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Abstract 

Let S be a set of n points in d-space aild let 1 :5 k :5 n be an integer. A 
unified approach is given for solving the problem of finding a sub set of S of size 
k that mjnimizes some closeness measure, such as the diameter, perimeter or the 
circumradius. Moreover, data structures are given that maintain such a subset 
under insertions and deletions of points. 

1 Introduction 

We eonsider clustering problems of the following type. Given a set S of n points in 
d-dimensional space and an integer k between one and n, find a subset of S of size k 
that rnjnjmjzes some closeness measure. As an exam.ple, we may want to rnjnjrnjze the 
perimeter of the convex hull of the k points. This measure was considered by Dobkin 
et al. [4]. Other measures were eonsidered by Aggarwal et al. [1]. To be more precise, 
they gave algorithms for finding k points such that their diameter, or their enclosing 
square, or the perimeter of their enclosing reet angle is as small as possible. Smid [11] 
also e6nsidered the ease of rnjnjmjzing the enclosing square. 

Eppstein and Eriekson [5] give a general framework for solving such k-point clustering 
problems. They start by eomputing for each point its 9( k) nearest neighbors, where the 
eonstant depends on the problem. Then they use this information to reduee the original 
problem to O(njk) subproblems for only O(k) points eaeh. Every single subproblem is 
solved by some other algorithm A for the k-point clustering problem in quest ion. (In this 
reduetion, the parameter k remams ·the same, but the size of the point set is redueed.) 
H T(n,k) resp. S(n,k) denote the time resp. space eomplexity of algorithm A running 
on a set of size n, then the entire running time of their algorithm is bounded by 

O(nlog n + nk + ~ T(O(k), k)) if d = 2 

*This work was supponed by the ESPRIT Basic Research Actions Program, under contract No. 7141 
(project ALCOM II). 
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and 
O(nklog n + ~ T(O(k), k)) if d > 2. 

Moreover, their algorithm uses space 

O(nlog n + nk + S(O(k),k)) if d = 2 

and 
O(nk + S(O(k), k)) if d > 2. 

In this paper, we improve the results of [5) by generalizing techniques that were 
designed for closest pair problems. U sing the search technique of [7], we also reduce the 
problem to O(njk) subproblems for O(k) points each. Our reduction, however, is more 
direct and it circumvents the necessity to compute eCk) neighbors for each point. For 
any dimension d ~ 2, the resulting algorithm has a running time of 

n 
O(nlogn + k T(O(k),k)) 

and it uses space 
O(n+ S(O(k),k)). 

Hence, our algorithm uses strictly less space than the one in [5), and our time bound 
does not exceed that of [5). 

Eppstein and Erickson also consider the problem of maintaining the optimal k-point 
subset if points are inserted. In the planar case, their result is a data structure of size 
O( n log n + S ( O( k ), k)) with an insertion time of 

0(1og2 n + klog n + T(O(k), k)). 

They mention that for higher dimensions their method gives results that are only slightly 
better than brute force. 

We give a data structure that, for any dimension d ~2, maintains the optimal k-point 
subset in 

O(logn + T(O(k),k)) 

time per insertion, using only O( n + S( O( k), k)) space. 
Eppstein and Erickson mention that no fully dynamic solutions, i.e., solutions that 

maintain the optimal solution under insertions and deletions of points, are known. We 
show that the technique of [10) can be generalized to give such a fully dynamic data 
structure. It uses 

O(nlogd(njk) + S(O(k),k)) 

spaceand it has an amortized update time of 

O(log nlogd-1(njk) + logd(njk) log log n + T(O(k), k) logd(njk)). 

Note that it is not a surprise that techniques for closest pair problems can be applied 
here: If k = 2, finding k points with minimal diameter is exact1y the dosest pair problem. 

