
A too l for symbol ic program verif ication and
abstraction*

Susanne Graf and Claire Loiseaux

VERIMAG, BP 53X, F-38041 Grenoble, e-mail : {graf, loiseaux}@imag.fr

Abstract: ~,Ve give the description of a verification tool taking boolean programs of guarded
commands as input; internal representation of programs are sets of Binary Decision Diagrams
(BDD) (one for each guarded command). It allows to construct an abstract program of the
same form obtained using an abstraction relation given by a boolean expression on "concrete"
and "abstract" ~riables. The tool allows the verification of CTL formulas on programs. Vv'e
illustrate its possibilities on an example.

1 Introduction

In the domain of program verification an obvious idea is to verify some abstract program
ins tead of the complete specification (called concrete program) depending on the prop-
erties to be verified. The motivation is to make the representation of the program model
smaller and this for two reasons: one is to make the verification faster; the other is that in
most practical cases the model of the concrete program is too large to be verified, whereas
an abstract ion of i t may be sufficiently small and still contain sut~cient information with
respect to the properties to be verified.

However, this approach rises the problem of property preservation, i.e., we have
to know which properties holding on the abstract program hold also on the concrete
one. The investigation of property preserving abstractions of reactive systems has been
the object of intensive research during the last years. Results have been given e.g. in
[Kur89,CGLgLBBLS92,GL92].

One way to define abstractions is via a behavioral equivalence, such as observational
equivalence [Mil80]; in this case: an abstract program can be calculated by constructing
an equivalent program which is minimal with respect to the used equivalence by using for
example the algorithm of minimal model generation given in [Ferg0] or [BFHg0]. These
algorithms calculate the largest possible partition on the domain (set of states) of the
progranh such that the following program is equivalent to the original program: take as
domain the set of the calculated classes, and as transition relation the one relating two
abstract states if and only if two elements in the corresponding classes are related. The
advantage of this method is that for a large class of properties, the abstract program
satisfies a property if and only if the concrete program satisfies it (i.e. one has strong
preservation); its disadvantage is the high cost you have to pay in order to get such an
abstract program.

Here: we present a tool implementing the ideas presented recently in [BBLS92.GL92]
and before in [Sif83] and in some sense also in [CC77]. Instead of calculating the largest
parti t ion on the domain of the concrete program., such that the obtained abstraction is

" This work was partially supported by ESPRIT Basic Research Actions "SPEC" and
"REACT"

72

equivalent: we give an arbitrary partit ion by defining a relation p between the concrete
and some net" abstract domain. In this case: the abstract program calculated in the same
manner as above is no longer equivalent, hut the concrete program does simulate i t in
the sense of [Mil71]. This means that for all the safety properties and even more (see
Section 3) one has that if the abstract program satisfies a property: the concrete one also
does. However, so calculated abstract program are obtained much easier, and may also
be much smaller.

This gives, at least in the case we consider only finite domains; a framework of
automated program verification: given a concrete program on domain (set of states)
D and a relation p relating Concrete domain D and abstract domain DA and a set of
properties to be verified: all the rest can be done automatically; that is:

- check that properties to be verified are preserved by the used abstraction:
-- calculate the corresponding abstract program:
- verify the property on the calculated abstract program.

The tool we have currently implemented works on boolean guarded command programs
which may be composed by different parallel composition operators. I t can be envis-
aged to extend this approach also to more interesting calculi which are not necessarily
defined on finite domains but which must be decidable (and they should also be "rea-
sonably implementable"). Another possible extension is to translate a significant subset
of Lotos [BB88] programs into composed guarded command programs which is dlmost
straightforward and gives the tool a wide range of applications.

A tool based on similar ideas is suggested in [CGL91] and has been imphmented;
there: macros for n-bit integers and corresponding integer operations but no parallel com-
position have been defined. The main difference is that there only a much more restricted
set of abstraction relations are allowed (each x~riable must be abstracted independently)
for which the abstract program can be computed easily.

In the next section: we give the principles of our tool, define parallel operators and
show hot" abstract programs are computed from a relation between states. In Section 3;
we recall the results on property preservation given in [BBLS92;GL92]. In Section 4, we
give the syntax of the programming language and the fornmla language accepted by the
tool. In Section 5 we treat an example and give some results concerning the performances
of the tool.

2 T h e t o o l

The tool takes as input a description of a concrete program in the form of a composition
of boolean guarded command programs using operations of parallel composition and
abstraction as described in Section 4. An abstraction is given by means of a boolean
expression on abstract and concrete program variables and represents a relation between
"concrete" states (those of the program) and "abstract" states. The tool computes an
abstract program such that the concrete program simulates the abstract one in the sense
of Milner [Mi171] for the given abstraction relation. Notice that parallel composition and
abstraction can be applied in all), order.

On so obtained abstract programs, the tool verifies properties given by formulas of
CTL [CES83]. If the formula is given using predicates of a concrete program, the tool
computes their interpretation in terms of abstract variables.

