
Conceptual Structures for Modeling in CIM

Michel Wermelinger

1

and Alex Bejan

2

1

Dep. de Inform�atica, Univ. Nova de Lisboa

2825 Monte da Caparica, PORTUGAL

E-mail: mw@fct.unl.pt

2

IBM Corporation, 33HA/971

Neighborhood Rd, Kingston NY 12401, USA

E-mail: alge@kgnvmy.vnet.ibm.com

Abstract. The International Standards Organization (ISO) will release

in 1993 the �rst version of the STEP standard, which is dedicated to

the exchange of product model data, and is seen as the basis of the

next generation of enterprise information modeling tools. Almost in the

same time frame ANSI will release the Information Resource Dictionary

System (IRDS) Conceptual Schema standard [1], which recommends the

conceptual graphs (CGs) or other representation languages based on log-

ic to be used for enterprise information modeling and integration. In this

paper we develop the foundations for the utilization of conceptual struc-

tures (CS) in combination with EXPRESS and STEP Application Pro-

tocols in the �eld of Computer Integrated Manufacturing (CIM). The

most important result described here is a mapping of EXPRESS into

CGs. Around it we develop the architecture of a system able to analyze

and translate some of the semantics of information models. Our overall

strategy consists of representing the semantics of the language, includ-

ing the informal meanings represented in the EXPRESS manual in plain

English, in a systematic way in CS, and then use this block of knowl-

edge, that can be processed by a machine, for the increasingly automatic

analysis, translation and integration of enterprise information models.

The work here described is one of the components of a prototype of a

model management system under development at IBM, Kingston NY,

coordinated by the CIM Architecture group.

Keywords: Computer Integrated Manufacturing, PDES/STEP, model

management system, EXPRESS language, modular knowledge bases

1 Introduction

In the modern enterprise, engineers and other information modeling experts use

a wide range of information models to manage the enterprise's static, dynamic

and high-level aspects. These models may be very small or very complex. In the

process of creating or manipulating information models the modelers need to

compare their representations with previous work in the same or related areas.

Also, especially when dealing with complex models, they need analytical tools

to help them better understand the not-so-obvious characteristics of the models.

A variety of information modeling technologies and tools are used to de�ne and

operate on the information models. But any of these technologies captures only

a fraction of the meanings of the enterprise's products and processes. The rest

of the semantics remain in such informal representations as comments in natu-

ral language, explanatory diagrams, or even in the engineers' unspoken minds.

Knowledge engineers manage usually to understand each other's models due to

their common background. The only disadvantage is that the task of manually

analyzing a complex model, or comparing two models is very laborious, error-

prone, and time consuming. Computer programs are not of much help either,

because they have access only to a very limited amount of semantics of the en-

terprise. This is why, even the best current computer based model analyzers,

which can be characterized as syntactic analyzers, are very ine�cient and user

unfriendly. The automation of information model analysis for enterprise models

requires the machine to have access to signi�cantly more knowledge about the

enterprise than is currently included in the formal models. In this paper we do

some of the required mappings for using conceptual structures in enterprise mod-

el management as a normative language able to support operations on models

written in EXPRESS.

The EXPRESS language is intended as \a formal information requirements

speci�cation language" [4]. Among its goals are: to be parsable by computers as

well as humans, to enable partitioning of the domain of discourse, to focus on

the design of entities, and to avoid implementation views.

EXPRESS is emerging as an international standard language for enterprise

modeling. Not only is it used more and more by manufacturing industries around

the world to represent their businesses, but also it started to be used by economic

units from the �nancial, mining, medical and other areas.

In this process, the semantic scope of the language is wontedly challenged by

tentative representations of larger portions of the enterprise many of a kind not

originally anticipated. Moreover, seduced by its large acceptability, enterprise

knowledge engineers are trying to translate their models in EXPRESS, thus

entitling it with a de facto normative property. These uses put a lot of pressure

on the broadness of EXPRESS, asking for more expressive power.

However, EXPRESS cannot be extended beyond certain limits without loos-

ing some of its desirable properties, such as ease of representing industrial designs

and concepts, and its appeal to the enterprise information modelers. Also to be

taken into account is that any modi�cation to the language is not likely to take

e�ect in the next few years.