This paper is organized as follows. In Section 2, we define the dass of problems that 
we can solve and we give the general algorithm for solving them. In order to apply 
this general algorithm, we need a variant of a grid. If we use a standard grid, then we 
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need the non-algebraic floor function to identify the grid-cell that contains a given point. 
In Section 3, we introduce a degraded grid that has basically the same properties as 
a standard grid, but for which we do not need the floor function. In this way, we get 
algorithms that fall inside the algebraic decision tree model. The notion of degraded grid . 
we use is simpler than the one in [7]. In Section 4, we use the search method of [7] to 
construct a degraded grid, such that each grid box contains O( k) points and at least one 
box contains at least k points. This grid is needed to reduce the k-clustering problem 
for the n points of our input set S to O(n/k) subproblems for O(k) points each. 

In Section 5, we give several applications of our general algorithm. The results 
improve the previously best known algorithms. For an overview of the results, see Table 1 
in Section 5. 

In Section 6, we give the data structure that maintains the optimal k-point subset 
under insertions. Section 7 gives a data structure that supports both insertions and 
deletions. The results of these two sections aresummanzed in Tables 2 and 3. We finish 
the paper in Section 8 with some concluding remarks. 

2 A general approach 

Let S be a set of n points in d-dimensional space and let k be an integer such that 
1 < k < n. A d-dimensional axes-parallel rectangle of the form 

where ~ and bi, 1 < i ::; d, are realnumbers is called a box. H bi = ~ + 6 for all i, then 
the box is called a 8-box. The closure of a box, i.e., the product of d closed intervals 
[~ : bi ] is called a closed box. Throughout this paper, we will use the following notations: 

• p, denotes a function that maps a set V of points in d-space to areal number p,(V), 
the meastire of V. 

• P( S, k) denotes the problem of finding a subset of S of size k whose measure is 
mjnimal among all k-point subsets. 

• P,opt(S) denotes this minimal measure. 

• Sopt denotes a k-point subset of S such that p,(Sopt) = P,opt(S). 

• Adenotes an algorithm that solves problem P(S, k). 

• T(n, k) resp. S(n, k) denote the time resp. space complexity of algorithm A. 

As an example, we can take for p,(A) the diameter of the set A. Then P( n, k) is 
the problem of finding a subset of size k whose diameter is minimal among all k-point 
subsets. We make the following assumptions ab out the measure p,. 

Assumption 1 There exists a closed p,opt(S)-box that contains the optimal solution Sopt. 

Assumption 2 There exists an integer constant C such that for any 8 < p,opt (S) / C, any 
closed 6-box contains less than k points of S. 
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This eonstant c will be used throughout this paper. 
For example, in Section 5 we will show that the diameter measure satisfies these 

assumptions with c = r Vdl. 

Remark: Hthe optimal solution Sopt is eontained in a (c'JLopt(S))-box for some eonstant 
c', then we define JL' := C'JL and search for a k-point sub set S~t of S such that JL'(S~t) is 
mjnjmal among all k-point subsets. It is dear that S~Pt = Sopt and that Assumption 1 
holds for JL'. 

Lemma 1 Let b be areal number. Assume there exists a closed b-box that contains at 
least k points of S. Then, JLopt (S) :::; c5 and there exists a closed (c5)-box that contains 
the optimal solution Sopt. 

Proof: By Assumption 1, we only have to prove that JLopt(S) :::; cb. This follows from 
Assumption 2 .• 

We show how to reduce problem P(n,k) to O(n/k) subproblems P(S',k) for subsets 
S' of size O( k). Each of these subproblems is then solved using algorithm A. First, we 
need the following 

Definition 1 Let b be a positive real number, let er :::; ß be positive integers, and let R 
be a collection of b-boxes such that 

1. each box in R contains at least one point of S, 

2. each point of S is contained in exactly one box of R, 

3. there is a box in R that contains at least er points of S, 

-4. each box in R contains at most ß points of S. 

ThenR is called an (er,ß;b)~covering ofS. 

Now we ean give the algorithm. 

Step 1. Compute a positive real number b together with a (k, 2dk; b)-eovering R of S. 

In Seetion 4, we show that such a b and such a eovering R exist and that they ean be 
found in O(nlog n) time using O(n) space. Moreover, it will be shown there how this 
eolleclion can be stored in a data strueture of size O( n) such that point loeation queries 
ean be solved in O(log n) time. This data strueture ean be built in O( n log n) time. 

