
Reliable Hashing without Collision Detection*

Pierre Wolper and Denis Leroy

Universitd de Liege, Institut Montefiore, B28, 4000 Liege Sart Tilman, Belgium.
Email : {pw,leroy}@montefiore.ulg.ac.be

Abs t rac t . Thanks to a variety of new techniques, state-space explo:
ration is becoming an increasingly effective method for the verification
of concurrent programs. One of these techniques, hashing without col-
lision detection, was proposed by I-Iolzmann as a way to vastly reduce
the amount of memory needed to store the explored state space. Un-
fortunately, this reduction in memory use comes at the price of a high
probability of ignoring part of the state space and hence of missing ex-
isting errors. In this paper, we carefully analyze this method and show
that, by using a modified strategy, it is possible to reduce the risk of er-
ror to a negligible amount while maintaining the memory use advantage
of Holzmann's technique. Our proposed strategy has been implemented
and we describe experiments that confirm the excellent expected results.

1 Introduct ion

The sceptic often dismisses state-space exploration as a simple-minded, bru-
tal, and hence ineffective concurrent program verification technique. Indeed,
this technique is based on the straightforward idea of exploring all possible be-
haviors of the concurrent program and relies more on raw computing power
than on intricate mathematics. Nevertheless, its effectiveness on a large class
of problems is becoming more and more apparent as tools are being developed
[BCD85, RRSV87, Hol91]. Moreover, combining the mere powerful methodical-
ness of state-space exploration with even limited subtlety can yield very impres-
sive results.

There are two main ways to use computing power more effectively for state-
space exploration. The first is to tackle directly the central problem of this tech-
nique: the huge number of states of most systems. This is done by showing that ,
under some conditions, one can reliably analyze a system with many fewer states.
Examples of this approach are abstraction techniques [Wo186, CGL92, BBLS92]
and "partial-order" techniques [Val90, GW91a, GW91b, tIGP92, McM92]. The
former replace the system to be analyzed by a simpler one, the latter a t tempt
to avoid the explosion of the state space due to the modelling of concurrency by
interleaving.

"~ This work was supported by the Esprit BRA action REACT and by the Belgian
Incentive Program "Information Technology" - Computer Science of the future, ini-
tiated by the Belgian State - Prime Minister's Office - Science Policy Office. The
scientific responsability is assumed by its authors.

60

The second approach is to squeeze as much performance as possible out of
the technique. "On the fly" methods are a step in this direction [Ho185, VW86,
:I:189, FM91, CVWY92]. They are based on the observation that for many state-
exploration based verification problems including deadlock detection, temporal
logic model-checking and testing bisimulation equivalence, one just needs to
visit the entire state-space without ever having to store it entirely for further
use. This allows substantial improvements in the amount of memory required
to implement the search through the state-space. Indeed, if as usual one uses a
depth-first search, one only needs to store the current search stack and, in order
to avoid duplicate work, a table containing the states that have already been
visited.

Hashing without collision detection is an idea introduced by Holzmann for
minimizing the amount of memory necessary for keeping the table of visited
states [Ho188, Hol91]. The table is a table of bits all initially set to 0. To add a
state to the table, one hashes the state description into an address in the table
and sets the bit at this address to 1. To determine if a state is in the table, one
applies the hash function t o the state and checks whether the bit appearing at
the computed address is 1. Of course, the drawback of the method is that the
hash function can compute the same address for distinct states and hence one
can wrongly conclude that a state has been visited, whereas one has actually
encountered a hash collision. It has been argued that this is not too serious
because the probability of collision can be kept small if the table is not too full.
Moreover, repeating the search with different hash functions can further reduce
the probability of collisions. Alternatively, as advocated by Holzmann, one can
use two hash functions and store two bits in the table for each state. One then
only concludes that a state is present in the table if the bits at both the computed
addresses are set to 1.