Thus, it looks reasonable to provide another knowledge representation mean-

s as a normative language for operations on models of enterprises. Conceptual

Graphs (CGs) are a good candidate for the task because they have the need-

ed semantic power to represent any modeling language; also the possibility of

translating CGs in structured English will provide the additional service of au-

tomatically producing comments, where semantics are not translatable into EX-

PRESS. The latter feature will signi�cantly increase the understandability of

the EXPRESS model.

EXPRESS has a formal, explicit syntax written as a context free grammar

(BNF). Its rules describe how to create well-formed expressions in EXPRESS

using a certain vocabulary. Its semantics is described in the EXPRESS Manual

draft, as well as other publications that deal with the intended use of the lan-

guage. We would like to make this semantics explicit to the system, by rewriting

it in Conceptual Structures.

In the language de�nition document [4], in addition to the syntactic de�nition

of the language, the meaning of each construct, e.g. entity, is de�ned in plain

English:

3

\An entity declaration creates an entity data type and declares an

identi�er to refer to it. An entity data type represents a class of objects which

have common properties. [: : :]

entity_decl = entity_head entity_body END_ENTITY ';'

entity_head = ENTITY entity_id [subexpr] ';'

entity_body = {explicit_att} [derive_clause]

[inverse_clause]

[unique_clause] [where_clause].

"

It appears from here that even the simplest fact about an entity, i.e. that

it represents a class of objects which have common properties is not captured

by the syntax. That is, the knowledge engineer modeling the enterprise always

keeps in mind that an EXPRESS entity actually represents a class of objects

that have common properties. The computer that holds the information model

is never aware of this fact.

The di�erence between what is represented in the formal grammar (syntax

of EXPRESS), and what is in plain English is simply that only the former can

be processed by machine. Conceptual Graphs, though, can represent both the

formal grammar and the English text in uniform constructs, and can be pro-

cessed by machine entirely. With the current technology some other knowledge

about the models is never made known to the machine, which limits the model

analysis capabilities. Examples may include the habit of certain users to write

names using the underscore, particular ways of representing relationships, the

use of types, and many others. This is why it's important that all these pieces of

knowledge be explicitly represented in Conceptual Graphs and processed there-

after as a uniform knowledge block, to confer meaning to the enterprise models

in cause.

Another problem for the users of STEP is that there is no formal theory

behind (the semantics of) EXPRESS. This is very understandable, as there is

no formal semantics, and building a formal theory in a natural language is quite

di�cult. Thus, for one thing, representing the EXPRESS semantics in CGs would

be a good step in the direction of formalizing them.

The representation of the syntax of EXPRESS as Conceptual Structures

would be the �rst challenge. Even more e�ort will be required to rewrite its

semantics in Conceptual Structures, and then to prove its consistency (�nd at

least one true interpretation of this model).

3

All text between quotation marks is taken verbatim from [4].

The result of writing all the syntax and large amounts of the semantics

of EXPRESS in the same notation will be to provide a more complete, explicit

model for this language. This will thereafter prove valuable for EXPRESS model

analysis, translation to other modeling languages, uni�cation and integration of

models.

However, if we think about operations on CIM information models such as

model analysis, translation, join, etc. this is only the �rst step. We need, in

addition, a higher-order ontology (meta-model) that will help us represent the

knowledge about EXPRESS and other languages in a systematic way. The best

candidate for the job is the Semantic Uni�cation Meta-Model (SUMM), also an

emerging ISO standard [3]. SUMM uses a modal logic approach, which we will

replace with CS, in order to ensure uniformity of all of the meta-knowledge.

It should be noted that using CS as the meta-language of our meta-model is

di�erent from using them as the target language of a translation from EXPRESS.

It just happens that the two languages are the same.

With the CS and EXPRESS completely denoted in a common language, we

can start the mapping of the expressions of the two languages in the appropriate

way. EXPRESS syntax will always be possible to be translated CS, but only

certain conceptual graphs to EXPRESS. However, as stated above, any CS can

be translated to structured English, so we can avoid an absolute loss of semantics

in moving from CS to EXPRESS.

