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Abstract: ~,Ve give the description of a verification tool taking boolean programs of guarded 
commands as input; internal representation of programs are sets of Binary Decision Diagrams 
(BDD) (one for each guarded command). It allows to construct an abstract program of the 
same form obtained using an abstraction relation given by a boolean expression on "concrete" 
and "abstract" ~riables. The tool allows the verification of CTL formulas on programs. Vv'e 
illustrate its possibilities on an example. 

1 Introduction 

In the domain of program verification an obvious idea is to verify some abstract  program 
ins tead  of the complete specification (called concrete program) depending on the prop- 
erties to be verified. The motivation is to make the representation of the program model 
smaller and this for two reasons: one is to make the verification faster; the other is that  in 
most practical cases the model of the concrete program is too large to be verified, whereas 
an abstract ion of i t  may be sufficiently small and still contain sut~cient information with 
respect to the properties to be verified. 

However, this approach rises the problem of property preservation, i.e., we have 
to know which properties holding on the abstract  program hold also on the concrete 
one. The investigation of property preserving abstractions of reactive systems has been 
the object of intensive research during the last years. Results have been given e.g. in 
[Kur89,CGLgLBBLS92,GL92]. 

One way to define abstractions is via a behavioral equivalence, such as observational 
equivalence [Mil80]; in this case: an abstract  program can be calculated by constructing 
an equivalent program which is minimal with respect to the used equivalence by using for 
example the algorithm of minimal model generation given in [Ferg0] or [BFHg0]. These 
algorithms calculate the largest possible partition on the domain (set of states) of the 
progranh such that  the following program is equivalent to the original program: take as 
domain the set of the calculated classes, and as transition relation the one relating two 
abstract  states if and only if two elements in the corresponding classes are related. The 
advantage of this method is that  for a large class of properties, the abstract  program 
satisfies a property if and only if the concrete program satisfies it  (i.e. one has strong 
preservation); its disadvantage is the high cost you have to pay in order to get such an 
abstract  program. 

Here: we present a tool implementing the ideas presented recently in [BBLS92.GL92] 
and before in [Sif83] and in some sense also in [CC77]. Instead of calculating the largest 
parti t ion on the domain of the concrete program., such that  the obtained abstraction is 
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equivalent: we give an arbitrary partit ion by defining a relation p between the concrete 
and some net" abstract domain. In this case: the abstract  program calculated in the same 
manner as above is no longer equivalent, hut the concrete program does simulate i t  in 
the sense of [Mil71]. This means that  for all the safety properties and even more (see 
Section 3) one has that  if the abstract program satisfies a property: the concrete one also 
does. However, so calculated abstract  program are obtained much easier, and may also 
be much smaller. 

This gives, at least in the case we consider only finite domains; a framework of 
automated program verification: given a concrete program on domain (set of states) 
D and a relation p relating Concrete domain D and abstract  domain DA and a set of 
properties to be verified: all the rest can be done automatically; that  is: 

- check that  properties to be verified are preserved by the used abstraction: 
-- calculate the corresponding abstract  program: 
- verify the property on the calculated abstract  program. 

The tool we have currently implemented works on boolean guarded command programs 
which may be composed by different parallel composition operators. I t  can be envis- 
aged to extend this approach also to more interesting calculi which are not necessarily 
defined on finite domains but  which must be decidable (and they should also be "rea- 
sonably implementable"). Another possible extension is to translate a significant subset 
of Lotos [BB88] programs into composed guarded command programs which is dlmost 
straightforward and gives the tool a wide range of applications. 

A tool based on similar ideas is suggested in [CGL91] and has been imphmented;  
there: macros for n-bit integers and corresponding integer operations but no parallel com- 
position have been defined. The main difference is that  there only a much more restricted 
set of abstraction relations are allowed (each x~riable must be abstracted independently) 
for which the abstract  program can be computed easily. 

In the next section: we give the principles of our tool, define parallel operators and 
show hot" abstract  programs are computed from a relation between states. In Section 3; 
we recall the results on property preservation given in [BBLS92;GL92]. In Section 4, we 
give the syntax of the programming language and the fornmla language accepted by the 
tool. In Section 5 we treat  an example and give some results concerning the performances 
of the tool. 

2 T h e  t o o l  

The tool takes as input a description of a concrete program in the form of a composition 
of boolean guarded command programs using operations of parallel composition and 
abstraction as described in Section 4. An abstraction is given by means of a boolean 
expression on abstract  and concrete program variables and represents a relation between 
"concrete" states (those of  the program) and "abstract" states. The tool computes an 
abstract  program such that the concrete program simulates the abstract  one in the sense 
of Milner [Mi171] for the given abstraction relation. Notice that  parallel composition and 
abstraction can be applied in all), order. 

