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Abstract.

 

 With the arrival of large Field Programmable Gate Arrays (FPGAs) it
is possible to build an entire computer using only FPGA and memory. In this pa-
per we share some experience from building a highly parallel computer using
this concept. Even if today's FPGAs are of considerable size, each processor
must be relatively simple if a highly parallel computer is to be constructed from
them. Based on our experience of other parallel computers and thorough studies
of the intended applications, we think it is possible to build very powerful and
efficient computers using bit-serial processing elements with SIMD (Single In-

 

struction stream, Multiple Data streams) control.
A major benefit of using FPGAs is the fact that different architectural variations
can easily be tested and evaluated on real applications. In the primary applica-
tion area, which is artificial neural networks, the gains of extensions like bit-seri-
al multipliers or counters can quickly be found. A concrete implementation of a

 

processor array, using Xilinx FPGAs, is described in this paper.
To get efficient usage and high performance with the FPGA circuits signal flow
plays an important role. As the current implementation of the Xilinx EDA soft-
ware does not support that design issue, the signal flow design has to be made by
hand. The processing elements are simple and regular which makes it easy to
implement them with the XACT Editor. This gives high performance, up to 40–

 

50 MHz.

 

1 Introduction 

 

The requirements for flexibility and adaptivity to different circumstances and environ-
ments have motivated research and development towards trainable systems rather than
programmed ones. This is true especially for “action oriented systems” which interact
with their environments by means of sophisticated sensors and actuators, often with a
high degree of parallelism [2]. Response time requirements and the demand to accom-
plish the training task points to highly or massively parallel computer architectures.

In REMAP, the Real-Time, Embedded, Modular, Action-oriented, Parallel Proces-
sor Project [3], the potential of distributed SIMD (Single Instruction stream, Multiple
Data streams) modules for realization of trainable systems is investigated. Each SIMD
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module is a highly parallel computer with simple PEs tuned to efficiently compute arti-
ficial neural network algorithms.

Within the project, a series of studies have been performed [10–12, 16] concerning
the execution of neural network algorithms on highly parallel SIMD computers, with
special emphasis on architectures based on bit-serial processing elements (PEs). The
results show that SIMD is the best suited parallel processing paradigm for artificial
neural networks (ANNs) and that arrays of bit-serial PEs with simple inter-PE commu-
nication are surprisingly efficient. As multiplication is found to be the single most im-
portant operation in these computations, there is much to be gained in the bit-serial
architecture if support for fast multiplication is added.

Using today’s relatively large field-programmable gate arrays (FPGAs), it is possi-
ble to build an entire computer using only FPGAs and memory. Still, if a highly paral-
lel computer is to be constructed out of them, each processor must be very simple. As
shown in our studies of parallel computers for ANN, bit-serial PEs with SIMD control
suit our computational needs, which makes it feasible to use FPGAs as a means to con-
struct the first prototypes of our computers.

The computer built should not be seen as a final “product”, it is more of an archi-
tecture laboratory, in which it is possible to change the architecture of each PE rapidly.
Designing and compiling a new architecture takes about one week and downloading an
already prepared architecture takes less than a second. 

 

2 Applications 

 

To realize action-oriented systems, the artificial neural network (ANN) models [6, 7]
form a very important implementation class. As shown in [12] the demands on the ar-
chitecture are quite moderate for standard ANN algorithms like feed-forward networks
with back propagation, Hopfield networks, or Kohonen self-organizing maps. These
models, like most of the ANN algorithms, use a very simple model of the neuron. Typ-
ically, an artificial neuron computes a weighted sum of its inputs, a nonlinear function
is then usually applied to the sum, and the result is sent along to neighboring neurons,
see Fig. 1. The power of ANN computations comes from the large number of neurons
(nodes) and their rich interconnections via synapses (weights).

 

Fig. 1.

 

 The simplest model of a neuron. The neuron calculates the weighted sum
of its inputs and applies a non-linear function to it, .