More precisely, the translation from EXPRESS to CS consists of replacing

the EXPRESS syntax with CS syntax, and appending all the formal semantics

of an EXPRESS model to the new CS representation of the model. The new

representation of the model is in this way independent from the knowledge of

EXPRESS by the users, and it preserves the initial semantics. This is another

way of saying that the semantics of the EXPRESS model are explicit in the CS

format. In the opposite direction, if a model in CS contains at least a certain

subset of the explicit semantics of any EXPRESS model (subset that we still

have to de�ne), it is guaranteed to be translatable to EXPRESS. In any model

translatable to EXPRESS it is possible to exist some expressions that are not

supported by EXPRESS. Those will be transformed into structured (natural)

language (e.g. English). The translation from CS to EXPRESS involves checking

that all the required EXPRESS semantics is explicitly stated in the model, then

replacing the CS syntax with EXPRESS syntax for the translatable expressions,

throwing away the expressions representing the explicit semantics of EXPRESS,

and translating the rest of the expressions to structured language.

If only EXPRESS models are considered model analysis and syntactic check-

ing can be done in the way described above. If more than one model is involved,

comparative model analysis, and model uni�cation and integration can also be

performed.

More languages can be included in the picture, as well. In that case we can

talk about a source language (or languages), and one or more target languages. In

those translations the meta-model de�nes the expressions in each source language

that can be translated to the target language. Translation grammars will be built

around these rules, similar to De�nite Clause Translation Grammars or De�nite

Feature Grammars. They will de�ne the series of CS operations that will be

applied to the CS representation of the model in the source language in order to

transform it in the target language.

To be more explicit, we deal with a translation in 3 steps:

1. a syntactic translation of a model in a source language to CGs + addition

of explicit semantics speci�c to the source language;

2. a transformation of the CG representation of the model so that the semantics

is preserved, but the syntax is modi�ed to that of the target language;

3. a syntactic translation of CGs to the target language + discarding the explic-

it semantics of the source language + a translation of non (target language)

translatable CGs to structured language (English).

The remainder of this paper is organized as follows: Sec. 2 presents an exten-

sion to the CS theory, and introduces the notation. Sections 3 to 6 describe the

mapping of EXPRESS to CS (a more complete account is given in [5]): Sec. 4

deals with expressions, Sec. 5 with data types, and Sec. 6 handles the EXPRESS

schema construct. Finally, we present in the conclusions some of the advantages

of our work for related �elds.

2 Conceptual Structures Revisited

This section points out some notational conventions and introduces a new notion

to be added to CS theory: knowledge packet. This will enable us to formally

de�ne knowledge bases and to represent EXPRESS schemata.

2.1 Modularizing Knowledge Bases

The main building block of knowledge bases in basic CS theory is the canon

[2, Assumption 3.4.5]. However, there is no provision for structuring knowledge

bases, i.e. there is no artifact corresponding to the notion of module provided

by conventional programming languages. The following provides a �rst step in

that direction.

We �rst start by recalling that a canon is a self-contained knowledge base:

all the markers and types used in the canonical basis and in the conformity

relation are part of the canon. Quasi-canons are obtained by relaxing one of the

constraints.

De�nition1. A canon is a tuple hI; T; ::; Bi where I is a set of individual mark-

ers, T is a type hierarchy, :: is a conformity relation relating labels in T with

markers in I, and B is a �nite set of graphs with all referents either generic or

markers in I and all type labels in T .

De�nition2. A quasi-canon is a canon hI; T; ::; Bi where the canonical basis

B may use type labels that are not contained in T and markers that are not

contained in I.

As I, B, and :: are sets (the latter of ordered pairs), the subset relationship

as well as union are de�ned for them. The following de�nitions are needed in

order to have inclusion and union de�ned for all the four components of a canon:

De�nition3. Two type hierarchies T and T

0

conict if there are two di�erent

types t

1

and t

2

such that t

1

�

T

t

2

and t

2

�

T

0

t

1

.

De�nition4. Given two type hierarchies T

1

and T

2

, T

1

is a sub-hierarchy of T

2

(written T

1

� T

2

) if and only if the following conditions hold:

1. 8t 2 T

1

: t 2 T

2

2. 8t

1

; t

2

2 T

1

: t

1

�

T

1

t

2

) t

1

�

T

2

t

2

De�nition5. The union of two type hierarchies T

1

and T

2

is written as T

1

[T

2

and it is de�ned as the smallest hierarchy such that T

1

� T

1

[T

2

and T

2

� T

1

[T

2

.