In this paper, we first look at the simple analysis of the probability of colli-
sions in the scheme proposed by Holzmann. Our conclusion which is confirmed
by experiments with Holzmann's SPIN system is that, even if the ratio of num-
ber of states to table entries is less than 1%, as recommended for good results in
[Hol91], the probability of collision is unacceptably high and states are missed in
such searches. We then analyze two vari .ants of the method. The first is simply
to increase further the number of hash functions. The second is to increase the
number of bits stored in the table and to use a collision resolution scheme for
the values stored. Then, assuming a fixed size memory, we compute opt imum
values for the number of hash functions in the first scheme and for the number
of bits stored in the table in the second scheme. For these optimal values, the
analysis shows that both techniques yield essentially the same result which is
dramatically bet ter than what can be achieved with Holzmann's scheme. Col-
lision probabilities of 10 -3 or even 10 -6 can easily be obtained while memory
use is of the order of 40-100 bits per stored state. Compared with Holzmann's
scheme, collision probability is thus drastically reduced whereas memory use is
essentially unchanged (assuming a ratio of number of states to table size of no
more than 1%).

61

We then discuss the pragmatic consequences of our analysis and make a
practical recommendation. We have implemented our recommendation in the
context of the SPIN system and our experiments perfectly confirm the theoretical
analysis.

2 S t a t e - S p a c e E x p l o r a t i o n a n d i t s M e m o r y R e q u i r e m e n t s

The exact problem we consider is the following. We are given a program P
represented by an initial state so and a function succs(s) which yields the set
of immediate successors of any sate s. The problem is to explore all reachable
states of the program in order to check for some property. Since it i~ irrelevant
to our present purpose, we ignore the property to be checked and focus on the
search process. The algorithm used for the search is described in Fig. 1 where
the variable Stack denotes a stack structure and the variable T denotes a lookup
table.

1. Initialize: Stack := [so]; T := {So};
2. Loop: while Stack ~ ~ do

begin
s := pop(Stack);
for all s' e succs(s) do

begin
if s' ~ T then

begin
insert s' in T;
push s' onto Stack;
end

end
end

Fig. :~. Search algorithm

The memory requirements of this algorithm are thus a stack and a table.
The stack is sequentially accessed and has its length bounded by the depth of
the state-space graph. It is usually not the crucial element from a memory usage
point of view. On the other hand, the table has to allow direct access to its
elements and will eventually contain the whole state-space. It is thus essential
to carefully choose the corresponding data structure.

The natural choice is a hash table. However, the state descriptors that have
to be stored in this table are often rather large (of the order of a 100 bytes).
Thus, on a typical computer with 64 Mbytes of memory, one is limited to only
several hundreds of thousand states.

62

To improve on this rather drastic limit, Holzmann has suggested the following
strategy. One uses a table of bits T such that that initially T[i] = 0 for all i.
To access this table, one uses a hash function h, and storing a state s in the
table amounts to setting T[h(s)] to 1. To determine if a state s is not in the
table, one then simply checks that T[h(s)] is still 0. This scheme is great if the
hash function is perfect (produces no collisions). Since this is not a reasonable
assumption, ttolzmann advocates the following use of the method.

First, rather than using one hash function, one uses two hash functions hi and
h~ (this is actually what is implemented in the SPIN system [Hol91]). To insert a
state s, one sets both T[hl (s)] and T[h2(s)] to 1. Furthermore, one only concludes
that a state is present if both T[hl(s)] and T[h2(s)] are 1. Second, one only relies
on the result if the table remains less than 1% full. Precisely, Holzmann argues
that in this case, the fraction of the state space that is explored is large (say 99%).
On our prototypical 64 Mbyte computer, this now allows storing a few million
st~ates. Moreover, the method degrades gracefully when the number of states
increases beyond what is allowable. Indeed, as the table fills up, the probability
of missing part of the state space increases, but the search can continue and still
provide useful information.

Unfortunately, even exploring 99% of the state space does not guaranty that
all errors in the protocol will be discovered. Our goal is to determine if I-Iolz-
mann's method cannot be modified in such a way that the probability of missing
even a single state is negligible (say 10 -3 or even 10-6). For doing this, the next
section turns to a probabilistic analysis.

