in the 
table amounts to setting T[h(s)] to 1. To determine if a state s is not in the 
table, one then simply checks that T[h(s)] is still 0. This scheme is great if the 
hash function is perfect (produces no collisions). Since this is not a reasonable 
assumption, ttolzmann advocates the following use of the method. 

First, rather than using one hash function, one uses two hash functions hi and 
h~ (this is actually what is implemented in the SPIN system [Hol91]). To insert a 
state s, one sets both T[hl (s)] and T[h2(s)] to 1. Furthermore, one only concludes 
that  a state is present if both T[hl(s)] and T[h2(s)] are 1. Second, one only relies 
on the result if the table remains less than 1% full. Precisely, Holzmann argues 
that  in this case, the fraction of the state space that  is explored is large (say 99%). 
On our prototypical 64 Mbyte computer, this now allows storing a few million 
st~ates. Moreover, the method degrades gracefully when the number of states 
increases beyond what is allowable. Indeed, as the table fills up, the probability 
of missing part of the state space increases, but the search can continue and still 
provide useful information. 

Unfortunately, even exploring 99% of the state space does not guaranty that  
all errors in the protocol will be discovered. Our goal is to determine if I-Iolz- 
mann's method cannot be modified in such a way that  the probability of missing 
even a single state is negligible (say 10 -3 or even 10-6). For doing this, the next 
section turns to a probabilistic analysis. 

3 A n  A n a l y s i s  o f  H a s h i n g  w i t h o u t  C o l l i s i o n  D e t e c t i o n  

Doing a probabilistic analysis of Holzmann's scheme is very simple. We first deal 
with the case of a single hash function and use the following notation: 

- the size (number of possible entries) in the table is t, 
- the number of states to be inserted in the table is n. 

Assuming uniformity, the probability of no collision Pnc is 

tl 
= t - ( t  - n ) !  (1 )  

For n close to t, this is clearly very close to 0. Furthermore, even for n << t the 
situation is not favorable since one obtains from (1) 

~Z 
pnr ~ e- , . (2) 

Thus, for the probability of no collision to be close to 1 (and hence for the 
n 2 method to be reliable), one needs -~- to be close to 0 (say 10 -a) and hence t 

must be larger than 103n 2. For instance, if n -- 106, t must be of the order of 
1015 which is quite unrealistic. 
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Let us now see if using two hash functions (as described in the previous 
section) gives better  results. With an eye towards generalizing this idea, we 
immediately analyze the case of k hash functions. There are t k'~ ways in which 
the k hash functions can map the n states into a table of size t. There are 

t k 

ways in which the first element can be inserted into the table. For the second 
element, there are approximately 

t ~ _ k k 

possibilities that  do not lead to a collision. The approximation made is to assume 
that ,  for the first element, the k hash functions have yielded distinct values. 
This is reasonable since, on average, the number of table entries set to 1 after 
the insertion of the first state is very close to k. Carrying on with the same 
approximation, we take the number of 1 entries after the insertion of i elements 
to be ik. The number of ways of inserting the element i + 1 without collision is 
thus 

tk  _ ( i k )  ~ 

and the probability of no collision is 

( t  _ 
PRO = ( 3 )  

for nk << t, one can obtain 
- -  k k n k - ' l ' l  

Pnr ~ e ," (4) 

If we take k = 2, then for Pne to be close to 1, ~ should be close to 0 (e.g. 
10-3). Thus for n = 106, t must be of the order of 6 �9 101~ much smaller than 
what was required with a single hash function, but still impractically large. 

The natural  question to ask at this point is why stop at k = 2. One expects 
tha t  larger values of k will push the probability of no collision closer to 1, though 
at some point the benefit will disappear because the table will fill up too fast. 
Let us thus try to find the optimal value of k. For doing this, we fix Pnc to a 
value acceptably close to 1, fix the size of the table t to be equal to the available 
memory M (in bits) and determine for which value of k, the number of states 
that  can be stored is maximal. Fig. 2 shows the number of states that  can be 
stored with a probability of collision of 10 -3 (Pnr = 1 - 10 -3) as a function of 
k and for table sizes ranging from 1 Mbit (128KBytes) to 1Gbit (128MBytes). 
The next figure (Fig. 3) also shows the number of states that  can be stored 
as a function of k, but this time for a fixed memory size (100Mbit) and for a 
probability of collision (1 - Pnc) ranging from 10 -1 to 10 -6. 