On so obtained abstract  programs, the tool verifies properties given by formulas of 
CTL [CES83]. If the formula is given using predicates of a concrete program, the tool 
computes their interpretation in terms of abstract  variables. 
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Programs of the form CTL formulas f + 
P ::-- B.qcP [ P I P ] Pp interpretation fuaetlon I 
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Fig. 1. Principle of the tool 

Furthermore, for any property to be verified oa an abstract program, one must verify 
preservation by the given abstraction relation which depends on two criteria: 

- the subset of CTL used, 
- the atomic predicates occurring in the formula. 

The first point is a simple syntactic criterion and its verification is left to the user: whereas 
the preservation of predicates is verified by the tgol (the exact preservation criteria are 
given in Section 3). 

2 . 1  R e p r e s e n t a t i o n  choices 

A guarded command program defines a [set of] transition relation[s] on the set of valua- 
tions of its variables (which we call ':domain"); any CTL formula defines a set of states 
(elements in the domain): the states in which it holds. To represent relations: we need 
a formalism allowing to do all necessary operations, such as "compare", ':successors", 
with a reasonable amount of time and space. It is now well established that Binary De- 
cision Diagrams (BDDs) [Bry86] deserve this objective for sets (of states, transitions .... ) 
represented by boolean expressions. 

We never represent the global transition relation, but one for each command. The 
main reason is that the BDD encoding the global relation is likely to be much larger than 
the set of BDDs encoding each command. 

In order to represent transition relations: i.e. sets of edges represented by pairs of 
states, a double set of the program variables is necessary, one (called this-state variables) 
coding the source and the other (called next-state variables) coding the target state of 
each transition. 

A well, known characteristics of BDDs is that  their size is very sensitive to the vari- 
able ordering. Two heuristics are implemented in the tool. The first one is that  in all 
cases each next-state ~riable follows directly its corresponding thls-state variable as it 
has been suggested e.g. in [EFT91,BD92]; the other is that global variables (shared by 
several processes) come before local ~riables. As good heuristics are in general strongly 
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dependent on the underlying transition system, we give the user the possibility to define 
his own variable ordering. 

The user can also define an "in~riant" restricting the domain to the set of states 
satisfying this invariant; this allows to obtain smaller BDDs representing the transition 
relations, by using the "restrict" operator on BDDs which has been implemented in 
the BDD package we use [Rat92]. However; the use of this facility is under the plain 
responsibUity of the user, as the computed transition relation is an abstraction of the 
concrete one only if all reachable states are contained in the invariant. 

2.2 Pa ra l l e l  compos i t ion  

We suppose a universal set of program variables 1/. Any transition relation _~ is defined 
on the set of states which is the domain Dora(X) of some subset X of V. Where, e.g., 
for X = {x,y}, Dora(X)= Dom.(z) x Do,n(y). 

As already mentioned, binary relations on Dora(X) can be represented symbolically 
by predicates of the form R(X; X') (encoded by BDDs in our tool) where X' is a "cop)," 
of X: i.e. Dora(X) = Dom.(X'): X encoding the source state and X '  the target state of 
any transition in R ;  e . g . :  if Dom.(x) = Af; then "x' = x -t- 1" represents the transition 
relation relating any n E A f with n + 1. This approach is use d e.g. in [Lam91;Pnu86]. 
In the same way a relation p from Dom.(X) to Dom.(XA) is represented by a binary 
predicate of the form p(X; XA). 

In this setting; set operations are expressed by logical connectives. E.g.; the fact 
that a relation R is included in R'  is expressed by R =~ R ~ a n d / t  A R' represents the 
intersection of R a n d / ~  if they are defined on the same set of ~riables.  

~re consider that a program is a family of transition relations represented by sets of 
binary predicates on the same set of variables S = { R~(X, X') }~I  where the elements 
of ] are labels used for synchronization purposes in parallel composition in Section 2.2. 

Defini t ion 1. Let be X , Y  sets of program variables. Let be Sl = {RI~(X,X')}~! and 
$2 = {R2j(Y; Y~)}j~$ be programs on Dora(X) respecth, ely Dora(Y). Let A C I x  J be a 
synchronization set and Ax = {il3j.(i,j) e A} and A.~ = {j]31.(i,j) E A} the projections 
of A on I respectively J.  Then, parallel compositions of Sl and S~ are programs on X U Y  
defined as follows: 

- Synchronous Composition : SI@,.tS2 = {RI~(X, X') A R21(Y, Y')}(~j)eA 
- Asynchronous Composition : $1 | $2 = 

{R,~(x,x') ^ Vy e ( Y - X ) . ( ~ '  = y)},~ o {R2j(~ Y') ^ w e ( x - Y ) . ( , '  = ~ ) b ~  
- Mixed Composition : Sl [A] $2 = 