Notice that if two type hierarchies conict, their union is not de�ned (because

it wouldn't be a proper hierarchy). We will therefore assume that two di�erent

canons have no conicting type hierarchies and no common markers.

Now we can build the union of canons as the union of the four components,

and inclusion over canons is de�ned as inclusion of the four components. The

bottom element of the inclusion relation is the same as the neutral element of

union, namely the empty canon (denoted by ;) which includes only the universal

and the absurd types.

Let K be the set of all knowledge packets (to be de�ned below) and C the

set of all canons. The following functions exist:

De�nition6. The function available : K! C returns for each knowledge packet

the information contained in it. The function exports : K ! C returns for each

knowledge packet the information made visible to the other knowledge packets,

whereby 8K 2 K : exports(K) � available(K).

De�nition7. An import function for a knowledge packet K is a total function

imports

K

: K! C such that

1. imports

K

(K) = ;

2. imports

K

(K

0

) � exports(K

0

)

We can now de�ne a knowledge packet as a canon with an import-export

interface: it imports part of the information exported by other knowledge pack-

ets, it de�nes its own information (possibly) based on the imported one, and it

exports part of all that available information.

De�nition8. A knowledge packet K is a tuple hExp; Imp

K

;Def i such that Exp

is a canon, Def a quasi-canon, and Imp

K

an import function satisfying

1. exports(K) = Exp

2. available(K) =

S

K

0

2K

Imp

K

(K

0

) [Def

De�nition9. Knowledge packet K uses knowledge packet K

0

if and only if

imports

K

(K

0

) 6= ;. The relation � � K � K is the transitive closure of the

\uses" relation.

Notice that if knowledge packet K de�nes a type A explicitly in terms of

type B but only exports the type label of A, any packet that uses K isn't aware

of B nor of A's de�nition. However, the system must know both to properly

make inferences and check for canonicity. Therefore the notion of visibility is

only relevant for the user, but the system must use all the information that is

(indirectly) used by a knowledge packet.

De�nition10. A knowledge packetK is consistent if the set of graphs contained

in

S

K�K

0

available(K

0

) [available(K) is consistent.

De�nition11. A knowledge base KB is a set of consistent knowledge packets

such that 8K 2 KB K 6� K.

2.2 Notation

We will use the linear notation for conceptual graphs as de�ned in [2], extended

with [TYPE:~ref] as an abbreviation for [TYPE] -> (DFFR) -> [TYPE:ref].

Furthermore, A < B means that A is a direct subtype of B, and [IF: G1 [THEN:

G2]] is a more readable version of ~[G1 ~[G2]] where G1 and G2 are sets of

graphs.

3 Translating EXPRESS to Conceptual Structures

The three main constructs of the EXPRESS language are: expressions, types,

and schemata. They will be translated in a principled way to dataow graphs,

concept types, and knowledge packets, respectively. Due to space limitations we

will mainly concentrate on the most important data types.

In the next sections we will show how the knowledge packet EKP repre-

senting the semantics of EXPRESS should look like, assuming there is a core

knowledge packet CKP with the most basic primitive concepts of CS theory.

Having these, every EXPRESS model M (a set of schemata) translates to a CS

knowledge base KB containing EKP and CKP with EKP � CKP . Further-

more, for every schema inM there is a corresponding knowledge packet K 2 KB

such that K � EKP .

3.1 The Core Knowledge Packet

In order to have a well founded translation scheme for EXPRESS, we will make

several assumptions about CKP we believe are reasonable for any practical

CS system. Namely, that it includes primitive types and relations like ENTITY

and ATTR/2 (given in [2]) and the boolean connectives between propositions

(e.g. XOR/2). Furthermore, we must have WORD < STRING and INTEGER < REAL.

This implies that the CS processor is able to parse integer and real values as

well as strings in the referent �eld. Furthermore, we assume that some primitive

operations on those types are pre-de�ned (like comparison and addition). Finally,

we will use the Unique Name Assumption for reals, integers and strings, i.e.

the same name denotes always the same individual and therefore equal looking

concepts are coreferent (and this enables the inference rules to be applied).