Step 2. lnitialize JLopt := 00 and Sopt := 0. 

Step 3. For eaeh box B E R, do the following: 

3.1 Find all boxes in R that overlap the (2c + 1)b-box that is eentered at B. These 
boxes are found as follows: 

Let (bI, b2 , •• • , bd ) be the "lower-Ieft" eorner of B. Then, in the data strueture for 
R, loeate the (2c + 1)d points 

(bI + €Ib, b2 + €2b, ... , bd + €db), 

for Ei E {-c, -c + 1, . .. ,c - 1, cl, 1 :::; i :::; d. 
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3.2 Let S' be the set of points of S that are contained in the boxes that are found 
in Step 3.L H IS'I ~ k, solve problem P(S', k) using algorithm~. Let S~Pt be 
the optimal k-point sub set of S'. H JL(S~t) < JLopt, then set JLopt := JL(S~t) and 
S '- S' opt·- opt· 

Step 4. Output JLopt and Sopt. 

Theorem 1 The algorithm correctly solves problem P( S, k). Moreover, there is a 
constant d such that the algorithm takes O(nlogn + (n/k)T(dk,k)) time and uses 
O(n + S(c'k, k)) space. 

Proof: By Lemma 1, there is a closed (cS)-box that contains the optimal solution. It is 
clear that this box must be contained in the (2c + 1)6'-box that is centered at some box 
of R. The algorithm checks all these (2c + l)6'-boxes. H there are less than k points in 
such a box, then it does not contain the optimal solution. This proves the correctness of 
the algorithm. 

Each box of R contains at most 2dk points. Moreover, the point location queries in 
Step 3.1 find at most (2c+ 1)d boxes of R. Therefore, set S' in Step 3.2 has size at most 
(2c + 1)d2dk. 

There are at most (2c + 1)d n/k boxes B E R that yield a subset S' of size at least k. 
Hence, algorithm Ais called at most (2c + l)dn /k times. 

As mentioned already, we will show later that the real number 6' and the covering 
R can be computed in O(nlog n) time using O(n) space. Moreover, in time O(nlog n), 
this collection can be build into a data structure of size O( n), such that point location 
queries can be solved in O(log n) time. 

This proves that the running time of the algorithm is bounded by 

and amount of space used is bounded by 

This completes the proof .• 

3 Degraded grids 

In the previous section we saw that we need areal number 6' and a (k, 2dkj 6')-covering 
R for s. Moreover, we need a data structure for these boxes that support point location 
queries. Assume that the value of 6' and a 6'-box containing at least k points are known 
already. Then, of course, we can take a grid with mesh size 6' containing this box, and 
take for R the set of non-empty grid cells. Then, however, we need the fioor-function to 
find the cell that contains a given point. Hence, the algorithm falls outside the algebraic 
decision tree model. 

In this section, we introduce so-called degraded grids, that have basically the same 
properties as standard grids. We can build and search in a degraded grid, however, 
without using the fioor-function. 
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To give an intuitive idea, in a standard 8-grid, we divide d-space into slabs of width 
8. The grid is then defined by fixing an arbitrary point of JR4 to be a lattice point of the 
grid. So, if e.g. (0, ... ,0) is a lattice point, then for 1 < i ~ d, a slab along the i-th axis 
consists of the set of all points in d-space that have their i-th coordinates between j8 
and (j + 1)8 for some integer j. In a degraded 8-grid, we also have slabs. The difference 
is that slabs do not necessarily start and end at multiples of 8. Moreover, slabs have 
width at least 8, and slabs that contain points of S have width exactly 8. That is, while 
a 8-grid may be defined independently of the point set by fixing an arbitrary point of 
JR4 to be a lattice point, the degraded 8-grid is defined in terms of the point set stored 
in it. 

We give a formal definition, treating the case d = 1 first. 

Definition 2 Let S be a set 0/ n real numbers and let 8 be a positive real number. Let 
al, a2, ... ,az be a sequence 0/ real numbers such that 

1. tor all 1 ~ j < I, aj+1 ~ aj + 8, 

2. tor all pES, al ~ p < az, 

3. tor all 1 < j < I, i/ there is a point pES such that aj ~ p '< aj+1, then 
aj+1 = aj + 8. 