{Rli(X, X ' )  ^ R2./(Y~ Y')}(I,j)EA (3 
{I:~li(X; X') ^ Vy E ( r -x ) . ( y '  = Y) }iC.A, I.J {~2j(Y., Y')  ^Vx ~ (X-Y).(x '  = X) }jf~Aj 

C o m m e n t s  : 
- In synchronous composition, each transition of the composed program results from 

the synchronous execution of two transitions of the transition relations defined by 
some Rl~ and some R2j for (i, j)  E A. If A = ~" • J :  this operator corresponds exactly 
to conjunction applied on programs described by TLA formulas [LamPl]; it is also" 
very similar to program composition of S /R  models [I(,K86]. If the domains of the 
component processes are independent, it is exactly the one of SCCS [Mi183]. 
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- In the asynchronous composition, in each step one of the programs executes one of 
the currently enabled transitions and the other idles. This operator results in the 
complete "interleaving" of the component processes if they are defined on indepen- 
dent domains; if not, the execution of a transition of one of the processes may change 
the enabling conditions of the other one. This operator is in fact the union operator 
of Unity [CM88]. 

- Finally, in the mixed composition operator, some of the transitions must be executed 
synchronously, whereas the others are executed asynchronousb: This operator is not 
exactly the one in CSP [Hoa84] or Lotos [BB88], where all processes have distinct 
variable sets and communicate by exchanging values; however, it is equivalent to 
them. 

2.3 C o m p u t a t i o n  o f  a b s t r a c t  p r o g r a m s  

Let Y be a set of abstract variables and Dora(Y) its associated domain. Then an ab- 
straction relation is given by a predicate of the form p(X~ Y) on concrete and abstract 
variables (this can be seen as a kind of abstract interpretation). 

Def ini t ion 2. The set of transition relations representing the abstract program calcu' 
lated from S = {Ri(X, X')}I~! and p is 

sp = {R,~(~ y') I i e I} = { 3 x  3x'  . p( x ,  Y) ^ R,( x ,  x ' )  ^ p( x' ,  Y')} ,~ .  

If all the R~ as well as p are represented by BDDs, the BDDs representing the R~p 
are obtained by applying usual operators on BDDs. Notice that in case of  finite domain~ 
the variables X and X '  can a l ~ y s  be elin~inated. 

In Section 3, we show that the so calculated abstract program is in fact well chosen. 
For a large class of properties, we have property preservation from the abstract to the 
concrete program. 

2.4 Verif icat ion o f  C T L  formulas  

For the verification of properties, given by CTL formulas, the global transition relation 
is needed. But as formulas are in general verified on the abstract program this is accept- 
able. The implemented model checking algorithm is a symbolic one using the fixed point 
definitions of the operators of CTL, e.g., 

IEG(I) I = A / '  
where P0 = I l l ;  the set of states satisfying f (represented by a BDD on the set of 
program variabhs), and P~+l = Pi A pre[Ra](Pi) (where pre[Re] is the inverse image 
function of the global transition relation Re).  Thus, the characteristic set of EG(]) is 
computed by first computing the characteristic set of f and then adding successively the 
set of states having successors in the so far computed set. The fixed point is reached 
when/)i+1 = Pi and as the domain is finite the fixed point is always reached. All these 
computations can be done symbolically for any program of the form S = {P~(X, X ' )} ie l  
and for any predicate p(X) (encoded by BDDs) we have 

Fe[Rel(p)(x) = V 3.,c'.R~(x, x ')  ^ p(x') 
i 
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This is a predicate with free variables in X (all the quantified variables X '  can be elimi- 
nated), and all the used operators are available in most BDD-pac'l'~ges. 
Notice that despite the fact that we need the inverse image function of the global tran- 
sition relation, we do not need a unique BDD representing it; but we can still work with 
the before calculated set of BDDs representing the global transition relation. 

3 Preservat ion  Resul t s  

In this section we give a brief overview on the preservation results, presented in [BBLS92, 
GL92], guaranteeing that properties verified by the tool on an abstract program hold also 
on the corresponding global concrete program. Notice also that if a property does not hold 
on the abstract program, nothing can be said in general on its validity on the concrete 
program, and one should try with a different abstraction e.g., by refining the already 
given one. We need three results, concerning 

- the subset of the CTL preserved by abstraction: 
- the set of atomic predicates preserved by an abstraction relation p: 
- compositionality of abstraction with respect to parallel composition. 