 

Different ANN models are characterized not only by the type of nodes, but also by
the interconnection topology, and the training algorithm used [9]. Common topologies
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are layered feed-forward networks, winner take all networks, and all-to-all (Hopfield)
networks. Common training rules are error back-propagation and self-organizing fea-
ture maps.

Parallelism can be found in many different places [12] but for action-oriented sys-
tems the parallelism in the nodes and weights are the important ones (node and weight
parallelism). As we are focusing on the ANN models in which one can count the num-
ber of nodes and weights in thousands, we will have a lot of parallelism available.
These two types of parallelism also fit the SIMD concepts perfectly.

The calculation of the weighted sum is the most time consuming calculation and
should therefore be supported architecturally by any computer intended for real-time
ANN computations. Also the communication means between different ANN algo-
rithms/modules as well as between these modules and the environment have to be
carefully designed. 

Another possible application area for the architecture we describe would be low-
level image processing. As the architecture is not very different from architectures
which are known to perform well on low-level image processing problems (e.g. AIS-
5000 [14], LUCAS [5]), this problem area also fits our architecture well. 

 

3 The REMAP Computer 

 

REMAP is an experimental project. A sequence of gradually evolved prototypes are
being built, starting with a small, software configurable PE array module, implemented
as a Master’s thesis project [8]. With only slight modifications in the PE array architec-
ture, but using a new high-performance control unit, the second prototype has now
been built
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. This prototype is almost full-scale with respect to the number of PEs, but
far from miniaturized enough for embedded systems. It is the architecture of this pro-
totype that is described in this paper.

The computer consists of a number of computing modules controlled by a master
computer. Each computing module is a SIMD computer of its own. It contains a linear
array of bit-serial processing elements with memory and I/O-circuits controlled by a
control unit, see Fig. 2.

 

1.  A 128PE prototype has now (beginning of 1993) been completed.
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Fig. 2.

 

 Overview of the REMAP system. The PEs are implemented in Xilinx
XC4005 circuits (8 in each) and the serial/parallel I/O device in Xilinx XC3020
(8 parallel and 8 serial I/O each)

 

3.1 The Control Unit 

 

The main task for the control unit is to send instructions together with PE memory ad-
dresses to the PE array. At the same time it computes new address values (typically in-
crements and decrements). 

The control unit currently in use [3] has been designed around a microprogramma-
ble sequencer and a 32bit ALU (AMD 28331, 28332). The control unit is capable of
sending out a new address together with a new instruction every 100ns. The controller
is more general purpose than usually needed, but until we know what is needed it
serves our purpose. The microprograms to be executed by the control unit are stored in
an 8K words control store. The operations can either be simple field operations, like
adding two fields, or whole algorithms like an ANN computation. For the moment
only a micro-code assembler is available to program the control unit, but we intend to
develop more high level software development tools in the future. Currently we are
looking into the possibility of using/developing a data-parallel language similar to C*
[17].

 

3.2  PEs for ANN Algorithms

 

The detailed studies of artificial neural network computations have resulted in a pro-
posal for a PE that is well suited for this area. The design is depicted in Fig. 3. Impor-
tant features are the bit-serial multiplier and the broadcast connection. Notably, no
other inter-PE connections than broadcast and nearest neighbor are needed. The PE is
quite general purpose, and we are confident that this is a useful PE design also in sev-
eral other application areas. In this version it consists of four flipflops (R, C, T and X),
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eight multiplexers, some logic and a multiplication unit. The units get their control sig-
nals directly from the micro instruction word sent from the control unit. 

 

Fig. 3.

 

 The sample PE

 

In simple PEs without support for multiplication the multiplication time grows
quadratically with the data length. A method based on carry-save adders [5] (see Fig.
4) can reduce the multiplication time required to the time to load the operands and
store the result.

 

Fig. 4.

 

 Design of a two’s-complement bit-serial multiplier. It is operated by first
shifting in the multiplicand, most significant bit first, into the array of M flip-
flops. The bits of the multiplier are then successively applied to the input, least
significant bit first. The product bits appear at the output with least significant bit
first.