From these figures, we see that there is an optimal value of k that,  for a large 
range of memory sizes and collision probabilities, can be taken to be k = 20. 
For this value, memory use is of the order of 60-100 bits per state. Note that  
for the optimal value, the table is approximately 35% full. This might seem 
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incompatible with the assumption that nk << t, but a more careful look shows 
that  nk = 0.35t is actually sufficient for our analysis to be valid. Moreover, 
most of our approximations are pessimistic (i.e., overestimate the probability of 
collision) and hence are safe. 

So, the conclusion is that one should use, not 2 hash functions, but 20. This is 
indeed much preferable to Holzmann's approach when the size of the state space 
is less than 1/100th of the number of available memory bits. One then obtains full 
coverage with a high probability which was not at all the case with I-Iolzmann's 
method. However, for state spaces substantially larger than the safe maximal 
values we have computed, the table will fill up more quickly for a larger value 
of k, and thus coverage (the fraction of the state-space actually visited) might 
be better for a small value of k, though it will be very far from 100%. Finally, 
computing 20 hash functions is quiteexpensive and will substantially slow down 
the search. In the next section we thus present a method that provides similar 
benefits to multiple hash functions, which we will from now on call multihashing, 
but without its computational overhead. 

However, before doing this, we discuss an alternative to the scheme analyzed 
in this section that  might have occurred to the reader and appeared to be prefer- 
able. The idea is, rather than using k hash functions which compute an address 
in a single table, to use k hash functions that compute addresses in k distinct 
tables of size t / k .  This amounts to partitioning the hash table in k equal parts 
and ensuring that  the range of each hash function is limited to one of these parts. 

If we take a second look at the analysis appearing above, we notice that  
partitioning the hash table does not require it to be modified much. Indeed, the 
number of ways of inserting element i + 1 without a collision is 

( q k )  k - ( i )  k 

Again, this is an approximate number since we have assumed the number of 
elements in each part of the table to be exactly i after the insertion of the ith 
element. From this, we obtain that 

H,.':o ( ( t / k  - i 
Pnc n (5) 

which turns out to be identical to (3). Actually, the only difference between 
the two cases is that  our approximation underestimates the probability of no 
collision slightly more in the case of a nonpartitioned table than in the case of a 
partitioned table. The nonpartitioned table is thus preferable. 

4 A n  A l t e r n a t i v e  S c h e m e  

As we have seen in the previous section, to obtain a small probability of collision 
with a single hash function, one needs an impractically large table, for example 
one with 2015 entries. However, one can easily simulate such a table when it 
only contains a limited number of entries. The idea is to compute the address 
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in the large table and actually store it in a much smaller hash table, but  this 
time with a collision resolution scheme. The small hash table thus only needs 
to have a size of the order of the number of entries that  will actually be stored. 
For example, one could use a hash function to compute 64 bit strings from the 
state descriptions, and then use a standard hash table to store these strings. 
This would thus only require approximately 64n bits to store n states. 

Let us analyze the probability of no collision in this scheme. We assume that  
we have a table of size t in which entries k bit long (obtained by a hash function 
from the state descriptor) are stored. Assuming that  the overhead required to 
resolve collisions is negligible, this means that  the memory used by our table is 
of size t k  - M bits. This approach simulates hashing without collision detection 
with a table of size 2 k, and thus using (2), we have that  

~2 

p ~  ~ e - ~ .  (6) 

If we fix the size M of the available memory and the acceptable probability of no 
collision, the maximal number of states n that  can be stored is obtained when 
n = t (the hash table is full) and satisfies 

Pnc ~ e-2 M-~ . 