4 Expressions

An expression will be translated into a dataow graph, where operators are

actors and the result is given by the �nal (and single) sink concept. The trans-

lation scheme is recursive: if the expression is of the form operand op operand

then translate �rst both operands and then make their sink concepts the source

concepts of the actor corresponding to the operator.

Several operators are overloaded: for instance, the + sign is used to add

numbers and concatenate binaries (which, as seen in Sec. 5.3, can be understood

as sequences of bits). We can translate this into the following kind of de�nition

actor +(in: x, y; out: z) is

[T:*x] -

-> <IDENT> -> [NUMBER] -> <ADD> -

<- [NUMBER] <- <IDENT> <- [T:*y]

-> [NUMBER] -> <IDENT> -> [T:*z],

-> <IDENT> -> [BINARY] -> <CONCAT> -

<- [BINARY] <- <IDENT> <- [T:*y]

-> [BINARY] -> <IDENT> -> [T:*z].

Static type checking can be done in the following way: given canonical graphs

for the operators (interpreted as relations, not actors) translate the expression

into a graph and see if it is canonical. For the above mentioned operator you

might have the canonical graph

[[NUMBER] <- (+) -

2 <- [NUMBER]

1 <- [NUMBER]

] -> (OR) -> [

[BINARY] <- (+) -

2 <- [BINARY]

1 <- [BINARY]

].

stating that the operands of + must both be numbers or both be binaries, and

the result is a number or a binary, respectively. Notice that such a canonical

graph represents in essence the signature of an operator.

In EXPRESS, the special constant '?' represents an indeterminate value. We

will assume that EKP contains an individual marker named undefined which

conforms to any of the data types listed in the next section. The constant '?'

will therefore be mapped into [GENERIC:undefined].

The above means that expressions may return null (which is also represent-

ed by '?') if some operand hasn't any value (e.g. it might be an optional at-

tribute, see Sec. 5.1). To cope with this, the de�nition of actors must handle the

undefined marker properly. For example:

actor ADD(in x,y; out z) is

[NUMBER:*z] <- <IDENT> <- [NUMBER:undefined] -

<- <IDENT> <- [NUMBER:*x]

<- <IDENT> <- [NUMBER:*y]

... ;; rest of definition

5 Data Types

EXPRESS provides the following data types:

Simple These are the basic types: integer, real, number, boolean, logi-

cal, string and binary.

Aggregation These types represent collections.

Entity These are record-like types.

De�ned De�ned types are just aliases for other types.

Named De�ned types and entity types are called named types because they

must have a name.

Select These act like an abstract supertype (see 5.1) for a given collection of

named types.

Base Simple types, aggregation types, and named types are collectively called

base types because they are the only types allowed for aggregation elements.

Generic This is the set of all types.

As the number type is an abstract supertype for integer and real values, and

as boolean is a subtype of logical we will have in EKP 's type hierarchy

INTEGER < REAL REAL < NUMBER NUMBER < SIMPLE

BOOLEAN < LOGICAL LOGICAL < SIMPLE STRING < SIMPLE

BINARY < SIMPLE E-ENTITY < NAMED DEFINED < NAMED

NAMED < BASE AGGREGATE < BASE SIMPLE < BASE

BASE < GENERIC SELECT < GENERIC ENUMERATION < GENERIC

We call the entity type E-ENTITY because ENTITY is already in CKP .

5.1 Entity Data Types

Entity types correspond to the classes of object-oriented programming languages.

An entity is de�ned through a set of functional attributes upon which several

kinds of constraints may be imposed using domain rules. Entity types may form

a hierarchy thereby enabling inheritance of attributes. We will translate entity

types into concept types while maintaining the subtype relationship, thereby

making use of the inheritance mechanism provided by CS theory.

Attributes. According to EXPRESS, attributes are partial functions if the at-

tribute is declared to be optional, otherwise it is a total function. To make

these semantics explicit with CS we will use a total functional relation ATTR/3

4

and make sure that the default value for optional attributes is undefined. The

canonical graph in EKP is

(ATTR) -

1 <- [GENERIC:@every]

2 <- [WORD:@every]

-> [BASE:@1]

meaning that any generic type may have a base type as a named attribute. To

simplify reading and to use fewer lines, we will write

[G] -> (ATTR:name) -> [B]

as an abbreviation

5

for

(ATTR) -

1 <- [G]

2 <- [WORD:"name"]

-> [B].