73

Programs of the form CTL formulas f +
P ::-- B.qcP [P I P] Pp interpretation fuaetlon I

1 1 ,, , ,,

P "-* a b s t r a c t p r ~ P a I ~ ! / - '* abs t racL iI l terPretat i~ ful lct i~ lp l
Computation of global relation p P ok --" "J'a preserves basic

P, f , I ,

,, , , ,, , ,
I Symbolic Model-Checker J Pp ~i , f ?

P ~ f

Fig. 1. Principle of the tool

Furthermore, for any property to be verified oa an abstract program, one must verify
preservation by the given abstraction relation which depends on two criteria:

- the subset of CTL used,
- the atomic predicates occurring in the formula.

The first point is a simple syntactic criterion and its verification is left to the user: whereas
the preservation of predicates is verified by the tgol (the exact preservation criteria are
given in Section 3).

2 . 1 R e p r e s e n t a t i o n choices

A guarded command program defines a [set of] transition relation[s] on the set of valua-
tions of its variables (which we call ':domain"); any CTL formula defines a set of states
(elements in the domain): the states in which it holds. To represent relations: we need
a formalism allowing to do all necessary operations, such as "compare", ':successors",
with a reasonable amount of time and space. It is now well established that Binary De-
cision Diagrams (BDDs) [Bry86] deserve this objective for sets (of states, transitions)
represented by boolean expressions.

We never represent the global transition relation, but one for each command. The
main reason is that the BDD encoding the global relation is likely to be much larger than
the set of BDDs encoding each command.

In order to represent transition relations: i.e. sets of edges represented by pairs of
states, a double set of the program variables is necessary, one (called this-state variables)
coding the source and the other (called next-state variables) coding the target state of
each transition.

A well, known characteristics of BDDs is that their size is very sensitive to the vari-
able ordering. Two heuristics are implemented in the tool. The first one is that in all
cases each next-state ~riable follows directly its corresponding thls-state variable as it
has been suggested e.g. in [EFT91,BD92]; the other is that global variables (shared by
several processes) come before local ~riables. As good heuristics are in general strongly

74

dependent on the underlying transition system, we give the user the possibility to define
his own variable ordering.

The user can also define an "in~riant" restricting the domain to the set of states
satisfying this invariant; this allows to obtain smaller BDDs representing the transition
relations, by using the "restrict" operator on BDDs which has been implemented in
the BDD package we use [Rat92]. However; the use of this facility is under the plain
responsibUity of the user, as the computed transition relation is an abstraction of the
concrete one only if all reachable states are contained in the invariant.

2.2 Pa ra l l e l compos i t ion

We suppose a universal set of program variables 1/. Any transition relation _~ is defined
on the set of states which is the domain Dora(X) of some subset X of V. Where, e.g.,
for X = {x,y}, Dora(X)= Dom.(z) x Do,n(y).

As already mentioned, binary relations on Dora(X) can be represented symbolically
by predicates of the form R(X; X') (encoded by BDDs in our tool) where X' is a "cop),"
of X: i.e. Dora(X) = Dom.(X'): X encoding the source state and X ' the target state of
any transition in R ; e . g . : if Dom.(x) = Af; then "x' = x -t- 1" represents the transition
relation relating any n E A f with n + 1. This approach is use d e.g. in [Lam91;Pnu86].
In the same way a relation p from Dom.(X) to Dom.(XA) is represented by a binary
predicate of the form p(X; XA).

In this setting; set operations are expressed by logical connectives. E.g.; the fact
that a relation R is included in R' is expressed by R =~ R ~ a n d / t A R' represents the
intersection of R a n d / ~ if they are defined on the same set of ~riables.

~re consider that a program is a family of transition relations represented by sets of
binary predicates on the same set of variables S = { R~(X, X') }~I where the elements
of] are labels used for synchronization purposes in parallel composition in Section 2.2.

Defini t ion 1. Let be X , Y sets of program variables. Let be Sl = {RI~(X,X')}~! and
$2 = {R2j(Y; Y~)}j~$ be programs on Dora(X) respecth, ely Dora(Y). Let A C I x J be a
synchronization set and Ax = {il3j.(i,j) e A} and A.~ = {j]31.(i,j) E A} the projections
of A on I respectively J. Then, parallel compositions of Sl and S~ are programs on X U Y
defined as follows:

- Synchronous Composition : SI@,.tS2 = {RI~(X, X') A R21(Y, Y')}(~j)eA
- Asynchronous Composition : $1 | $2 =

{R,~(x,x') ^ Vy e (Y - X) . (~ ' = y)},~ o {R2j(~ Y') ^ w e (x - Y) . (, ' = ~) b ~
- Mixed Composition : Sl [A] $2 =

{Rli(X, X ') ^ R2./(Y~ Y')}(I,j)EA (3
{I:~li(X; X') ^ Vy E (r -x) . (y ' = Y) }iC.A, I.J {~2j(Y., Y') ^Vx ~ (X-Y).(x ' = X) }jf~Aj

C o m m e n t s :
- In synchronous composition, each transition of the composed program results from

the synchronous execution of two transitions of the transition relations defined by
some Rl~ and some R2j for (i, j) E A. If A = ~" • J : this operator corresponds exactly
to conjunction applied on programs described by TLA formulas [LamPl]; it is also"
very similar to program composition of S /R models [I(,K86]. If the domains of the
component processes are independent, it is exactly the one of SCCS [Mi183].