 

As shown in [11] the incorporation of a counter instead of a multiplier in the PE de-
sign may pay off well when implementing the Sparse Distributed Memory (SDM) neu-
ral network model. A 256PE REMAP realization with counters is found to run SDM at
speeds 10–30 times that of an 8K PE Connection Machine CM-2, (with frequencies
normalized and on an 8K problem). Already without counters (then the PEs become
extremely simple) a 256PE REMAP outperforms a 32 times larger CM-2 by a factor
of 4–10. Even if this speed-up for REMAP can be partly explained by the more ad-
vanced sequencer, the possibility to tune the PEs for this application is equally impor-
tant.
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3.3 PE Communication

 

The processing element has two ways of communicating with other processing ele-
ments: nearest neighbor and broadcast communication. The nearest neighbor commu-
nication network allows each PE to read its neighbor’s memory i.e. PE(n) can read
from PE(n+1) and PE(n-1). The first and the last PEs are considered neighbors. At any
time one of the PEs can broadcast a value to all other PEs or to the control unit. The
control unit can also broadcast a value to the PEs. It has also a possibility to check if
any of the PEs has the activity bit (T-flip-flop) set. If several PEs are active at the same
time and the control unit wants one PE to broadcast, the control unit simply does a se-
lect-first operation, which selects the first active PE and deselects the rest. These com-
munication and arbitration operations can be used to efficiently perform matrix
computations as well as search and test operations sufficient for many application ar-
eas, especially artificial neural networks. To be useful in real-time applications which
include interacting with a changing environment, high demands are put on the I/O-
system. To meet these demands the processor array is equipped with two I/O-channels,
one for 8-bit wide communication and the other for array-wide communications. This
interface has a capability to run at speeds up to 80MHz (burst) which, for a 256PE ar-
ray, implies a maximum transfer rate of 20Gbit/s. Due to limitations in the control unit
the I/O-interface currently runs at 10MHz which reduces the transfer rate to 2.5Gbit/s.

 

4 Designing with FPGA Circuits 

 

After a market survey we found that FPGAs from Xilinx [22] would serve our needs
best. The structure of the Xilinx circuits is shown in Fig. 5. The chip consists of a num-
ber of combinatorial logic blocks (CLB), some input-output blocks (IOB) and an inter-
connection network (ICN). These circuits are user programmable, thus enabling the
CLB, IOB and ICN to be programmed by the user. The configuration of the on-chip
configuration RAM is carried out at power up or by a reprogramming sequence. The
RAM can be loaded from an external memory or from a microprocessor, the latter is
used for REMAP. It takes about 400ms to reprogram the circuits, thus enabling the
master-processor to change the architecture of the processing elements dynamically
during the execution of programs.
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Fig. 5.

 

 Xilinx FPGA overview. The IOB connects the I/O-pads to the ICN.
These blocks can be configured as input, output or bidirectional blocks. The
CLBs are configurable logic blocks consisting of two 16bit (and one 8bit) look-
up table for logic functions and two flipflops for state storage. These blocks are
only connected to the ICN. The ICN connects the different blocks in the chip. It
consist of four kinds of connections: short-range connections between neighbor-
ing blocks, medium-range connections connecting blocks on slightly larger dis-
tances, long-lines connecting whole rows and columns, and global nets for clock
and reset signals broadcasted throughout the whole chip. 

 

Since one of our goals is to make a kind of hardware simulator for different types
of PE-architectures using a fixed hardware surrounding, it is required that the connec-
tions off chip like those to the memory and control unit have the same function regard-
less of the currently loaded processor architecture. As shown in [18] it is advantageous
to lock the pads so that control signals enter from the top and bottom of the chip, and
also design the processing elements so that they are laid out rowwise in the array of
CLBs. It is likewise preferable to have a dataflow from left to right in the chip i.e. input
data enters the left side and output emerges from the right side.