Def in i t ion3 .  [BBLS92] Let R ( X , X ' )  and RA(XA, X~A) b e  transition relations (the 
global transition relations associated with a concrete and an abstract program); and 
p(X, XA) an abstraction relation. Then, 

R p-simulates RA iff R - l p  C_ pR~ 1 

Notice that "there exists p such that p-slmulates" defines the standard simulation 
preorder [MilT1]. For a given R and p we are interested in a abstraction relation RA 
that is as close as possible to the given .~, i.e. that contains no more transitions than 
necessary. The least R a does not always exist, but we have: 

P r o p o s i t i o n  4. [GLY~BBG*93] (Sp is a reasonable abstraction) 
For S = {R(X,  X')}i~l  and p(X, Xa) total on Dom.(X), the program Sp as defined in 
Definition "2 one has that S p-simulates S o. 

IHurthermore pop -1 o p = p holds (which means that p is a function ]rom a partition 
on Dora(X) to a partition on Dom(Xa)  and is true in most practical cases), then Sp 
is the smallest p-abstraction o] S modulo bisimulation in the sense of [Mil80]; i]p  is a 
function, R a is the least p-abstraction. 

T h e o r e m  5. [BBLS92] Let R(X ,  X ' )  and RA(XA, X'A) be transition relations and p(X, XA) 
an abatraction relation total on Dora(X).  I : 7P -.* 2 D~ an interpretation function of 
atomic predicates on Dora(X) such that R p-simulates RA. 

ACTL  is the subset of CTL [CES83] containing the formulas without negation and 
using only universal quantification on paths. For any f 6 A C T L  , 

RA ~ e [ a - ' ] * l  f implies R ~r,-elp]opr,[p-']oX f 

I] ]urthermore, pre~o] o pre[p-*] o I (p) = I(p) (p preserves I )  for any predicate symbol 
p occurring in .f, we have even R ~ I  f .  

This means: "if f holds on the abstract program: taking as interpretation function 
pre[p-l]oI, associating with any atomic predicate p the image by p of its interpretation by 
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I on the concrete domain, then on the concrete program f holds taking as interpretation 
function pre[p] o pre[p -l] o I, obtained from I by translating it forth and back by p". It  
yields for each predicate an equal or larger interpretation than I.  Thus, in order to obtain 
the initially required result R ~ I  f ,  we need to make sure that each basic predicate in f 
translated forth and back by p remains unchanged. 

This condition is verified by our tool where atomic predicates are the (boolean) 
program variables with the obvious interpretation function. 

The last result we need concerns the compositionality of abstraction with respect to 
parallel composition. The following theorem gives for all the parallel composition opera- 
tors conditions under which the composition of abstract programs computed by our tool 
is an abstraction of the composed program (for a complete result see [GL92]). 

No ta t ions :  In the following we consider a set of variables X = Xi US2, two transition 
systems Si = {nii(Xi,  S~)}ie, ,, i 6 {1,2} and XA = Xla U -•2A a set of abstract 
variables. We denote also -u = Xt t3 S2., the set of common variables, X i t =  S i  - Se 
the local variables of Si and analogously Sea  = S i n  f3_u the set of common abstract 
variables and -u  = -u -- X~A the local abstract variables of Si. 

T h e o r e m  6. [GL92] Let Pl (Xt: Xla) and p2(X2: X2a) be abstraction relations such that 
Pl A P2 is total on Dora(X). We have, 

(r Pl A p2-simulates ~lpl C~AR2p 2, 

Suppose tltat pi(Xi, Xia), i = {1, 2} can be decomposed as pi((Xit, Xi~), (Xita, X~ca)) = 
plt(Sit, XitA) Apic(Xi, Xiea) (values of abstract local variables depend only on values of 
concrete local variables, whereas fire values of abstract common variables may depend on 
the values of all concrete variables}. Then; 

( | )  RI |R2 Pl Ap2-simulates Rip, |R2p2 
([1)t l l  [A] R2 p, A p2-simulates R,m [AI R2p, 

This gives for each parallel operator a necessary condition in order Rp to be used 
for the verification of properties of R; none of these conditions is very strong. It is even 
not necessary that the two abstraction relations coincide exactly on the common domain, 
they have just to coincide sufficiently in order p tA P2 to be total on D. Notice that in 
the case where nothing about the transition relations Ri is known these conditions are 
also necessary. 

The theorem generalizes well-known results concerning compositionality of abstrac- 
tion in process algebras, and this in two ways. One is that in the here presented results 
simulation is parameterized by an abstraction relations which gives a more precise com- 
positionality result. The other is that also processes with common variables are taken 
into account. 