The collection 0/ intervals [aj : aj+d, 1 ~ j < I, is called a one-dimensional degraded 
8-grid for S. 

Constructing a one-dimensional degraded 8-grid: Sort the elements of S. Let 
PI ~ P2 ~ ... ~ Pn be the sorted sequence. Let al := PI. Let j > 1, and assume that 
al, ... ,aj are defined already. 

H there is an element in S that lies in the half-open interval [aj : aj + 8), then we set 
aj+l := aj + 8. Otherwise, we set aj+1 to the value of the smallest element in S that is . 
larger than aj. This construction stops if we have visited all elements of S. 

Lemma 2 Let S be a set 0/ n real numbers and let 8 be a positive real number. I/ the 
elements 0/ S are sorted, then we can construct a degraded 8-grid tor S in O( n) time 
using O( n) space. Given this degraded grid, tor each element x ES, we can find all l 
elements 0/ S that are contained in the interval 0/ x in time O(log n + l). 

Proof: The proof follows immediately from the definition and the given algorithm. 
Note that we store the intervals in a balanced tree. With each interval, we store a list 
consisting of the elements of S that are contained in this intervaL • 

We extend the definition of a degraded grid to higher dimensions. 

Definition 3 Let S be a set 0/ n points in d-space and let 8 be a positive real number. 
For 1 ~ i ~ d, let Si be the set 0/ i-th coordinates 0/ the points in S. Let 

[~j : ai,j+1)' 1 ~ j < li, 
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be a one-dimensional degraded S-grid /or the set Si. The collection 0/ d-dimensional 
boxes 

d 

II [ai;. : ai,;.+l), where 1 ,:::; ii < lil 
i=l 

is called a d-dimensional degraded S -grid for S. 

See Figure 1 for an example. The following lemma follows immediately. 

an 
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Figure 1: Example of a degraded S-grid. 
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Lemma 3 Let p be a point 0/ Sand let B be the box in the degraded S-grid /or S that 
contains p. Let e be an integer. All points 0/ S that are within distance eS /rom p are 
contained in Band in the (2c + l)d - 1 boxes that surround B. 

Constructing a d-dimensional degraded S-grid: Assume the points of S are stored 
in an array S. For each 1 :::; i :::; d, sort the elements of Si. Give each element in Si a 
pointer to its occurrence in S. 

For each 1 < i < d, construct a one-dimensional degraded S-grid [as; : aiJ+l), 1 :::; 
i < li, for the set Si using the algorithm. given above. During this construction, for 
each i and each element Pi-which denotes the i-th coordinate of point p-such that 
as; :::; Pi < aiJ+lJ follow the pointer to S. Store with the point p in S the numbers ai; 
and i. 

At the end, each point in S stores with it two vectors of length d. H point p has 
vectors (~,~, ... , hd) and (i1,h, ... ,id), then p is contained in the S-box with lower-Ieft 
corner (h1 , h2 , ••• , bd). This S-box is part of the ii-th S-slab along the i-th axis. 

These vectors implicitly define the degraded S-grid R. Note that each ii is an integer 
in the range from 1 to n. Hence, we can sort the vectors (ilJi2, ... ,id) in O(n) time 
by using radix-sort. This gives the non-empty boxes of the degraded grid, sorted in 
lexicographical order. 
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We summarize in the following lemma. 

Lemma 4 Let S be a set of n points in d-space and let 8 be a positive real number. 
Assume the points of S are stored in an array S. Moreover, assume that for each 
1 ::; i ::; d, the elements of Si are sorted, and each element of this set contains apointer 
to the corresponding point in S. 

Then we can construct a d-dimensional degraded 8 -grid for S in O( n) time using 
O( n) space. Moreover, we can preprocess this grid in O( n) time, such that for any point 
p in S, we can report alU points of S that are contained in the 8-boz of p, in O(log n+l) 
time. 

4 Constructing a degraded grid with O(k) points 
per cell 

In this section, we give the algorithm that computes the real number 8 together with a 
corresponding (k, 2dkj 8)-covering R for S. 