75

- In the asynchronous composition, in each step one of the programs executes one of
the currently enabled transitions and the other idles. This operator results in the
complete "interleaving" of the component processes if they are defined on indepen-
dent domains; if not, the execution of a transition of one of the processes may change
the enabling conditions of the other one. This operator is in fact the union operator
of Unity [CM88].

- Finally, in the mixed composition operator, some of the transitions must be executed
synchronously, whereas the others are executed asynchronousb: This operator is not
exactly the one in CSP [Hoa84] or Lotos [BB88], where all processes have distinct
variable sets and communicate by exchanging values; however, it is equivalent to
them.

2.3 C o m p u t a t i o n o f a b s t r a c t p r o g r a m s

Let Y be a set of abstract variables and Dora(Y) its associated domain. Then an ab-
straction relation is given by a predicate of the form p(X~ Y) on concrete and abstract
variables (this can be seen as a kind of abstract interpretation).

Def ini t ion 2. The set of transition relations representing the abstract program calcu'
lated from S = {Ri(X, X')}I~! and p is

sp = {R,~(~ y') I i e I} = { 3 x 3x' . p(x , Y) ^ R,(x , x ') ^ p(x' , Y')} ,~ .

If all the R~ as well as p are represented by BDDs, the BDDs representing the R~p
are obtained by applying usual operators on BDDs. Notice that in case of finite domain~
the variables X and X ' can a l ~ y s be elin~inated.

In Section 3, we show that the so calculated abstract program is in fact well chosen.
For a large class of properties, we have property preservation from the abstract to the
concrete program.

2.4 Verif icat ion o f C T L formulas

For the verification of properties, given by CTL formulas, the global transition relation
is needed. But as formulas are in general verified on the abstract program this is accept-
able. The implemented model checking algorithm is a symbolic one using the fixed point
definitions of the operators of CTL, e.g.,

IEG(I) I = A / '
where P0 = I l l ; the set of states satisfying f (represented by a BDD on the set of
program variabhs), and P~+l = Pi A pre[Ra](Pi) (where pre[Re] is the inverse image
function of the global transition relation Re). Thus, the characteristic set of EG(]) is
computed by first computing the characteristic set of f and then adding successively the
set of states having successors in the so far computed set. The fixed point is reached
when/)i+1 = Pi and as the domain is finite the fixed point is always reached. All these
computations can be done symbolically for any program of the form S = {P~(X, X ')} ie l
and for any predicate p(X) (encoded by BDDs) we have

Fe[Rel(p)(x) = V 3.,c'.R~(x, x ') ^ p(x')
i

76

This is a predicate with free variables in X (all the quantified variables X ' can be elimi-
nated), and all the used operators are available in most BDD-pac'l'~ges.
Notice that despite the fact that we need the inverse image function of the global tran-
sition relation, we do not need a unique BDD representing it; but we can still work with
the before calculated set of BDDs representing the global transition relation.

3 Preservat ion Resul t s

In this section we give a brief overview on the preservation results, presented in [BBLS92,
GL92], guaranteeing that properties verified by the tool on an abstract program hold also
on the corresponding global concrete program. Notice also that if a property does not hold
on the abstract program, nothing can be said in general on its validity on the concrete
program, and one should try with a different abstraction e.g., by refining the already
given one. We need three results, concerning

- the subset of the CTL preserved by abstraction:
- the set of atomic predicates preserved by an abstraction relation p:
- compositionality of abstraction with respect to parallel composition.

Def in i t ion3 . [BBLS92] Let R (X , X ') and RA(XA, X~A) b e transition relations (the
global transition relations associated with a concrete and an abstract program); and
p(X, XA) an abstraction relation. Then,

R p-simulates RA iff R - l p C_ pR~ 1

Notice that "there exists p such that p-slmulates" defines the standard simulation
preorder [MilT1]. For a given R and p we are interested in a abstraction relation RA
that is as close as possible to the given .~, i.e. that contains no more transitions than
necessary. The least R a does not always exist, but we have:

P r o p o s i t i o n 4. [GLY~BBG*93] (Sp is a reasonable abstraction)
For S = {R(X, X')}i~l and p(X, Xa) total on Dom.(X), the program Sp as defined in
Definition "2 one has that S p-simulates S o.

IHurthermore pop -1 o p = p holds (which means that p is a function]rom a partition
on Dora(X) to a partition on Dom(Xa) and is true in most practical cases), then Sp
is the smallest p-abstraction o] S modulo bisimulation in the sense of [Mil80]; i]p is a
function, R a is the least p-abstraction.

T h e o r e m 5. [BBLS92] Let R(X , X ') and RA(XA, X'A) be transition relations and p(X, XA)
an abatraction relation total on Dora(X). I : 7P -.* 2 D~ an interpretation function of
atomic predicates on Dora(X) such that R p-simulates RA.