3 A n A n a l y s i s o f H a s h i n g w i t h o u t C o l l i s i o n D e t e c t i o n

Doing a probabilistic analysis of Holzmann's scheme is very simple. We first deal
with the case of a single hash function and use the following notation:

- the size (number of possible entries) in the table is t,
- the number of states to be inserted in the table is n.

Assuming uniformity, the probability of no collision Pnc is

tl
= t - (t - n) ! (1)

For n close to t, this is clearly very close to 0. Furthermore, even for n << t the
situation is not favorable since one obtains from (1)

~Z
pnr ~ e- , . (2)

Thus, for the probability of no collision to be close to 1 (and hence for the
n 2 method to be reliable), one needs -~- to be close to 0 (say 10 -a) and hence t

must be larger than 103n 2. For instance, if n -- 106, t must be of the order of
1015 which is quite unrealistic.

63

Let us now see if using two hash functions (as described in the previous
section) gives better results. With an eye towards generalizing this idea, we
immediately analyze the case of k hash functions. There are t k'~ ways in which
the k hash functions can map the n states into a table of size t. There are

t k

ways in which the first element can be inserted into the table. For the second
element, there are approximately

t ~ _ k k

possibilities that do not lead to a collision. The approximation made is to assume
that , for the first element, the k hash functions have yielded distinct values.
This is reasonable since, on average, the number of table entries set to 1 after
the insertion of the first state is very close to k. Carrying on with the same
approximation, we take the number of 1 entries after the insertion of i elements
to be ik. The number of ways of inserting the element i + 1 without collision is
thus

tk _ (i k) ~

and the probability of no collision is

(t _
PRO = (3)

for nk << t, one can obtain
- - k k n k - ' l ' l

Pnr ~ e ," (4)

If we take k = 2, then for Pne to be close to 1, ~ should be close to 0 (e.g.
10-3). Thus for n = 106, t must be of the order of 6 �9 101~ much smaller than
what was required with a single hash function, but still impractically large.

The natural question to ask at this point is why stop at k = 2. One expects
tha t larger values of k will push the probability of no collision closer to 1, though
at some point the benefit will disappear because the table will fill up too fast.
Let us thus try to find the optimal value of k. For doing this, we fix Pnc to a
value acceptably close to 1, fix the size of the table t to be equal to the available
memory M (in bits) and determine for which value of k, the number of states
that can be stored is maximal. Fig. 2 shows the number of states that can be
stored with a probability of collision of 10 -3 (Pnr = 1 - 10 -3) as a function of
k and for table sizes ranging from 1 Mbit (128KBytes) to 1Gbit (128MBytes).
The next figure (Fig. 3) also shows the number of states that can be stored
as a function of k, but this time for a fixed memory size (100Mbit) and for a
probability of collision (1 - Pnc) ranging from 10 -1 to 10 -6.

From these figures, we see that there is an optimal value of k that, for a large
range of memory sizes and collision probabilities, can be taken to be k = 20.
For this value, memory use is of the order of 60-100 bits per state. Note that
for the optimal value, the table is approximately 35% full. This might seem

64

10s i l I i l

1 G b i t s - -

107 100, M b i t s =
10 M b i t s -

1 M b i t s
108

n

105 _-

10 4 .-:

10 3 [I I I I I I I I I

10 20 30 40 50 60 70 80 90
hash f u n c t i o n s

F i g . 2. States s tored with pnc -- 1 - 10 -3

I I I I I I I I I {
2.5 106 { 10 -1 - I

2 10 6 / ~ ~ 10_~ {

/ / ~ . ~ 10 - 4 /
1,5106 ' 1 / . " ' " - : - ~ ~ ~ ~ 10-5 " ' "

~ ~oo , ~ ~i~ '~
~1o~ i t

0
10 20 30 80

f I I

40 50 60
hash f u n c t i o n s

I

7O

I

9O

F i g . 3. States stored with M - 100 Mbits

65

incompatible with the assumption that nk << t, but a more careful look shows
that nk = 0.35t is actually sufficient for our analysis to be valid. Moreover,
most of our approximations are pessimistic (i.e., overestimate the probability of
collision) and hence are safe.