4 S y n t a x  o f  t h e  i n p u t  l a n g u a g e  o f  t h e  t o o l  

A program; input of our tool, is an expression of the form 

PROG ::= gcp I PROG Ill PROG I PROG * PROG I PROG I[label-list]l PROG l 
PROG[abstract-exp] I PROG[label-list,label-list ] 

where "gcp" are filenames containing guarded command programs, Ill is the AD'n- 
chronous: * the synchronous and [~[ the mixed parallel operators defined in Section 
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2.2: except that  the parameter  "label-list" of [~[ is a llst of labels instead of a list of 
pairs of labels meaning that  programs synchronize on all the "labels" (see below) in this 
list which therefore must occur in both programs. PROG[label-listl.label-list2] defines a 
renaming operator. PROG[abstract-exp] defines the abstraction operator.  

Each guarded command program represents a process; where all variables are global. 
We call a variable local to some process if it  is not used by any other process. Certainly~ 
this is a quite primitive "programming language"; but  it is sufficient to show the pos- 
sibilities of the tool. We intend to add a mechanism similar to the abstract  da ta  type 
definition in Lotos with a possibility of automatic implementation of any ~ariable of any 
finite type as a set of boolean variables with the necessary operations on it. 

Each guarded command program consists of a header and a list of guarded com- 
mands. The header contains variables and commands numbers and eventually a variable 
ordering and an invarlant restricting the domain. Each guarded command is of the form: 

'[' label ']' expression-X ---* expression-Xx 
Where 
"label" is used to identify the command in parallel composition and renaming, 
"expression-X" a guard, which is a predicate defined on this-state ~ariables and 
"expression-Xx" defines the transition relation by an e.x'~pression on this-state and next- 
state ~"ariables. 

The thls-state variables are denoted by upper-case first le t ter  identifiers (':ident- 
X") whereas the corresponding next-state variables ("ident-x") are denoted by the same 
identifier with the corresponding lower-case first letter. Thus. 

"ex'pression-X" is an expression constructed with usual boolean operators: '=" (equiva- 
lent), ' = > '  (implies), '+ '  (or), ' . '  (and), 'NOT', on this.state variables and 
"expression-Xx" is an expression as above on both current and next-state ~arlables 
and using also the macro-notations 'ON', 'OFF', 'ANY' applied to lists of this-state 
variables, meaning that the corresponding set of next-state variables is respectively 
uniformly true, false or unspecified. 

Notice that due to the fact that  we use boolean expressions to define transition 
relations, any variable not mentioned in "expression-X.x" may take any value in the 
next s tate and in order to specify that some ~ariable keeps its value, we have to say 
this explicitly. This is often quite tedious; therefore: we preferred to aUow as default 
that unmentioned variables are unchanged and have added the operator  ANY to define 
unspecified values. The operators ':ON" and "OFF" are useful to (re)set a set of ~"arlables. 

"abstract-e.xp", the parameter of the abstraction operator is either an expression using 
the same operators as "expression-X" and the operator 'ABS' on the this-state variables 
of the concrete program and another set of this-state ~-ariables (defining the abstract 
domain). 

ABS is applied to a list of the concrete ~'ariables: meaning that  these variables are 
not taken into account at all in the abstract  transition relation (application of existential 
quantification).` whereas for all variables X which do not occur at  all in the expression. 
a new ,~riable Xa and the constraint "Xa -- X" is added. We have introduced this 
convention which is the opposite of the boolean expression way of defining abstraction as 
it  is  often very tedious to introduce a new variable for all the variables conserving their 
meaning and specifying them as equivalent to the old ones; we preferred to leave this 
task to the tool. 
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S y n t a x  o f  the  Logic The formulas that can be evaluated by the tool on a given program 
are CTL formulas on atomic predicates built on the program variables. In the present 
case. where only boolean s-ariables are used, the atomic predicates are just the variables 
themselves. In order to take into account the labels in the formula without changing the 
logic, we have, similar as in XESAI~ [RRSV87], defined atomic predicates of the form 

ideat-X I 'sink' [ 'eaable'(label) 

where "sink" represents the set of deadlock states, "enable(label)" represents the set 
of states in which one of the guarded commands labeled by "label" is enabled (this is the 
disjunction of the corresponding guards). Notice that formulas can only use this-state 
variables as otherwise we need also a "next-next" relation. 

Using this definition of atomic predicates, the set of formulas is obtained by applica- 
tion of the boolean operators used in the program syntax CTL temporal operators : the 
unary next state operators EX, AX, the unary operators AG (always), EF (possibly), AF 
(inevitably), EG and the binary operators AU and EU (until on all respectively on some 
path). Furthermore, we defined macros allowing to give the fornmlas also in "p-calculus" 
style [Koz83] or in LTAC style [RRSV87]. 