ACTL is the subset of CTL [CES83] containing the formulas without negation and
using only universal quantification on paths. For any f 6 A C T L ,

RA ~ e [a - '] * l f implies R ~r,-elp]opr,[p-']oX f

I]]urthermore, pre~o] o pre[p-*] o I (p) = I(p) (p preserves I) for any predicate symbol
p occurring in .f, we have even R ~ I f .

This means: "if f holds on the abstract program: taking as interpretation function
pre[p-l]oI, associating with any atomic predicate p the image by p of its interpretation by

77

I on the concrete domain, then on the concrete program f holds taking as interpretation
function pre[p] o pre[p -l] o I, obtained from I by translating it forth and back by p". It
yields for each predicate an equal or larger interpretation than I. Thus, in order to obtain
the initially required result R ~ I f , we need to make sure that each basic predicate in f
translated forth and back by p remains unchanged.

This condition is verified by our tool where atomic predicates are the (boolean)
program variables with the obvious interpretation function.

The last result we need concerns the compositionality of abstraction with respect to
parallel composition. The following theorem gives for all the parallel composition opera-
tors conditions under which the composition of abstract programs computed by our tool
is an abstraction of the composed program (for a complete result see [GL92]).

No ta t ions : In the following we consider a set of variables X = Xi US2, two transition
systems Si = {nii(Xi, S~)}ie, ,, i 6 {1,2} and XA = Xla U -•2A a set of abstract
variables. We denote also -u = Xt t3 S2., the set of common variables, X i t = S i - Se
the local variables of Si and analogously Sea = S i n f3_u the set of common abstract
variables and -u = -u -- X~A the local abstract variables of Si.

T h e o r e m 6. [GL92] Let Pl (Xt: Xla) and p2(X2: X2a) be abstraction relations such that
Pl A P2 is total on Dora(X). We have,

(r Pl A p2-simulates ~lpl C~AR2p 2,

Suppose tltat pi(Xi, Xia), i = {1, 2} can be decomposed as pi((Xit, Xi~), (Xita, X~ca)) =
plt(Sit, XitA) Apic(Xi, Xiea) (values of abstract local variables depend only on values of
concrete local variables, whereas fire values of abstract common variables may depend on
the values of all concrete variables}. Then;

(|) RI |R2 Pl Ap2-simulates Rip, |R2p2
([1)t l l [A] R2 p, A p2-simulates R,m [AI R2p,

This gives for each parallel operator a necessary condition in order Rp to be used
for the verification of properties of R; none of these conditions is very strong. It is even
not necessary that the two abstraction relations coincide exactly on the common domain,
they have just to coincide sufficiently in order p tA P2 to be total on D. Notice that in
the case where nothing about the transition relations Ri is known these conditions are
also necessary.

The theorem generalizes well-known results concerning compositionality of abstrac-
tion in process algebras, and this in two ways. One is that in the here presented results
simulation is parameterized by an abstraction relations which gives a more precise com-
positionality result. The other is that also processes with common variables are taken
into account.

4 S y n t a x o f t h e i n p u t l a n g u a g e o f t h e t o o l

A program; input of our tool, is an expression of the form

PROG ::= gcp I PROG Ill PROG I PROG * PROG I PROG I[label-list]l PROG l
PROG[abstract-exp] I PROG[label-list,label-list]

where "gcp" are filenames containing guarded command programs, Ill is the AD'n-
chronous: * the synchronous and [~[the mixed parallel operators defined in Section

78

2.2: except that the parameter "label-list" of [~[is a llst of labels instead of a list of
pairs of labels meaning that programs synchronize on all the "labels" (see below) in this
list which therefore must occur in both programs. PROG[label-listl.label-list2] defines a
renaming operator. PROG[abstract-exp] defines the abstraction operator.

Each guarded command program represents a process; where all variables are global.
We call a variable local to some process if it is not used by any other process. Certainly~
this is a quite primitive "programming language"; but it is sufficient to show the pos-
sibilities of the tool. We intend to add a mechanism similar to the abstract da ta type
definition in Lotos with a possibility of automatic implementation of any ~ariable of any
finite type as a set of boolean variables with the necessary operations on it.

Each guarded command program consists of a header and a list of guarded com-
mands. The header contains variables and commands numbers and eventually a variable
ordering and an invarlant restricting the domain. Each guarded command is of the form:

'[' label ']' expression-X ---* expression-Xx
Where
"label" is used to identify the command in parallel composition and renaming,
"expression-X" a guard, which is a predicate defined on this-state ~ariables and
"expression-Xx" defines the transition relation by an e.x'~pression on this-state and next-
state ~"ariables.

The thls-state variables are denoted by upper-case first le t ter identifiers (':ident-
X") whereas the corresponding next-state variables ("ident-x") are denoted by the same
identifier with the corresponding lower-case first letter. Thus.

"ex'pression-X" is an expression constructed with usual boolean operators: '=" (equiva-
lent), ' = > ' (implies), '+ ' (or), ' . ' (and), 'NOT', on this.state variables and
"expression-Xx" is an expression as above on both current and next-state ~arlables
and using also the macro-notations 'ON', 'OFF', 'ANY' applied to lists of this-state
variables, meaning that the corresponding set of next-state variables is respectively
uniformly true, false or unspecified.