Recall the notion of weighted median: Let Zl, Z2, ... ,Zn be a sequence of n real 
numbers such that everyelement Zi has a weight Wi, which is a positive real number. 
Let W = ~j=l Wj. Element Zi is called a weighted median if 

L Wj < W/2 and L Wj ~ W/2. 
j:=j<=' j:=j$=. 

The weighted median can be computed in O(n) time. (See e.g. [7] for a proof.) 
Let S be a set of n points in d-space. In this section, we will use the following 

notations: 

• Assume 8 is areal number and R is a degraded 8-grid for S. Number the boxes of 
R (arbitrarily) 1,2, ... ,r = IRI and define ni to be the number of points of S that 
are contained in the i-th box of R. Then we denote M(R) = maxl$i$" ni . 

• Let S' be a sub set of S of size 2d k with minimal Loo-diameter among all (2dk)-point 
subsets. Then, 8* denotes the Loo-diameter of S'. 

Lemma 5 Using these notations, the following holds: 

1. For any 8 ~ 8* and any degraded 8-grid R for S, we have M(R) ~ k. 

2. For any 8 ::; 8* and any degraded 8-grid R for S, we have M(R) < 2dk. 

Proor: Let 8 ~ 8* and let R be a degraded 8-grid for S. The set S' is contained in an 
axes-parallel square with sides of length 8*. This square overlaps at most 2d boxes of R. 
Since S' has size 2d k, there must be one box in R that contains at least k points of S. 
This shows that M(R) ~ k. 

Let 8 ::; 8* and let R be a degraded 8-grid for S. Assume that M(R) > 2dk. Then 
there is a box in R that contains more than 2d k points of S. Since this box is the product 
of half-open intervals of length 8, there are 2dk points in S with Loo-diameter less than 
8. Since 8 ::; 8*, this contradicts the definition of 8*. • 
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The algorithm that is presented below searches for areal number 8 together with a 
degraded 8-grid R for 5 such that k :::; M(R) :::; 2dk. This grid is the (k, ~k; 8)-covering 
we want. Lemma 5 implies that there is a 8 for which such a covering exists, namely 
8 = 8*. In fact, such a 8 is contained in theset of all Loo-distances between pairs of 
points in 5. As in [7], we do a binary search in the larger set consisting of all possible 
differences Ipi - qil, where P and q are points of 5 and 1 < i :::; d. Of course, we maintain 
the candidate differences in an implicit way. 

The algorithm maintains the following information: 

• Arrays Ab ... ' ~ of length n, where Ao contains the points of 5 sorted w.r.t. their 
i-th coordinates. For each 1 < i < d, each point in Ao contains apointer to its 
occurrence in Al . 

• For each 1 :::; i :::; d and 1 < j < n, we store with Ao[jJ an interval [lij : h.;j], where 
lij and h.;j are integers, such that j < lij :::; hij + 1 < n + 1. 

We define the set of candidate diJJerences as folIows. Let p = (P1, ... , Pd) and q = 
(qb . .. , qd) be two distinct points in 5, and let 1 < i < d. Moreover, let j and j' be such 
that Ao[j] = p and Ao[j'] = q. Assume w.l.o.g. that j < j'. Then Iqi - Pil is a candidate 
difference i:ff lij < j' :::; h.;j. Hence, the total number of candidate differences is equal to 

d n-l 

L L(hij -lij + 1). 
i=l j=1 

The aJ.gorithm makes a sequence of iterations. In each iteration, this summation is 
decreased by a factor of at least one fouxth. The algorithm maintains the following 

Invariant: At each moment, the value of 8* is contained in the set of candidate differ­
ences. 

Initialization: Build the arrays AI, ... ,~. Then, for each 1 :::; i :::; d and 1 :::; j < n, 
store with Ao[j] the interval [li; : h.;j] = [j + 1 : n]. 

N ow, the algorithm starts with the 

Iteration: 

Step 1. For each 1 :::; i :::; d and 1 :::; j < n, such that lij :::; h.;j, take the pair 

and take the (positive) difference of their i-th coordinates. Give this difference weight 
h.;j -lij + 1. This gives a sequence of at most d(n - 1) weighted differences. 