 

4.1 Using XC3090 

 

The first prototype was constructed using Xilinx XC3090, and some frustrating experi-
ences were gained from the poor development tools for these circuits. The processing
elements in this version are only capable of running at 5MHz clock frequency. The
low speed is due to the incapability of the EDA software to handle signal flow layout
in the circuits, something which also leads to low utilization. The PEs were designed
using the OrCAD CAE-tools, enabling the designer to work with ordinary logic blocks
like multiplexers and different types of gates. The schematics are then automatically
converted to suit the Xilinx circuits. This is a fast design method but different parts of
the logic become intermixed and long delays are introduced. 
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4.2 Using XC4005 

 

The current prototype is based on the XC4000 FPGA family from Xilinx. These cir-
cuits have a more balanced performance than the XC3000 circuits which have small
routing resources compared to the number of CLBs. In the XC4000 family the CLBs
are larger, the ICN much more powerful and the internal delays shorter. The circuits
range from XC4003, which has a 10 by 10 CLB matrix, to XC4010 with a 20 by 20
CLB matrix, and even larger circuits are announced. With these circuits it is easier to
test new types of PEs, as there is more space in them. It will also be possible to in-
crease the maximum clock frequency to 20MHz, and possibly even 40MHz if more
pipelining is introduced. The greatest advantage with these new circuits is the soft-
ware; routing a XC3090 chip can take a couple of days on a 80486 machine, while the
same problem can be solved in half an hour with the new software for the XC4000 cir-
cuits.

One PE of the kind depicted in Fig. 3 occupies approximately 10 CLBs and the
eight-bit deep bit-serial multiplier 11 CLBs. Using a XC4005 with a 14 by 14 CLB-
matrix, we can get at least 8 PEs in each Xilinx chip. Considering this and the timing
demands of 10MHz operation (due to the control unit), we can easily make design
variations both in the main processor and in the multiplier (or other coprocessor). It
takes about one week to make a tested and simulated prototype with the XACT editor.
The design is of course also open for changes to PEs with other data widths between 2
bits and eight bits.

 

Tools

 

High level tools were not available when we started to develop a processing element
for the XC4005-circuits. Therefore we have not yet tested how well those tools work.
There are, however, several advantages of using the low-level XACT editor in early
stages of the design. We get good knowledge of the circuit’s limitations and possibili-
ties, and at the same time we get full control of all necessary timing. The usage of
XACT is simplified by the regular and simple structure of our design. In the first im-
plementation we aimed towards eight processing elements running at 10MHz in each
XC4005 circuit, based on the previous experiences with the XC3090 circuits. These
goals were easily achieved; the eight processing elements can run at 20MHz utilizing
75% of the XC4005 configurable logic blocks and all of its I/O blocks, this in the 84
pin PLCC package. 

 

Data and Control Flow in the Circuits

 

The data and control flow play an important role in getting the best performance out of
the circuits, therefore we have a basic template with some of the control and data sig-
nals already laid out. This template enables the user to easily implement new types of
processing elements with minimum effort and at the same time achieve high perfor-
mance. 

When designing the control flow we want to use the global networks as much as
possible. This is achieved by using 4 of the global nets and 20 of the vertical long-
lines. The memory input signal is connected to the memory output via a horizontal
long-line through the chip in order to enable a good data input distribution and allow
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write-back of unchanged data when the processing element is inactive. With these re-
strictions in signal flow the internal delays can be held very low.

 

Fig. 6. 

 

Layout for PEs in an XC4005

 

As we have used the XC4005-PC84 which has a 14x14 CLB matrix, and the rest of
the hardware is designed for eight processing elements, the chip is divided into four
blocks of two processing elements each, occupying three rows in the matrix. Each pro-
cessing element then gets 21 CLBs, 2 IOBs with PADs, and six IOBs with only edge
decoders
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. After this we have 28 unused CLBs.