Notice that due to the fact that we use boolean expressions to define transition
relations, any variable not mentioned in "expression-X.x" may take any value in the
next s tate and in order to specify that some ~ariable keeps its value, we have to say
this explicitly. This is often quite tedious; therefore: we preferred to aUow as default
that unmentioned variables are unchanged and have added the operator ANY to define
unspecified values. The operators ':ON" and "OFF" are useful to (re)set a set of ~"arlables.

"abstract-e.xp", the parameter of the abstraction operator is either an expression using
the same operators as "expression-X" and the operator 'ABS' on the this-state variables
of the concrete program and another set of this-state ~-ariables (defining the abstract
domain).

ABS is applied to a list of the concrete ~'ariables: meaning that these variables are
not taken into account at all in the abstract transition relation (application of existential
quantification).` whereas for all variables X which do not occur at all in the expression.
a new ,~riable Xa and the constraint "Xa -- X" is added. We have introduced this
convention which is the opposite of the boolean expression way of defining abstraction as
it is often very tedious to introduce a new variable for all the variables conserving their
meaning and specifying them as equivalent to the old ones; we preferred to leave this
task to the tool.

79

S y n t a x o f the Logic The formulas that can be evaluated by the tool on a given program
are CTL formulas on atomic predicates built on the program variables. In the present
case. where only boolean s-ariables are used, the atomic predicates are just the variables
themselves. In order to take into account the labels in the formula without changing the
logic, we have, similar as in XESAI~ [RRSV87], defined atomic predicates of the form

ideat-X I 'sink' ['eaable'(label)

where "sink" represents the set of deadlock states, "enable(label)" represents the set
of states in which one of the guarded commands labeled by "label" is enabled (this is the
disjunction of the corresponding guards). Notice that formulas can only use this-state
variables as otherwise we need also a "next-next" relation.

Using this definition of atomic predicates, the set of formulas is obtained by applica-
tion of the boolean operators used in the program syntax CTL temporal operators : the
unary next state operators EX, AX, the unary operators AG (always), EF (possibly), AF
(inevitably), EG and the binary operators AU and EU (until on all respectively on some
path). Furthermore, we defined macros allowing to give the fornmlas also in "p-calculus"
style [Koz83] or in LTAC style [RRSV87].

5 O v e r t a k i n g E x a m p l e

5.1 Desc r ip t ion of the p rob lem

The example we develop here is that of a simple overtaking protocol which has been
described in Lotos in [EFJg0] and verified using the verification tool Caesar [GS90]. We
have "translated" the Lotos specification into a parallel guarded command program, input
of our tool and have verified properties on it. Most of these formulas could be verified by
using some abstractions. As we have already mentioned, the translation from the Lotos
program into a parallel guarded command program could be done automatically:

The protocol coordinates overtaking of vehicles on a road. In a vehicle queue, each
vehicle can communicate with its immediate preceding and succeeding vehicle via two
communication mediums. A driver who intends to overtake (client vehicle) initiates a
protocol entity in his own vehicle which in turns initiates a negotiation with the vehicle
in front (server vehicle). The environment decides whether overtaking is possible. If yes,
the server sends the client a positive answer else the server waits for the next overtak-
ing request. In case of a positive answer, actual overtaking takes place. It consists in
exchanging, ~ia a perfect communication medium this time; the information about their
succeeding respectively preceding vehicles. Once a client has initiated an overtaking ne-
gotiation~ it will keep on trying until it succeeds in overtaking, i.e. an overtaking cannot
be aborted.

5.2 P r o g r a m descr ib ing the sy s t em

The program modeling the scenario is a parallel composition of guarded command pro-
grams describing a set of vehicles CAR~, communication mediums .,u and OT for the
negotiation and overtake phases, an environment E and a set of timers 1'/associated with
CAR~.

Each process CARl is identified by its name (Idl), its position (Pos~), its M-address
(M.ol) and that of its preceding vehicle (-~l-pl) finally its OT-address (Ot_o~) and that
of the preceding vehicle (Ot_pl).

80

Communication through a medium is modeled using some global data ~riable X: in
a first step the emitter and the medium synchronize; the emitter sets the variable X and
the medium becomes bus3: In a second step the medium synchronizes with the receiver.
the receiver reads X and the medium becomes free again. Notice that the medium -~'.,
used during negotiations: may lose messages whereas the medium OT used for exchanging
data during actual overtaking phase is assumed to be perfect.

The environment E is modeled by a simple process switching spontaneously between
states ok in which overtaking is allowed and not.ok in which it is not.

The timers T~ have two states active and inactive. They can be started in inactive; in
active they can be stopped or timeout may occur. They are used by the client part of each
vehicle which has to repeat its request if the authorization to overtake from the server has
not been received within a certain delay (here we model just a non deternfinistic choice
between "received in time" and "timeout occurs"). So; the global system is described by
the expression

(I ieO,2,s,~) (CARi [A~.] Ti)) [A] (M" II OT II E)

where A~. = {T-B,T-S,T_O} and A = {C-~'I,M.C,C-OT, OT-C,E.C~, i E {1,2,3,4}}
C-"tl and -~I-C are used for the synchronizations between the vehicles and M~ C_OT
and OT_C for the synchronizations between the vehicles and OT and finally E-CI "for
the synchronizations between the vehicles and E.