5 O v e r t a k i n g  E x a m p l e  

5.1 Desc r ip t ion  of  the  p rob lem 

The example we develop here is that of a simple overtaking protocol which has been 
described in Lotos in [EFJg0] and verified using the verification tool Caesar [GS90]. We 
have "translated" the Lotos specification into a parallel guarded command program, input 
of our tool and have verified properties on it. Most of these formulas could be verified by 
using some abstractions. As we have already mentioned, the translation from the Lotos 
program into a parallel guarded command program could be done automatically: 

The protocol coordinates overtaking of vehicles on a road. In a vehicle queue, each 
vehicle can communicate with its immediate preceding and succeeding vehicle via two 
communication mediums. A driver who intends to overtake (client vehicle) initiates a 
protocol entity in his own vehicle which in turns initiates a negotiation with the vehicle 
in front (server vehicle). The environment decides whether overtaking is possible. If yes, 
the server sends the client a positive answer else the server waits for the next overtak- 
ing request. In case of a positive answer, actual overtaking takes place. It  consists in 
exchanging, ~ia a perfect communication medium this time; the information about their 
succeeding respectively preceding vehicles. Once a client has initiated an overtaking ne- 
gotiation~ it will keep on trying until it succeeds in overtaking, i.e. an overtaking cannot 
be aborted. 

5.2 P r o g r a m  descr ib ing the  sy s t em 

The program modeling the scenario is a parallel composition of guarded command pro- 
grams describing a set of vehicles CAR~, communication mediums .,u and OT for the 
negotiation and overtake phases, an environment E and a set of timers 1'/associated with 
CAR~. 

Each process CARl is identified by its name (Idl), its position (Pos~), its M-address 
(M.ol) and that of its preceding vehicle (-~l-pl) finally its OT-address (Ot_o~) and that 
of the preceding vehicle (Ot_pl). 
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Communication through a medium is modeled using some global data ~riable X: in 
a first step the emitter and the medium synchronize; the emitter sets the variable X and 
the medium becomes bus3: In a second step the medium synchronizes with the receiver. 
the receiver reads X and the medium becomes free again. Notice that the medium -~'., 
used during negotiations: may lose messages whereas the medium OT used for exchanging 
data during actual overtaking phase is assumed to be perfect. 

The environment E is modeled by a simple process switching spontaneously between 
states ok in which overtaking is allowed and not.ok in which it is not.  

The timers T~ have two states active and inactive. They can be started in inactive; in 
active they can be stopped or timeout may occur. They are used by the client part of each 
vehicle which has to repeat its request if the authorization to overtake from the server has 
not been received within a certain delay (here we model just a non deternfinistic choice 
between "received in time" and "timeout occurs"). So; the global system is described by 
the expression 

( I ieO,2,s,~) (CARi [A~.] Ti)) [A] (M" II OT II E) 

where A~. = {T-B,T-S,T_O} and A = {C-~'I,M.C,C-OT, OT-C,E.C~, i E {1,2,3,4}} 
C-"tl and -~I-C are used for the synchronizations between the vehicles and M~ C_OT 
and OT_C for the synchronizations between the vehicles and OT and finally E-CI "for 
the synchronizations between the vehicles and E. 

Shared  variables As we have already mentioned, variables are called global if they are 
shared by at least two processes and local if they appear in only one process. Here we 
give the list of global variables, their meaning and the processes they appear in ,(these 
variable declarations are not necessary in the program). Notice that all the variables 
declared as re.address, ot_address; position or identity are implemented by a pair of 
boolean variables (4 different values): but represented here for simplicity by a single 
~ariable. 

- Variables shared between all vehicles and medium M: 
,M_send, M_dest : re.address (the sender and receiver of the communication) 
M_ot.req,M.ot.ok : transmitted bits 

- Variables shared between all vehicles and medium OT: 
OT.send, OT_,test : ot-address (the sender and receiver of the communication) 
OT_id : identity (transnfitted message) 

- Variables shared between vehicles CAR~ and E: 
E-ok : bit (the em'ironment is in a ok mode) 
E.indl : bit (the vehicle asks ailowance for its following vehicle to overtake) 

In the following we give only the guarded command program CAR~ representing the 
behaviour of a vehicle as other programs are quite simple. 

5.3 G u a r d e d  c o m m a n d  p r o g r a m  for a vehicle 

Each vehicle CAR~ has the knowledge of both addresses of its preceding vehicle (M_p~, 
Ot-pl). It has also auxiliary variables to store informations temporaril): 

The natural description would consist in defining each process CA.R~ such that it 
describes a vehicle that keeps its identity and changes its position while overtaking. We 
have chosen an equivalent solution where vehicles have a fixed position and exchange 
identity. This is very useful as it allows to use much stronger abstractions in order to 
verify the service properties (which refer to positions but not to identities). 