An attribute a of type B will be denoted as [E-ENTITY] -> (ATTR:a) ->

[B] and the graphs for all attributes are joined on the E-ENTITY concept. For

each optional attribute a of entity E we will additionally have

schema for E(x) is [E:*x] -> (ATTR:a) -> [BASE: undefined].

There is no need to repeat the attribute's type because it will be automatically

obtained when doing the schematic join.

There are several reasons for using a generic attribute relation instead of a

di�erent conceptual relation for each attribute. First, notice that an attribute

name has no semantic value whatsoever. From the computer's perspective it

is just an identi�er like any other, only the user will assign any meaning to

it. Furthermore, the approach we propose makes it easier to compare models

where their creators had the same entity in mind but chose di�erent names for

the attributes. By making a preprocessor that generalizes all [WORD: "name"]

4

We assume that relations may have the same name as long as their arity di�ers. This

means that ATTR/2, already existing in the core knowledge packet, is a completely

di�erent relation.

5

This means that (ATTR:name) should not be interpreted as a relation with a referent

�eld.

concepts simply to [WORD], we can compare entities using any basic conceptual

graph matching algorithm. A third reason is that the same attribute name can

appear in several, non-related entity types. So what would be the semantics (i.e.

the canonical graph) of the corresponding conceptual relation? Finally, a more

pragmatic reason is the fact that the other approach would lead to a proliferation

of relations.

Domain rules. \Domain rules are used to specify conditions that constrain

the value of individual attributes or a combination of attributes for every entity

instance." Each rule is represented by a logical expression which must not be

violated (i.e. made false) by any entity instance in the information base.

Domain rule expressions are therefore translated to dataow graphs with

�nal output concept [LOGICAL:~false]. Each occurrence of an attribute name

a is translated as [E:*x] -> (ATTR:a) -> [BASE], where E is the entity type

being characterized and *x is the same variable for all attributes in order to

show that the rule applies to the same instance.

Supertypes and Subtypes. An entity type is required to declare all its super-

types (if any) and is allowed to specify constraints on the relationships between

its subtypes. Additionally, an entity data type may only exist for classi�cation

purposes and therefore it is never directly instantiated. In this case it is de-

clared as an abstract supertype, i.e. all its instances are instances of some of its

subtypes.

The declaration e SUBTYPE OF (t

1

, t

2

, : : :), where e is the name of the en-

tity type being de�ned, gets translated to type e(x) is [t

1

:*x] [t

2

:*x] : : :

[E-ENTITY:*x] and the graphs for the attributes are joined to the E-ENTITY

concept. No further constraint is imposed by the declaration e SUPERTYPE OF

(expr), where expr is an expression denoting the relationships between e's sub-

types.

On the other hand, e ABSTRACT SUPERTYPE OF (expr) implies one can't

have an instance of e without having one of its subtypes. This is expressed by

[IF: [e:*x] [THEN: g

expr

]], where g

expr

is the set of graphs obtained by

translating the subtype expression expr recursively according to the following

rules:

EXPRESS Conceptual Graphs

ONEOF(expr

1

, expr

2

, : : :) [g

expr

1

]->(XOR)->[g

expr

2

]->(XOR)->: : :

expr

1

AND expr

2

g

expr

1

; g

expr

2

expr

1

ANDOR expr

2

[g

expr

1

] -> (OR) -> [g

expr

2

]

entity type name E [E:*x]

Notice that for the last case the same variable must be used for the whole

expression. An example of this translation scheme is given in the next section.

5.2 Aggregation Data Types

Aggregation types are used to represent collections of elements of some base

type. Depending on the speci�c data type of the aggregation, these collections

can have �xed or varying size, and duplicate elements may be allowed or not:

Aggregate Length Duplicates

array �xed user de�ned

bag varying yes

list varying user de�ned

set varying no

Indexes are used to access individual elements of an aggregation, and the

cardinality of a collection is given by its bounds. The upper bound of varying-

sized aggregations may be unde�ned. If we want to represent the semantics of

aggregations in an entity-like fashion we would have:

6

ENTITY aggregate

ABSTRACT SUPERTYPE OF (ONEOF(array, list, bag)));