Shared variables As we have already mentioned, variables are called global if they are
shared by at least two processes and local if they appear in only one process. Here we
give the list of global variables, their meaning and the processes they appear in ,(these
variable declarations are not necessary in the program). Notice that all the variables
declared as re.address, ot_address; position or identity are implemented by a pair of
boolean variables (4 different values): but represented here for simplicity by a single
~ariable.

- Variables shared between all vehicles and medium M:
,M_send, M_dest : re.address (the sender and receiver of the communication)
M_ot.req,M.ot.ok : transmitted bits

- Variables shared between all vehicles and medium OT:
OT.send, OT_,test : ot-address (the sender and receiver of the communication)
OT_id : identity (transnfitted message)

- Variables shared between vehicles CAR~ and E:
E-ok : bit (the em'ironment is in a ok mode)
E.indl : bit (the vehicle asks ailowance for its following vehicle to overtake)

In the following we give only the guarded command program CAR~ representing the
behaviour of a vehicle as other programs are quite simple.

5.3 G u a r d e d c o m m a n d p r o g r a m for a vehicle

Each vehicle CAR~ has the knowledge of both addresses of its preceding vehicle (M_p~,
Ot-pl). It has also auxiliary variables to store informations temporaril):

The natural description would consist in defining each process CA.R~ such that it
describes a vehicle that keeps its identity and changes its position while overtaking. We
have chosen an equivalent solution where vehicles have a fixed position and exchange
identity. This is very useful as it allows to use much stronger abstractions in order to
verify the service properties (which refer to positions but not to identities).

81

L o c a l v a r i a b l e s
- Identif icat ion variables:

Id~ : i d en t i t y M-pi.~ M-ol : re_address of preceding: own vehicle.
Posl : posit ion: Ot-pi., Ot.ol : ot_address of preceding and own vehicle;

- Auxiliary variables to s tore da t a while overtaking and during negotiat ion:
Aux. idi : posit ion, Aux.ot i : o t .address , A u z . m l : re .address .

- Control variables (boolean) :

In i t i : initial s ta te , Cl l , .. , c r l : client s ta tes and Sli: .. , SSi : server s ta tes .
We define also an invariant tha t expresses tha t in any s ta te a t most one of the control
variables is true.

P r o g r a m o f C A R l

............. INIT PART -
I becomes server or restarts server
M_C] (Init_i + Sl_i § S2_i + S3_i § S4_i) . (M_dest - M_o_i) . M_ot_req ->

OFF(M_ot_req,Init.i) . ON(SI.i) . (aux_m_i - M_snd) ;

[] Init_i-> DN(CI_i) . OFF(Init.i); ~ spontaneously becomes client

............................. CLIENT PART
% ignore o t_req of the fo l lowing veh ic le and i d l e
[M_C] (Cl_i + C2 i § C3 i + C4_i § C5.i + C6_i + S5_'i) . (M_dest ~ M_o_i) .
�9 M_ot_req -~ ANY(M_-dest,M_ot req);

X ignore old or_ok
[M_C] Cl_i . M_ot.ok . (M_dest - M_o_i) -> OFF(M_ot_ok) ;

send ot_req (ask for allowance to overtake via the Medium)
[C_M] Cl_i-> (m_snd-M.o.i). (m_dest- M_p_i) . ON(M_ot_req,C2_i) . OFF(CI_i);

[T.B] C2_i -> ON(C3_i) . OFP(C2_i); Y, start timer

[T_O] C3_i -> ON(CI_i) . OFF(C3_i); X timeout: waited too lon E for or'ok

~. r ece ive ot_ok (allowance to overtake v ia the Medium)
[M_C] C3_i . (M_dest m M_o_i) . M_ot_ok -> ON(C4_i) . OFF(M_ot_ok,C3_i);

[T_S] C4_i -> ON(CS_i) . OFF(C4_i); ~ The t imer i s stopped

Overtake: sends i t s parameters through OT_Medium to preceding veh ic l e
[C_OT] CS_i -> (ot_snd - OT_o_i) . (o t_des t - OT_p_i) . (o t_ id ffi Id_i) .

ON(ee_i) . OFF(CS_i);

% Overtake: r e c e i v e s parameters through OT_Medium from preceding veh ic l e
[OT_C] cr_i . (OT dest - OT_o_i) -> ON(Init i) . OFP(C6.i) .

(id_i OT_-id) . ANY(OT_dest,OT.id) ;-

. SERVER PART
X s e t s over tak ing i n d i c a t i o n in the environment and wai ts f o r a u t h o r i s a t i o n .
[C_E] Sl_i -> ON(E_ind_i,S2_i) . OFF(SI_i);

Answer: i f ok, goes on e l s e r e t u rn s in the i n i t i a l s t a t e .
[E_C_i] S2.i -> (S3.i - E_ok) .(Init_i - "E_ok). OFF(S2.i);

sends confirmation to the client
[C_M] S3_i -> (mdest - Aux_m~i) (m_snd - M_o.i) . ON(M_ot_ok,S4_i) .