So, the conclusion is that one should use, not 2 hash functions, but 20. This is
indeed much preferable to Holzmann's approach when the size of the state space
is less than 1/100th of the number of available memory bits. One then obtains full
coverage with a high probability which was not at all the case with I-Iolzmann's
method. However, for state spaces substantially larger than the safe maximal
values we have computed, the table will fill up more quickly for a larger value
of k, and thus coverage (the fraction of the state-space actually visited) might
be better for a small value of k, though it will be very far from 100%. Finally,
computing 20 hash functions is quiteexpensive and will substantially slow down
the search. In the next section we thus present a method that provides similar
benefits to multiple hash functions, which we will from now on call multihashing,
but without its computational overhead.

However, before doing this, we discuss an alternative to the scheme analyzed
in this section that might have occurred to the reader and appeared to be prefer-
able. The idea is, rather than using k hash functions which compute an address
in a single table, to use k hash functions that compute addresses in k distinct
tables of size t / k . This amounts to partitioning the hash table in k equal parts
and ensuring that the range of each hash function is limited to one of these parts.

If we take a second look at the analysis appearing above, we notice that
partitioning the hash table does not require it to be modified much. Indeed, the
number of ways of inserting element i + 1 without a collision is

(q k) k - (i) k

Again, this is an approximate number since we have assumed the number of
elements in each part of the table to be exactly i after the insertion of the ith
element. From this, we obtain that

H,.':o ((t / k - i
Pnc n (5)

which turns out to be identical to (3). Actually, the only difference between
the two cases is that our approximation underestimates the probability of no
collision slightly more in the case of a nonpartitioned table than in the case of a
partitioned table. The nonpartitioned table is thus preferable.

4 A n A l t e r n a t i v e S c h e m e

As we have seen in the previous section, to obtain a small probability of collision
with a single hash function, one needs an impractically large table, for example
one with 2015 entries. However, one can easily simulate such a table when it
only contains a limited number of entries. The idea is to compute the address

66

in the large table and actually store it in a much smaller hash table, but this
time with a collision resolution scheme. The small hash table thus only needs
to have a size of the order of the number of entries that will actually be stored.
For example, one could use a hash function to compute 64 bit strings from the
state descriptions, and then use a standard hash table to store these strings.
This would thus only require approximately 64n bits to store n states.

Let us analyze the probability of no collision in this scheme. We assume that
we have a table of size t in which entries k bit long (obtained by a hash function
from the state descriptor) are stored. Assuming that the overhead required to
resolve collisions is negligible, this means that the memory used by our table is
of size t k - M bits. This approach simulates hashing without collision detection
with a table of size 2 k, and thus using (2), we have that

~2

p ~ ~ e - ~ . (6)

If we fix the size M of the available memory and the acceptable probability of no
collision, the maximal number of states n that can be stored is obtained when
n = t (the hash table is full) and satisfies

Pnc ~ e-2 M-~ .

The following two figures respectively give the values of the optimal n and k as
a function of the probability of collision (1 - Pnc) and the size of the available
memory. From these figures, one easily concludes that taking, for instance,

n

10 8

10 7

10 6

10 5

10 4

I I I I I

' ' 1

1 Gbits
100 Mbits

10 Mbits
1 Mbits

I I I I I I I

lO-IS i0 -13 10-,I 10-9 10-7 10-s 10-3 10 -1
collision probability

Fig. 4. Optimal n

67

120 , i i [, i

l 1 Gbits
100 _ 100 Mbits ,,

Mbits 10
80 " '

k 60

4O

20

0 I I
10-1s 10-13 10-11

I I I f

10 -o 10 -7 10 -s 10-3
collision probability

10-1

Fig. 5. Optimal k

k = 64 is quite sufficient to guarantee a very low probability of collision over the
range of memory sizes we have considered. With this value, we obtain a memory
use per stored state which is at least as low as with the scheme described in the
previous section. Moreover, the present scheme only requires the computation
of less than 100 hash bits (the 64 bits to be stored and the address in the hash
table) as compared to the approximately 500 needed for the same reliability with
the multihashing scheme.

