
Problems in Modeling the Software Development Process 
as an Adventure Game 

Jochen Ludewig 

Institut fUr Jnfonnatik, UniveniW Stuttgart 

Summary 
SESAM (Software Fngineering Simulation by Anim.t..t Models) is a simu­

lalor for practicing lhe role of • JOftw .. e project manq;er. Its long term goal is to 
provide. tool for training CS students. Ao • research projec~ SESAM calls for 
an integraled model of the IOftwue development proceu. reflecting and quanti­
fying many phenomena observed in reoiooftware projects. 

We are currently using the second lXOlOlypc. which can already demoJl5ttate 
some rational behaviom. More important. however. were our observations in the 
process of constructing SESAM. They shed light on the current state of software 
engineering. 8Ild on the applicability of memcs. 

SESAM is being developed in an evolutionary style by the Software Engi­
neering Department (I...ehrstuhl) at Stuttgart University; it is implemented in 
Smalltalk-80 on Unix-Workstations. 

TItis peper concentrates on the fimdamental questions raised by the work on 
SESAM. A more complete description of 0\0' work has been p.iblished before 
(Ludewig et 01., 1992). 

I Software Process Modeling, and the Concept of SESAM 

In the field of software process modeling, two very fundamental questions are still 
open: 

I How do the relevant factors (like staffing, skill, quality assurance, style of 
management, ele.) inftuence the results? 

2 Which set of metrics is necessary and sufficient to describe the process, and 
the emerging product? 

It seems that neither of these questions can be answered without the other one, so we 
try to combine them, and test various answers in an experimental, iterative way. That is 
the essence of SESAM. We try to build a simulator for education pwposes, which can 
be described as a mixture of "Dungeon", or "Dark Castle", and a flight simulator, as 
used by future airline pilots. While we do not expect to fioish a really useful simulator 
very soon, our work will continously contribute to the solution of the problems staled 
above. 

Our gual is to provide a tool which can be used as follows: 

A player (let's call her Angela) opens the SESAM-system, and is prompled for a 
number of project-paramerers. Then she starts the simulation. The project proceeds 
like a nonnal project, with all kinds of difficulties. But Angela will receive only Iinte 

23 



information about the actual state of her project as long as she remains passive. She 
may, however, decide to participale actively, e.g. she may see her employees and order 
them to do S(lOle particular task. Such activities consume her (simulated) time, so she 
canoot do everything she might like to do. 

When the simulated project has been finished, her score is displayed, describing 
her relative success or failure by several indicators. She can run the project again, with 
all the (previously hidden) Stale variables displayed, which will help her to recognize 
her mistakes. She may also take over control again at some point, in order to try a dif­
ferent path. 

Within a few boors, she has had an experience which would take months in reality, 
not to mention the costs, but would even then not allow for analysis, and a second try. 

2 Problel1L'il in developing SESAM 

After the idea of SESAM was born three years ago (Ludewig, 1989), there was a long 
period of confusion and initation. The most difficult points are discussed helow. 

2,1 Tbe Illusion of Detecting Natural Laws 

Scientists, in particular physicists, have managed 10 reduce their theories 10 a compar­
atively small basic set of axioms. In software engineering, we have nothing but a large, 
and often inconsistent and inhomogenous collection of observations. We must be wen 
aware of the fact that we cannot find any "natural laws of software engineering". Our 
very ambitious goal is 10 develop theories which can be used 10 predict observable 
phenomena. 

2.2 The Lack of Quantitative Relationsbips 

We are still far from being able 10 describe the software development process by, say, a 
set of differential equations. There is a number of less or (usually) more vague rules of 
thumb, of rumours, and of modem proverbs, which may explain certain phenomena. 
(And in most cases, there are others which explain the opposite.) 

Assumed that Brook's law "adding manpower to a late project makes it even 
later" is correct, whal does it say? It does not define a "late project," nor does it indi­
cate 10 which extent the schedule is prolonged when people are added. It is nothing but 
the qualitative description of a relationship, very interesting (and fifteen years ago 
even surprising), but not sufficient for simulating the process, or predicting its success, 
or failure. 