OFF(S3_i) . ANY(Aux.m_i);

r e c e i v e s da ta from the c l i e n t and s t o r e s them in i t s aux i l i a ry v a r i a b l e s .
[OT_C] S4_i . (OT_dest = OT.o_i) -> ON(S5 i)=. OFF(S4_i) . .

ANY(OT_id,OT_dest,OT_snd) . (aux_ot-i OT_snd) . (aux_ia_i = OT_id);

sends i t s parameter to the c l i e n t and s e t s i t s va r i ab l e s
[C_OT] SS_i -> ON(Init_i) . OFF(S$_i) . (ot_snd - OT_o_i) . (ot_dest ~ Aux_ot_i).

82

(ot.id �9 Id_i) . (id.i = Aux_id_i) . AgY(Aux.ot_i,Aux_id_i);

5.4 P r o p e r t i e s

We verify the following properties on the overtaking protocol.

1. Dead lock f reedom canbe expressed by the following formula:

init -- > AG(NOT deadlock)

where deadlock is different from sink defined as the atomic predicate Ai NOT c~
where the cl are all the guards of the global guarded command program obtained
after executing all the parallel compositions and abstractions, deadlock must also
contain all the states which can only do infinitely only some "useless" transitions
(such as in the example the environment goes spontaneously from the state ok into
notok~ from notok into ok,...)., that means that in a state not satisfying deadlock after
a finite number of steps some "useful" transition must be possible. So NOT deadlock
can be defined as Vi EF(cl) where the cl are the enabling conditions of the set of
"useful" transitions.
init is a predicate specifying allowed initial states which has to precise the relative
positions of all the cars and the corresponding .,u and OT-addresses in the different
cars. It needs no t to specify that all cars are in control state Init~ but the set of
specified states nmst be reachable. As deadlock freedom is no ACTL formula; no
abstraction can be applied before its verification.

2. Safe ty proper t ies : "If the vehicle in position i is engaged in overtaking: neither
its preceding nor its following vehicle can engage in overtake"; this can be expressed
by the following set of formulas:

Sav.p~ : inlt = > AG(a-otl = > NOT a-otl-l)
Sav_.f~ : init = > AG(a.ot~ = > NOT a-oti+l)

where a.otl = C41 + C5~ + C6i (vehicle in position i is in actual overtaking phase).

5.5 Results

The first abstraction we propose yields an equivalent transition relation. We just reen-
code the control variables of each vehide in a more efficient way. This can be done in two
manners. One is to specify an invariant restricting the domain of the control variables in
such a manner that only valuations in which exactly one of the control variables is true:
are considered; the second solution consists in giving an explicit reencoding by means of
an abstraction relation. It consists in replacing the 12 control variables of CARl (encod-
ing 12 states) by four variables. This abstraction relation is total on the "interesting"
domain specified by the above mentioned invariant; it is a function from the abstract
to concrete domain but not in the other direction. This has been done in order to get
smaller expressions and corresponding BDDs. Therefore, the obtained abstract transition
relation is bisimilar to the original one and can be used for the verification of any CTL
formula. As this abstraction relation consists of independent relations concerning each
CARl; the abstraction operator can be applied before composition. We obtain a sig-
nificant reduction of memory using either the invariant or the above defined equivalent
abstraction on each process CAR~. The gain of defining an abstraction over defining an

83

invariant is only little more than !5% in terms of numbers of nodes but nearly 40% of
execution time (this gain must be interpreted carefully as the overall execution time is
in both cases less than 1 minute and it is difficult to evaluate the fixed time requirement
for loading and writing the files: etc).

As already mentioned, for the verification of deadlock freedom: abstraction is not
possible as it is not a formula of ACTL; we tried to verify it on the concrete program
constructed using the invariant as well as on the above defined equivalent abstraction.
It was even not possible to e~luate the predicate sink' (which is differs from sink by
the exclusion of some "useless" actions). We also tried to use a stronger invariant: where
the M and OT-addresses of each vehicle are identical (this is not an abstraction., but a
restriction which preserves the predicate deadlock) but it turns out that in this particular
case this stronger invarlant gives not rise to a smaller representation of the program and
it does also not allow to evaluate sink'. From this we conclude that in some cases it may
be very useful to have at least some upper appro.xin, ation of the set of reachable states;
this may be obtained by doing a forward analysis on some carefully chosen abstraction
(not yet implemented). An upper appro~mation of the set of reachable states is certainly
also useful in order to reduce the time and memory requirement of e~aluations of fixed
point formulas.

A stronger abstraction has been used in order to verify the safety properties. E.g. for
the verification of Say.p2 we have defined an abstraction: completely abstracting away
all the control variables of CARs and CAR~: we introduced a single state "server" in
CAR2 instead of the 5 server states: and in CAt~, we grouped together client states
in actual overtaking and client states not in actual overtaking; we also abstracted away
the ~riables of the timers and the environment: which should not change the safe~*
properties. Here we obtain for the composed system some 60~ of gain in terms of number
of nodes with respect to the smallest unabstracted system. Here we have a more significant
gain of execution time for the compositional instead of the global abstraction (40 seconds
instead of 2.50 minutes).