One way to understand the method we have just proposed is to view the
hash function applied to the state-description as a compaction function, albeit
an unreliable one. We will thus call this scheme hashcompact. Note that compared
to other compaction proposals (see for instance [ItGP92]) it yields a much greater
reduction in size, but at the cost of a small probability of error.

5 R e c o m m e n d a t i o n a n d D i s c u s s i o n

Which of the two schemes multihash and hashcompact do we recommend ? Fig. 6
compares the number of states that can be stored with a 10 -3 probability of
error when using both schemes optimally. The comparison is to the advantage
of hashcompact. This is the first reason for which we recommend this scheme.
The second is that it requires less computation than multihash and, the last is
that it stays reliable (very small probability of collision) until the memory fills
up. This to be contrasted to the behavior of multihash for which the probability
of collision increases gradually as the memory fills up. Thus hashcompact warns
the user when too little memory is available for an exhaustive search. When

68

1.4 107

1.2 107

107

n 8 106

6 106

410 r

2 106

hashcom.pact - / / -

I I I ,I

2 l0 s 4 l0 g 6 l0 s 8 l0 s 109
memory (bits)

Fig. 6. Comparison of multihash and hashcompact

this actually occurs and one wants to optimize coverage, using a scheme close to
Holzmann's original proposal is probably best. However, since this amounts to
randomly limiting the search one might also consider alternative ways of doing
this.

In practice, compacting the state descriptors into a 64 bit hash value which
is then stored reliably is sufficient to ensure a probability of collision lower than
10 -3 over the range of memory sizes that one can expect fo find on present day
machines. This is what we recommend implementing.

6 Implementation

We have implemented the hashcompact scheme in the context of the SPIN sys-
tem [Hol91]. The results confirm our expectations. The table in Fig. 7 illustrates
this for two protocols DTP (with a large channel size) and PFTP. It shows that
hashcompact does provide full coverage (the same as an exhaustive search stor-
ing full state descriptors) with less than 100 bits per state, whereas Holzmann's
scheme (bitstate) fails to provide full coverage even when using close to 1000
bits per state.

7 Conclusions

On the fly verification techniques have made it possible to reduce the memory
requirements of verification systems to those of a simple state-space search: a

69

[Protocol[
DTP

PFTP

Algorithm

exhaustive
bitstate

]hashcompact
exhaustive

bitstate
hashcompact

Stored States

427,567
427,446
427,567
409,257
405,969
409,257

Memory use

73 Mbytes
33.8 Mbytes
3.6 Mbytes
34 Mbytes

133.9 Mbytes
3.6 Mbytes

States missed ?i

No
Yes
No
No
Yes
No

Fig. 7. Experimental results

st~ck and a visited-state table. Since the table needs to be randomly accessed
and is the largest of the two structures, it is essential to find the best possible
data structures to implement it.

Our starting point was the neat idea of hashing without collision detection
used by Holzmann in his SPIN system. Motivated by the desire to optimize this
method which is inherently unreliable, we have concluded that a very simple hash
compaction scheme could yield comparable storage efficiency and high (though
not absolute) reliability.

All the techniques used in this paper are very standard. Our contribution is
to show that by using them correctly, one can obtain a very substantial reduction
in the space needed to store the visited-state table of state-exploration verifyers.
The only price is a small probability of error that can be essentially reduced
at will. We have also made a recommendation for implementation our method
which is at the same time simple and effective and have shown experimental
results.