SUBTYPE OF generic;

low_index, low_bound: INTEGER;

high_index, high_bound: OPTIONAL INTEGER;

base_type: BASE;

WHERE high_index >= low_index AND high_bound >= low_bound;

END_ENTITY;

ENTITY array SUBTYPE OF (aggregate);

WHERE high_bound <> '?';

high_index = high_bound AND low_index = low_bound;

END_ENTITY;

ENTITY bag SUBTYPE OF (aggregate);

WHERE low_bound >= 0; low_index = 1;

END_ENTITY;

ENTITY set SUBTYPE OF (bag); END_ENTITY;

ENTITY list SUBTYPE OF (aggregate);

WHERE low_bound >= 0; low_index = 1;

END_ENTITY;

6

The following takes other information contained in [4] into account.

Using the translation scheme developed for entities, we will have in the EKP

for the \aggregate entity"

type AGGREGATE(x) is

[GENERIC:*x] -

(ATTR:low_index) -> [INTEGER]

(ATTR:low_bound) -> [INTEGER]

(ATTR:high_index) -> [INTEGER]

(ATTR:high_bound) -> [INTEGER].

(ATTR:base_type) -> [BASE].

schema for AGGREGATE(x) is

[AGGREGATE:*x] -> (ATTR:high_index) -> [BASE:undefined].

schema for AGGREGATE(x) is

[AGGREGATE:*x] -> (ATTR:high_bound) -> [BASE:undefined].

[LOGICAL:~false] <- <AND> -

1 <- [LOGICAL] <- <GE> -

1 <- [BASE] <- (ATTR:high_index) <- [AGGREGATE:*x]

2 <- [BASE] <- (ATTR:low_index) <- [AGGREGATE:*x],

2 <- [LOGICAL] <- <GE> -

1 <- [BASE] <- (ATTR:high_bound) <- [AGGREGATE:*x]

2 <- [BASE] <- (ATTR:low_bound) <- [AGGREGATE:*x].

[IF: [AGGREGATE:*x]

[THEN: [[BAG:*x]] -> (XOR) -> [[LIST:*x]] -

-> (XOR) -> [[ARRAY:*x]]

]].

To access the elements of an aggregation we need to have in EKP

relation ELEM(x, y, z) is

[AGGREGATE: @every *x] -

(ATTR:base_type) -> [BASE: @every *z]

(ATTR:low_index) -> [INTEGER] <- (>=) <-[INTEGER:@1 *y]

(ATTR:high_index)-> [INTEGER] -> (>=) ->[INTEGER:*y].

If an aggregation type A doesn't allow duplicate elements (e.g. A is a set type)

we must add the graph

[IF: [A:*x] 1 -> (ELEM) -

2 <- [INTEGER:*y]

-> [BASE:*z] ;

[A:*x] -> (ELEM) -

<- [INTEGER:*w] -> (DFFR) -> [INTEGER:*y]

-> [BASE:*v]

[THEN: [BASE:*y] -> (DFFR) -> [BASE:*v]]].

5.3 Binary Data Type

The EXPRESS reference manual itself considers the binary data type to be a

non-empty sequence of bits. Using the semantics developed above we will have

in the EKP

type BIT(x) is

[INTEGER:2] -> (>) -> [INTEGER:*x] -> (>) -> [INTEGER:-1].

type BINARY(x) is

[LIST:*x] -

(ATTR:low_bound) -> [INTEGER: 1]

(ATTR:base_type) -> [BIT].

and therefore the binary literal %10 is represented as

[BINARY] -

1 -> (ELEM) -

2 <- [INTEGER: 1]

3 -> [BIT: 1],

1 -> (ELEM) -

2 <- [INTEGER: 2]

3 -> [BIT: 0].

5.4 Enumeration Data Type

The enumeration data type provided by EXPRESS is the usual ordered set of

names. We must have in EKP the canonical graph for the \less-than" relation

[ENUMERATION:*x] -> (LT) -> [ENUMERATION:*y].

together with the information that it is a transitive relation

[IF: [ENUMERATION:*x] -> (LT) -> [ENUMERATION:*y] ;

[ENUMERATION:*y] -> (LT) -> [ENUMERATION:*z]

[THEN: [ENUMERATION:*x] -> (LT) -> [ENUMERATION:*z]]].