81 

L o c a l  v a r i a b l e s  
- Identif icat ion variables: 

Id~ : i d en t i t y  M-pi.~ M-ol  : re_address of preceding: own vehicle. 
Posl : posit ion:  Ot-pi., Ot.ol : ot_address of preceding and own vehicle; 

- Auxiliary variables to s tore  da t a  while overtaking and during negotiat ion:  
Aux. idi  : posit ion,  Aux.ot i  : o t .address ,  A u z . m l  : re .address .  

- Control  variables (boolean) : 

In i t i  : initial s ta te ,  Cl l ,  .. , c r l  : client s ta tes  and Sli:  .. , SSi : server s ta tes .  
We define also an invariant tha t  expresses tha t  in any s ta te  a t  most  one of the control  
variables is true. 

P r o g r a m  o f  C A R l  

............. ................ INIT PART ....... - ........................... 
I becomes server or restarts server 
M_C] (Init_i + Sl_i § S2_i + S3_i § S4_i) . (M_dest - M_o_i) . M_ot_req -> 

OFF(M_ot_req,Init.i) . ON(SI.i) . (aux_m_i - M_snd) ; 

[ ] Init_i-> DN(CI_i) . OFF(Init.i); ~ spontaneously becomes client 

............................. CLIENT PART ................................. 
% ignore  o t_req  of the  fo l lowing veh ic le  and i d l e  
[M_C] (Cl_i + C2 i § C3 i + C4_i § C5.i + C6_i + S5_'i) . (M_dest ~ M_o_i) . 
�9 M_ot_req -~ ANY(M_-dest,M_ot req); 

X ignore old or_ok 
[M_C] Cl_i . M_ot.ok . (M_dest - M_o_i) -> OFF(M_ot_ok) ; 

send ot_req (ask for allowance to overtake via the Medium) 
[C_M] Cl_i-> (m_snd-M.o.i). (m_dest- M_p_i) . ON(M_ot_req,C2_i) . OFF(CI_i); 

[T.B] C2_i -> ON(C3_i) . OFP(C2_i); Y, start timer 

[T_O] C3_i -> ON(CI_i) . OFF(C3_i); X timeout: waited too lon E for or'ok 

~. r ece ive  ot_ok (allowance to  overtake v ia  the Medium) 
[M_C] C3_i . (M_dest m M_o_i) . M_ot_ok -> ON(C4_i) . OFF(M_ot_ok,C3_i); 

[T_S] C4_i -> ON(CS_i) . OFF(C4_i); ~ The t imer i s  stopped 

Overtake: sends i t s  parameters through OT_Medium to preceding veh ic l e  
[C_OT] CS_i -> (ot_snd - OT_o_i) . (o t_des t  - OT_p_i) . (o t_ id  ffi Id_i)  . 

ON(ee_i) . OFF(CS_i); 

% Overtake: r e c e i v e s  parameters through OT_Medium from preceding veh ic l e  
[OT_C] cr_i . (OT dest - OT_o_i) -> ON(Init i) . OFP(C6.i) . 

(id_i OT_-id) . ANY(OT_dest,OT.id) ;- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SERVER PART ................................ 
X s e t s  over tak ing  i n d i c a t i o n  in  the  environment and wai ts  f o r  a u t h o r i s a t i o n .  
[C_E] Sl_i -> ON(E_ind_i,S2_i) . OFF(SI_i); 

Answer: i f  ok, goes on e l s e  r e t u rn s  in  the  i n i t i a l  s t a t e .  
[E_C_i] S2.i -> (S3.i - E_ok) .(Init_i - "E_ok). OFF(S2.i); 

sends confirmation to the client 
[C_M] S3_i -> (mdest - Aux_m~i) (m_snd - M_o.i) . ON(M_ot_ok,S4_i) . 

OFF(S3_i) . ANY(Aux.m_i); 

r e c e i v e s  da ta  from the c l i e n t  and s t o r e s  them in i t s  aux i l i a ry  v a r i a b l e s .  
[OT_C] S4_i . (OT_dest = OT.o_i) -> ON(S5 i)=. OFF(S4_i) . . 

ANY(OT_id,OT_dest,OT_snd) . (aux_ot-i OT_snd) . (aux_ia_i = OT_id); 

sends i t s  parameter  to  the  c l i e n t  and s e t s  i t s  va r i ab l e s  
[C_OT] SS_i -> ON(Init_i) . OFF(S$_i) . (ot_snd - OT_o_i) . (ot_dest ~ Aux_ot_i). 
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(ot.id �9 Id_i) . (id.i = Aux_id_i) . AgY(Aux.ot_i,Aux_id_i); 

5.4 P r o p e r t i e s  

We verify the following properties on the overtaking protocol. 