Finally, the compaction scheme we have proposed is fully compatible with
other memory reduction strategies such as state-space caching [GttP92]. To end
with a bold statement, let us say that the combination of these techniques has
shifted the bottleneck in state-exploration systems from storing the visited-state
table to the time needed for completing the search.

Acknowledgements

We thank Costas Courcoubetis and Mihalis Yannakakis for discussions on the
subject of this paper.

References

[BBLS92]

[BCDSS]

S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserv-
ing simulations. In Proc. $th Workshop on Computer Aided Verification,
Montreal, June 1992.
M. Browne, E.M. Clarke, and D.L. Dill. Automatic circuit verification
using temporal logic: Two new examples. In IEEE Int. Con]. on Computer
Design: VLSI and Computers, Port Chester, October 1985.

70

[CGL92]

[CVWY92]

[FM91]

[GHP92]

[GW91a]

[GW91b]

[ttGP92]

[tto185]

[Hol88]

[Ho191]

[JJS91

[McM92]

[RRSV87]

[yam90]

[vw86]

[Wo186]

E. M. Clarke, O. Griimberg, and D. E. Long. Model checking and abstrac-
tion. In Proc. 19th ACM Symposium on Principles o] Programming Lan-
guages, pages 343-354, Albuquerque, New Mexico, January 1992.
C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory effi-

cient algorithms for the verification of temporal properties. Formal Methods
in System Design, 1:275-288, 1992.
J.C. Fernandez and L. Mounier. On the fly verification of behavioural
equivalences and preorders. In Proc. 3rd Workshop on Computer Aided
Verification, volume 575 of Lecture Notes in Computer Science, pages 181-
191, Aalborg, July 1991.
P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revis-
ited. In Proc. ~th Workshop on Computer Aided Verification, Montreal,
June 1992.
P. Godefroid and P. Wolper. A partial approach to model checking. In
Proc. 6th Syrup. on Logic in Computer Science, pages 406-415, Amsterdam,
July 1991.
P. Godefroid and P. Wolper. Using partial orders for the efficient verifi-
cation of deadlock freedom and safety properties. In Proe. 3rd Workshop
on Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science, pages 332-342, Aalborg, July 1991. Springer-Verlag.
G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduc-
tion strategies for teachability analysis. In Proe. 12th International Sym-
posium on Protocol Specification, Testing, and Verification, Lake Buena
Vista, Florida, June 1992. North-Holland.
G.J . Holzmann. Tracing protocols. AT~r Technical Journal,
64(12):2413-2434, 1985.
G. Holzmann. An improved protocol teachability analysis technique. Soft-
ware Practice and Experience, 18(2):137-161, February 1988.
G. ttolzmann. Design and Validation of Computer Protocols. Prentice-Hall
International Editions, 1991.
C. Jard and T. Jeron. On-line model-checking for finite linear temporal
logic specifications. In Automatic Verification Methods]or Finite State Sys-
tems, Proc. Int. Workshop, Grenoble, volume 407, pages 189-196, Grenoble,
June 1989. Lecture Notes in Computer Science, Springer-Verlag.
K. McMillan. Using unfolding to avoid the state explosion problem in the
verification of asynchronous circuits. In Proc. $th Workshop on Computer
Aided Verification, Montreal, June 1992.
J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in xe-
sat of the sliding window protocol. In Proc. IFIP WG 6.1 7th Int. Conf.
on Protocol Specification, Testing and Verification, pages 235-250, Zurich,
1987. North Holland.
A. Valmari. A stubborn attack on state explosion. In Proc. r Workshop
on Computer Aided Verification, volume 531 of Lecture Notes in Computer
Science, pages 156-165, Rutgers, June 1990. Springer-Verlag.
M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. Syrup. on Logic in Computer Science, pages
322-331, Cambridge, June 1986.
P. Wolper. Expressing interesting properties of programs in propositional
temporal logic. In Proc. 13th ACM Syrup. on Principles of Programming,
pages 184-192, St. Petersburgh, January 1986.