An interesting implication is that there are only very few proper theories in soft­
ware engineering. COCOMO is one of the rare examples. 

24 



2.3 Cboosingtbe Granularity 

As we are building a model, the scale is critical. Which level is appropriate for simulat· 
ing the process? Should we care about single persons, or regard groups as the acting 
units? Do we handle procedures, modules, or programs? By which factor should we 
shrink the lime scale for simulation? Which granularity of lime is required? 

For our model, a day is chosen as the basic lime unit. No effort is taken to care for 
precise synchronisation of people (e.g. in case of a meeting). Single persons are the 
only active units, though many "laws" (like Brook's law, e.g.) refer to groups, or 
projects. But many other relationships are obviously based on persons (like the cost of 
salaries, the responsibility for a certain task, or the possibility of intended or unin· 
tended changes in the project). If we had a mixed mode simulation, we must anyway 
convert all state variables to every level. 1berefore, our first rule is: The whole is 
exactly the sum 01 ns parts (including their relationships). 

2.4 Hypotheses 

As stated in the begin, most of the relationships on which our simulation is based are 
far from proven truths; they are just hypotheses which may, or may not make our sim· 
ulator behave sensible. Therefore, we call such relationships hypotheses. While they 
define the very basic mechanisms of SESAM, they should be integrated in a way 
which makes it easy to modify, or to replace them. 

We use graphs to describe the actual structure of the project; the graph may change 
when certain events take place, e.g. when a person is given a new task. Hypotheses are 
described by a graph grammar. Whenever a hypothesis may become applicable, the 
graph (and the state variables) is scanned for its target pattern. If it is found, the 
hypothesis doc1cs into the target (like a virus), thus influencing the state ttansitions. 

2.5 What is a Person? 

When we simulate a person, we have to determine to which degree the personality 
should be mapped onto the model. Quite obviously, we have to record every person's 
abilities for each possible task (analysis, specification, ele.), and also for activities 
required in each task (like the abilities to communicate, or 10 take decisions). Other 
parameters certainly exist, e.g. a person's motivation has a suong influence on his or 
her productivity. We also have 10 describe how fast a person can learn, and how fast 
the person will forget 

But there is no line which separates the personal parameters relevant to the soft· 
ware project from those of purely private character. Every property may influence a 
person's performance, the distinction of a "public personality" from a ''private person· 
a1ity" is fictitious. 

25 



3 A few Observations 

I Every sySlem of melrics has to be based on exactly one basic unit in each 
dimension (e.g. hour, module, person or group or project). 

2. When a melric is proposed, a new term is required. Terms which are widely 
used (e.g. "complexity") should not be used to identify a new function. 

3. Even the most recent books on software engineering contain very litlle 
infonnation which can be used to conSlruCt a project simulator, i.e. they 
contain very litlle falsifiable statements, but lots of noise. Boehm's whole 
work (starting from Boehm, 1973) is a notable exception. 

4. If the player wants a single one-dimensional score, we have to map several 
ratings into one: adherence to deadlines, various aspects of quality, ele. In 
real projects, such a mapping is missing, though everybody has one in his or 
her mind. We believe it would be useful to agree upon the mapping in the 
very begin of every project, as part of the requirements definition. 

References 

Boehm, B.W. (1973): 
Software and its impact: a quantilative assessment. DATAMATION, 19, No.5, 48-
59. 

Ludewig, s. (1989): 
ModeUe der Software-Entwick1ung: Abbilder oder \Ubilder'l (in German) Soft­
wareteclmik-TreDds, 9, 3 (Ok!. 1989), 1-12. 

Ludewig, S., Th. Bassier, M. Deininger, K. Schneidez, S. Schwille (1992): 
SESAM - Simulating software projects.Proc. or lbe 4lb Intern. Con'. 011 Soft­
ware EDgineerlDa aDd Knowledle Enllneerlnl. IEEE Comp. Soc. Press Ordez 
No. 2830, pp.~15. 

26 