1. Dead lock  f reedom canbe  expressed by the following formula: 

init -- > AG(NOT deadlock) 

where deadlock is different from sink defined as the atomic predicate Ai NOT c~ 
where the cl are all the guards of  the global guarded command program obtained 
after executing all the parallel compositions and abstractions, deadlock must also 
contain all the states which can only do infinitely only some "useless" transitions 
(such as in the example the environment goes spontaneously from the state ok into 
notok~ from notok into ok,...)., that means that in a state not satisfying deadlock after 
a finite number of steps some "useful" transition must be possible. So NOT deadlock 
can be defined as Vi EF(cl) where the cl are the enabling conditions of the set of 
"useful" transitions. 
init is a predicate specifying allowed initial states which has to precise the relative 
positions of all the cars and the corresponding .,u and OT-addresses in the different 
cars. It needs no t  to specify that all cars are in control state Init~ but the set of 
specified states nmst be reachable. As deadlock freedom is no ACTL formula; no 
abstraction can be applied before its verification. 

2. Safe ty  proper t ies :  "If the vehicle in position i is engaged in overtaking: neither 
its preceding nor its following vehicle can engage in overtake"; this can be expressed 
by the following set of formulas: 

Sav.p~ : inlt = >  AG(a-otl = >  NOT a-otl-l) 
Sav_.f~ : init = >  AG(a.ot~ = >  NOT a-oti+l ) 

where a.otl = C41 + C5~ + C6i (vehicle in position i is in actual overtaking phase). 

5.5 Results 

The first abstraction we propose yields an equivalent transition relation. We just reen- 
code the control variables of each vehide in a more efficient way. This can be done in two 
manners. One is to specify an invariant restricting the domain of the control variables in 
such a manner that only valuations in which exactly one of the control variables is true: 
are considered; the second solution consists in giving an explicit reencoding by means of 
an abstraction relation. It  consists in replacing the 12 control variables of CARl (encod- 
ing 12 states) by four variables. This abstraction relation is total on the "interesting" 
domain specified by the above mentioned invariant; it is a function from the abstract 
to concrete domain but not in the other direction. This has been done in order to get 
smaller expressions and corresponding BDDs. Therefore, the obtained abstract transition 
relation is bisimilar to the original one and can be used for the verification of any CTL 
formula. As this abstraction relation consists of independent relations concerning each 
CARl; the abstraction operator can be applied before composition. We obtain a sig- 
nificant reduction of memory using either the invariant or the above defined equivalent 
abstraction on each process CAR~. The gain of defining an abstraction over defining an 
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invariant is only little more than !5% in terms of numbers of nodes but nearly 40% of 
execution time (this gain must be interpreted carefully as the overall execution time is 
in both cases less than 1 minute and it is difficult to evaluate the fixed time requirement 
for loading and writing the files: etc). 

As already mentioned, for the verification of deadlock freedom: abstraction is not 
possible as it is not a formula of ACTL; we tried to verify it on the concrete program 
constructed using the invariant as well as on the above defined equivalent abstraction. 
It  was even not possible to e~luate  the predicate sink' (which is differs from sink by 
the exclusion of some "useless" actions). We also tried to  use a stronger invariant: where 
the M and OT-addresses of each vehicle are identical (this is not an abstraction., but a 
restriction which preserves the predicate deadlock) but it turns out that  in this particular 
case this stronger invarlant gives not rise to a smaller representation of the program and 
it does also not allow to evaluate sink'. From this we conclude that in some cases it may 
be very useful to have at least some upper appro.xin, ation of the set of reachable states; 
this may be obtained by doing a forward analysis on some carefully chosen abstraction 
(not yet implemented). An upper appro~mation of the set of reachable states is certainly 
also useful in order to reduce the time and memory requirement of e~aluations of fixed 
point formulas. 

A stronger abstraction has been used in order to verify the safety properties. E.g. for 
the verification of Say.p2 we have defined an abstraction: completely abstracting away 
all the control variables of CARs and CAR~: we introduced a single state "server" in 
CAR2 instead of the 5 server states: and in CAt~, we grouped together client states 
in actual overtaking and client states not in actual overtaking; we also abstracted away 
the ~riables of the timers and the environment: which should not change the safe~* 
properties. Here we obtain for the composed system some 60~ of gain in terms of number 
of nodes with respect to the smallest unabstracted system. Here we have a more significant 
gain of execution time for the compositional instead of the global abstraction (40 seconds 
instead of 2.50 minutes). 

On this abstraction it took less than 1 minute to e~luate  the propert}~ whereas it 
was not possible to evaluate it on the unabstracted program. In fact: the gain of memory 
is not very important in this case because we have not yet introduced renaming: man)' of 
t h e  guarded commands represent identical transition relations, but have different labels 
and can therefore not be grouped together into a single command. In this example this 
will certainly allow some gain of memory: and particularly an important gain of execution 
time of the evaluation of formulas as actually the same transformations are computed 
man)' times. 
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