On this abstraction it took less than 1 minute to e~luate the propert}~ whereas it
was not possible to evaluate it on the unabstracted program. In fact: the gain of memory
is not very important in this case because we have not yet introduced renaming: man)' of
t h e guarded commands represent identical transition relations, but have different labels
and can therefore not be grouped together into a single command. In this example this
will certainly allow some gain of memory: and particularly an important gain of execution
time of the evaluation of formulas as actually the same transformations are computed
man)' times.

References

[BB88] T. Bolognesi and E. Briuksma. Introduction to the ISO specification language Lotos.
ISDN, 14(11):25-29, 1988.

[BBG*93] A. Bouajjani, S. Bensalem, S. Graf, C. Loiseaux, and J. Sifakis. Property Pre~er~,ing
Ab~tractior~ for the Verification of Concurrent Sgt.qtern~. Research Report Spectre C
- 40, LGI/IMAG, Grenoble, 1993. submitted to Formal Methods in System Design.

[BBLS92] A. Bouajjaul, S. Beusalem, C. Loiseaux, and J. Sifakis. Property preserving simula-
tions. In CAV'9~, Montreal, To appear in LNCS, 1992.

[BD92] A. Bouall and R. DeSimone. Symbolic blslmulation minimisation. In CAVg~, To
appear in LNCS, 1992.

84

[BFHg0I

[BD.86]

lCC771

[CESSa]

[CGL91]

[CM881

[EFJ90]

[EFTgl]

[Fer90l

[GL92]

[Gsg0l

[Hoa84]
[KK86]

[Koz83]

[Kur891

[Lam91]

[Mil71l

[MilS0]
[Mi1831
[Pnu86]

[Rat92]

[RRSV871

[sifsz]

A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation. In
CAV'gO, LNCS 531, 1990.
R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Tra~. on Computation, 35 (8), 1986.
P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or apprommation of fixpoints. POPL, 1977.
E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of tlnite
state concurrent systems using temporal logic specification: a practical approach.
ACM TOPLAS, 8(2):244-263, 1986.
E.M. Clarke, O. Grtm,berg, and D.E. Long. Model checking and abstraction. In
Symposium on Principles of Programming Languages (POPL), ACM, 1991.
K.M. Chandy and :]. Misra. Parallel Program Design. Addison-%Vesley, Mas-
sachusetts, 1988.
P. Ernberg, L. Fredlund, and B. Jonsson. Specification and Validation of a Simple
Overtaking Protocol u~ing LOTOS. Technical Report T90006, SICS, Sweden, 1990.
R. Enders, T. Filkom, and D. Taubner. Generating BDDs for symbolic model check-
ing in CCS. In CAV'91, Aalbo~., LNCS 575, 1991.
:I.C. Fernandez. An implementation of an efficient algorithm for bisimulation equiv-
alence. Science of Computer Programming, 13(2-3), 1990.
S. Graf and C. Loiseaux. Program Verification u~jng compositional Abstraction.
FASE/TAPSOFT 93.
H. Garavel and J. Sifakis. Compilation and verification of Lores specifications. In
Sympo.,ium on Protocol Specification, Te~ting and Verification (Ottawa), IFIP, North
Holland, Amsterdam, 1990.
C. A. R. Hoaxe. Communicating Sequential Proce~e~. Prentice Hall, 1984.
J. Katzenelson and B. Kurshan. S/R: A Language for Specifying Protocols and other
Coordinating Processes. In 5th Ann. Int'l Phoenix Conf. Cemput Commun., 1986.
D. Kozen. Results on the propositional p-calculus. In Theoretical Computer Science,
North-Holland, 1983.
R.P. Kurshan. Analysis of discrete event coordination. In REX Wor~hop on Stepwise
Refinement of Di.qributed System.% Meek, LNCS 430, 1989.
L. Lan, port. The Temporal Logic of Actions. Technical Report 79, DEC, Systems
Research Center, 1991.
R. Milner. An algebraic definition of simulation between programs. In Prec. Second
Int. Joint Conf. on Artificial Intelligence, BCS, 1971.
R. Milner. A calculus of communication systems. In LNCS 9~, Springer Vedag, 1980.
R. Milner. A calculus for Synchrony and Asynchrony. TCS, 25, 1983.
A. Pnueli. Application of temporal logic to specification and verification of reactive
systems: a su~'ey of current trends. In Current trends in Concurrency, Nordwijker-
hour, LNCS 224, 1986.
Ch. Ratel. D~finition et rJali~ation d'un outil de v~rifieation formelle de programme~
I, USTRE : Le ~yst~me LESAR. Thesis, Universit6 J. Fourier, Grenoble, 1992.
:I.L. Richier, C. Rodriguez, J. Sifakls, and J. Voiron. Verification in X.ESAR of the

sliding window protocol. Int. Syrup. Protocol Spec. Te$tlng and Validation, 1987.
J. Sifakis. Property preserving homomorphisms of transition systems. In ~th Work-
shop on Logics of Program.% Pittsburgh, LNCS 164, 1983.