 

Testability

 

From our experiences of the XC3090 circuits, which sometimes got into undefined
states when we tried to reconfigure them, we now separate programming pins to the
master processor so that we can directly see which circuit is failing. We also use the
possibility of reading back configuration and state data from the Xilinx circuits, which
can be done while the PEs are running. The master can also single-step the processor
via the control unit and read back all state variables. Two pads on each processing ele-
ment are dedicated to probing, here we can measure any internal delay simply by load-
ing a configuration with the probe outputs properly programmed (this is done
automatically by the XACT EDA software). The JTAG facilities of the XC4000 have
not been used, because the PEs, simple as they are, only require a couple of hundred
stimuli to excite all modes in them.

The full-scale prototype (256 PEs) can run in 10MHz with very comfortable timing
margins. More memory and additional communication networks can easily be added if
need arises.

 

1.  Some of the I/O-blocks in the XC4005-PC84 have no connections to pads. However, these 
blocks can be used to get a connection to their edge decoder.
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5 Other Usage of FPGAs to Run ANN Algorithms

 

There are other FPGA implementations of ANN models besides ours. A short descrip-
tion of some of them are given below.

A group at North Carolina State University has developed a PC-card called Any-
board [19], which in principle only contains Xilinx chips (4 XC3020s) and RAM. It is
part of a “rapid prototyping” environment, where user-specified digital designs can
quickly be implemented and tested. One early project using this card was the imple-
mentation of a stochastic ANN model called TInMANN [20]. A quite fast and dense
implementation was obtained. They used a special purpose architecture, tuned to their
algorithm.

Another project, using 25 XC3020s to implement a stochastic Boltzmann machine
ANN, was carried out by Skubiszewski [15]. In this implementation the architecture
was more like ours (identifiable PEs similar to conventional bit-serial PEs), but no sup-
port for the multiplications was included.

Cox and Blanz [4] built an ANN simulator with impressive performance, out of 28
XC3090s. In contrast to the two implementations above and our implementation, they
have used a highly specialized bit-parallel approach, which implements a feed-forward
neural network of a fixed size (12x14x4).

Another, more specialized, use of FPGAs for ANN computations is made by a
group at Tampere University of Technology, Finland [13]. In this group’s hardware im-
plementation of Kanerva's Sparse Distributed Memory (SDM), FPGAs are used to im-
plement the main controller as well as more specialized computations like an adder
tree. The architecture is highly specialized for SDM and no identifiable processing ele-
ments exist.

Xilinx circuits are also used in general hardware emulators such as the Quickturn
RPM emulator [21], which emulates designs with from 10K up to 1M gates at a speed
of 1MHz. This type of emulators could of course be used to simulate all the designs
described in this paper, but with drastically lower speed and CLB utilization.

 

6 Conclusions and Future Directions 

 

With the REMAP computer, we have a platform from where we can test and evaluate
different types of interconnection networks, PE complexities and architectures. This is
not restricted to simple bit-serial PEs as the one described in this text, also complex
ones such as bit-serial floating point arithmetic units and up to eight bit wide PEs can
be implemented. Floating point arithmetic for this platform has been examined by
members of the group [1], and will be included. When we have found a good PE archi-
tecture we will transfer it to silicon, this decreases the size and increases the system
speed. Our aim is to get 256 processing elements, with floating point arithmetic, on
each chip running at an internal speed of 200–300MHz.

A robot arm with 12 motors and a number of sensors all controlled in parallel from
the array-parallel interface on the REMAP computer is being developed at the Centre
for Computer Architecture, Halmstad University. A CCD camera is also planned to be
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connected to the byte-wide interface on REMAP as a further step towards a real-time
action-oriented system.

To speed up the development cycle in the future some sort of high-level description
of the PEs and their interconnections would be needed. From this description it should
be possible to generate FPGA layout, VLSI layout, a PE array simulator, and a high
level language compiler back-end. Both text-based and graphics based high-level de-
scriptions are considered.

While, in this design of a hardware simulator, we are more interested in the possi-
bilities of changing the processor architecture than to get maximum performance, we
have added (retained) the feature that design changes can be made during execution.
For example in some parts of an application we may need a counter instead of a multi-
plier. It is easily accomplished, via program control, to stop the control unit during ap-
proximately 400ms and reprogram the Xilinx circuits.
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