Step 2. Compute a weighted median 8 of these weighted differences. 

Step 3. Construct a degraded 8-grid R for 5, and compute M(R). There are three 
possible cases. 

3.1 Hk:::; M(R) :::; 2dk, then output 8 and R, and stop. 
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3.2 H M( R) < k, then for each pair 

~[L(lij + h;j)J2J] and ~[j] 

selected in the first step ,such that the difference of their i-th coordinates is at most 
5, set lij := L(lij + hij )J2J + 1. Go to Step 1. 

3.3 H M(R) > 24k, then for each pair 

~[L{lij + hij )J2J] and ~[j] 

selected in the first step such that the difference of their i-th coordinates is at least 
5, set hij := L(lij + hij )J2J - 1. Go to Step 1. 

Lemma 6 The algorithm correctly maintains the invariant. 

Proof: After the initialization, the total number of candidate differences is equal to 

4 n-l ( ) ~ E (n - j) = d ; , 

i.e., the set of candidate differences equals the set of all d(~) d.i:fferences Ipi - qil. There­
fore, the invariant holds initially. Consider one iteration. First assume that Case 3.2 
applies, i.e., M(R) < k. Then, Lemma 5 implies that 5 < 6*. The algorithm only 
removes d.i:fferences Ipu - qu I from the set of candidate differences that are at most equal 
to 5. Hence, at the end of the iteration, the invariant still holds. 

H Case 3.3 applies, then Lemma 5 implies that 5 > 5*. Hence, we can remove 
differences Ipu - qu I from the set of candidate differences that are at least equal to 5, 
without invalidating the invariant .• 

Lemma 7 The algorithm makes at most log4/3(dn2
) = O(logn) iterations. 

Proof: At the start of the iteration, the set of candidate differences has size d(~). In 
each iteration, the size of this set is decreased by a factor of at least one fourth. (See [7] 
for a precise proof of this.) • 

Theorem 2 In O( n log n) time and using O( n) space, we can compute areal number 5 
and a degraded 5-grid R for S,such' that k ~ M(R) ~ 24k. 

Proof: It follows from the above that the algorithm computes areal number 5 and a 
degraded 5-grid R such that k < M(R) ~ 24k. The initialization of the algorithm takes 
O( n log n) time. Moreover, O(log n) iterations are made, each taking O( n) time. This 
proves that the entire algorithm has a running time of O( n log n). It is dear that the 
algorithm uses only linear space .• 

5 Applications 

In this section, we consider several measures p, that satisfy Assumptions 1 and 2. For 
each measme, we improve the previously best known bounds for solving problem P( n, k). 
The results are summarized at the end of this section in Table 1. 
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5.1 Minimum diameter k-point subset 

In this problem, JL(V) is the L2-diameter of the set V. Hence, we want to find k points 
that have a minimal diameter. In order to show that the algorithm of Section 2 can be 
applied, we only have to show that Assumptions 1 and 2 are satisfied. This is easily 
proved: 

Lemma 8 For I' the diameter measure, Assumptions 1 and 2 hold with c = r Ydl. 
Proof: Consider the optimal k-point subset So,t. H there is no closed JLo,t(S)-box 
that contains S o,t, then there must be two points in S o,t that have L2-distance larger 
than JLo,t(S). This proves that Assumption 1 holds. To prove Assumption 2, let 8 < 
JLopt ( S) / r Yd 1. Assume there is a closed 8-box that contams at least k points of S. Then 
there are k points that have L2-diameter at most ..;'d8< JLo,t(S). Thi,s is a contradiction. • • 

It follows that we can apply oux general algorithm. Recall that we need an algo­
rithm A that is ca.lled for subsets of size E>( k ). We take the algorithm of [5]. This 
algorithm solves the problem in time T( n, k) = O( n3 log2 n) using S( n, k) = O( n) 
space in the planar case. For the d-dimensional case, the algorithm runs in time 
T(n, k) = O(knlog n + 20 (k)n) and uses spaceS(n, k) = O(kn). Applying Theorem 1 
proves: 

Theorem 3 Given a set S 0/ n points in d-space and an integer 1 ::; k < n, we can find 
a subset 0/ size k with minimal diameter 

1. in O(nlog n + nk2 log2 k) time and O(n) space, i/ d· = 2, 

2. in O(nlog n + 20 (k)n) time and O(n + k2) space, i/ d > 2. 