The following two figures respectively give the values of the optimal n and k as 
a function of the probability of collision (1 - Pnc) and the size of the available 
memory. From these figures, one easily concludes that  taking, for instance, 
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k = 64 is quite sufficient to guarantee a very low probability of collision over the 
range of memory sizes we have considered. With this value, we obtain a memory 
use per stored state which is at least as low as with the scheme described in the 
previous section. Moreover, the present scheme only requires the computation 
of less than 100 hash bits (the 64 bits to be stored and the address in the hash 
table) as compared to the approximately 500 needed for the same reliability with 
the multihashing scheme. 

One way to understand the method we have just proposed is to view the 
hash function applied to the state-description as a compaction function, albeit 
an unreliable one. We will thus call this scheme hashcompact. Note that  compared 
to other compaction proposals (see for instance [ItGP92]) it yields a much greater 
reduction in size, but at the cost of a small probability of error. 

5 R e c o m m e n d a t i o n  a n d  D i s c u s s i o n  

Which of the two schemes multihash and hashcompact do we recommend ? Fig. 6 
compares the number of states that can be stored with a 10 -3  probability of 
error when using both schemes optimally. The comparison is to the advantage 
of hashcompact.  This is the first reason for which we recommend this scheme. 
The second is that  it requires less computation than multihash and, the last is 
that  it stays reliable (very small probability of collision) until the memory fills 
up. This to be contrasted to the behavior of multihash for which the probability 
of collision increases gradually as the memory fills up. Thus hashcompact warns 
the user when too little memory is available for an exhaustive search. When 
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this actually occurs and one wants to optimize coverage, using a scheme close to 
Holzmann's original proposal is probably best. However, since this amounts to 
randomly limiting the search one might also consider alternative ways of doing 
this. 

In practice, compacting the state descriptors into a 64 bit hash value which 
is then stored reliably is sufficient to ensure a probability of collision lower than 
10 -3 over the range of memory sizes that  one can expect fo find on present day 
machines. This is what we recommend implementing. 

6 Implementation 

We have implemented the hashcompact scheme in the context of the SPIN sys- 
tem [Hol91]. The results confirm our expectations. The table in Fig. 7 illustrates 
this for two protocols DTP (with a large channel size) and PFTP.  It shows that  
hashcompact does provide full coverage (the same as an exhaustive search stor- 
ing full state descriptors) with less than 100 bits per state, whereas Holzmann's 
scheme (bitstate) fails to provide full coverage even when using close to 1000 
bits per state. 

7 Conclusions 

On the fly verification techniques have made it possible to reduce the memory 
requirements of verification systems to those of a simple state-space search: a 
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[Protocol[ 
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Algorithm 
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bitstate 

]hashcompact 
exhaustive 
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hashcompact 
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No 
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No 
No 
Yes 
No 

Fig. 7. Experimental results 

st~ck and a visited-state table. Since the table needs to be randomly accessed 
and is the largest of the two structures, it is essential to find the best possible 
data structures to implement it. 

Our starting point was the neat idea of hashing without collision detection 
used by Holzmann in his SPIN system. Motivated by the desire to optimize this 
method which is inherently unreliable, we have concluded that a very simple hash 
compaction scheme could yield comparable storage efficiency and high (though 
not absolute) reliability. 

All the techniques used in this paper are very standard. Our contribution is 
to show that by using them correctly, one can obtain a very substantial reduction 
in the space needed to store the visited-state table of state-exploration verifyers. 
The only price is a small probability of error that can be essentially reduced 
at will. We have also made a recommendation for implementation our method 
which is at the same time simple and effective and have shown experimental 
results. 

Finally, the compaction scheme we have proposed is fully compatible with 
other memory reduction strategies such as state-space caching [GttP92]. To end 
with a bold statement, let us say that the combination of these techniques has 
shifted the bottleneck in state-exploration systems from storing the visited-state 
table to the time needed for completing the search. 
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