The declaration

TYPE type id = ENUMERATION OF (name

1

; : : : ; name

n

); END TYPE;

is processed in the following way:

1. Create a new type type id < ENUMERATION.

2. For each i = 1; : : : ; n create a new individual marker e

i

such that type id::e

i

and add the graph [type id:e

i

] -> (NAME) -> [WORD:name

i

] to the canon-

ical basis.

3. For each i 2 f1; : : : ; n� 1g add [type id:e

i

] -> (LT) -> [type id:e

i+1

] to

the canonical basis.

5.5 Logical Data Type

\A logical data type represents a true, false or unknown value. The fol-

lowing condition holds for logical data types: false < unknown < true."

Fortunately we can represent that in EXPRESS itself

TYPE LOGICAL = ENUMERATION OF (FALSE, UNKNOWN, TRUE);

END_TYPE;

and therefore apply the translation scheme presented in the previous section:

LOGICAL < ENUMERATION.

LOGICAL :: #123456.

[LOGICAL:#123456] -> (NAME) -> [WORD: "false"].

LOGICAL :: #123457.

[LOGICAL:#123457] -> (NAME) -> [WORD: "unknown"].

LOGICAL :: #123458.

[LOGICAL:#123458] -> (NAME) -> [WORD: "true"].

[LOGICAL:#123456] -> (LT) -> [LOGICAL:#123457].

[LOGICAL:#123457] -> (LT) -> [LOGICAL:#123458].

6 Schemata

The EXPRESS construct used to partition information bases is the schema,

which contains a collection of type declarations (among other things not covered

in this paper). There is no exporting mechanism: if a schema wants to refer

to a type de�ned in another schema, it must use the use or the reference

interface speci�cation, stating what types are imported from what schemata. In

both cases, the importing schema can only use the imported name but not its

de�nition (e.g. in the case of an entity type, one can't refer to its attributes).

The di�erence is that used types are implicitly made visible to other modules.

As an example, let's suppose that schema s

1

de�nes type A and s

2

de�nes B in

terms of A and s

3

de�nes C in terms of A and B. If s

2

uses A from s

1

then s

3

needs only to refer to s

2

. However, if s

2

references A then s

3

must import A

from s

1

.

A schema is translated into a knowledge packet as de�ned in section 2.1 where

all the available type labels are exported, except for those imported using the

reference interface speci�cation. This makes sure that no graph can refer to

types used for de�ning an imported type and it also makes sure the referenced

names aren't visible outside the importing module.

7 Conclusions

This paper provided a �rst step for mapping EXPRESS into Conceptual Struc-

tures. For that purpose a means to modularize CS knowledge bases was de�ned.

The approach shown needs further re�nement but is enough to denote EXPRESS

schemata.

We have also shown how to reconstruct the semantics of EXPRESS using CS

theory thereby providing a unifying framework to check for semantic correctness

and to compare models using the inference rules and the canonical formation

rules.

Another advantage of this approach is the possibility to compare or inte-

grate models built with di�erent frameworks (e.g. NIAM, E-R) provided that

translation schemes exist for those formalisms. But as EXPRESS is more ex-

pressive than many other modeling languages, having a translation scheme for

it facilitates enormously the task for the other languages.

References

1. ISO/IEC JTC1/SC21/WG3. The IRDS conceptual schema. Working paper, Inter-

national Organisation for Standardization, 1992.

2. John F. Sowa. Conceptual Structures: Information Processing in Mind and Ma-

chine. The System Programming Series. Addison-Wesley Publishing Company,

1984.

3. ISO TC184/SC4/WG3. Semantic uni�cation meta model|volume 1: Semantic u-

ni�cation of static models. Technical report, International Organisation for Stan-

dardization, October 1992. Prepared by the Dictionary/Methodology Committee

of the IGES/PDES Organization.

4. ISO TC184/SC4/WG5. The EXPRESS language reference manual. Committee

Draft 10303 - 11, International Organisation for Standardization, May 1991.

5. Michel Wermelinger. A reconstruction of EXPRESS using conceptual structures.

Technical report, Departamento de Inform�atica, Universidade Nova de Lisboa, May

1993.

This article was processed using the LT

E

X macro package with LLNCS style