In [5], the running times are the same, but the space bounds are O( n log n + kn) if d = 2, 
and O(kn) if d > 2. 

5.2 Minimum Loo-diameterk-point subset 

We want to find k points with minimal Loo-diameter, i.e., JL(V) is the Loo-diameter of the 
set V. Note that this is the same as finding a smallest d-dimensional cube that contains . 
at leaSt k points of S. The following lemma follows immediately. 

Lemma 9 For I' the Loo-diameter, Assumptions 1 and 2 hold with c = 1. 

Agam, we take the algorithm A from [5]. This a.lgorithm solves the problem in 
O(nd/ 2 log2 n) time using O(nd/ 2 ) space. Applying Theorem 1 proves: 

Theorem 4 Given a set S 0/ n points in d-space and an integer 1 < k ::; n, we can find 
a subset 0/ size k with minimal Loo-diameter 

1. in O(nlog n + nlog2 k) time using O(n) space, i/ d = 2, 

2. in O(nlog n + nkd/ 2- 1 log2 k) time using O(n + kd/ 2 ) space, i/ d > 2. 

In [5], the time resp. space bounds are O(nklog n + nkd/ 2- 1 log2 k) resp. O(nk + kd/ 2 ) 

for d > 2. For d = 2, they give a variant of the a.lgorithm using time and space 
O( n log n + nk). The previously best linear space solution for the plan ar case was given 
by Smid [11]. He obtains a. running time of O(nlog n + nklog2 k). 
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5.3 Minimum perimeter k-point subset 

For this problem, the points are planar. We want to find k points whose eonvex hull has 
minimal perimeter. That is, JL(V) is the perimeter of the eonvex hull of V. 

Lemma 10 For JL the perimeter measure, Assumptions 1 and 2 hold with e = 4. 

We take the algorithm A from [4]. This algorithm has a running time of O(n3 k) and 
uses O( nk) spaee. Then Theorem 19ives: 

Theorem 5 Given a set S 0/ n points in the plane and an integer 1 ~ k < n, we can 
find a subset 0/ size k with minimal perimeter in O( n log n + nk3) time using O( n + P) 
space. 

In [5], the same running time is obtained, but the spaee bound is O(nlog n + nk + k3
). 

Lemma 10 also holds if we take for JL the Loo-perimeter. Then, we want to find k 
points such that the perimeter of their axes-parallel enclosing reet angle is minimal. We 
take for A the brute-foree algorithm of [1]. This algorithm runs in time O(n3

) and uses 
O( n) spaee. Theorem 1 yields: 

Theorem 6 Given a set S 0/ n points in the plane and an integer 1 < k < n, we can 
find a subset 0/ size k with minimal Loo -perimeter in O( n log n + nP) time using O( n ) 
space. 

This result improves the spaee bound in [5] from O(nlogn + nk) to O(n). The time 
bound is the same as in [5]. 

5.4 Minimum circumradius k-point subset 

This is a problem in d-spaee again. We want to find a smallest ball that contains at least 
k points. Henee, we can take for JL(V) the diameter of the smallest ball that contains V. 

Lemma 11 For JL the circumradius measure, Assumptions 1 and 2 hold with e = r .Jdl. 

We take the algorithm A from [5]. This algorithm runs in time O(ndlog2 n) and uses 
spaee O( nd log n). In the planar ease, the time and space bounds are both O( n2 log n). 
Applying Theorem 1 gives: 

Theorem 7 Given a set S 0/ n points in d-space and an integer 1 ~ k < n, we can find 
a subset 0/ size k with minimal circumradius 

1. in O(nlog n + nklog k) time using O(n + Plog k) space, i/ d = 2, 

2. in O( n log n + nkd- 1 log2 k) time using O( n + kd log k) space, i/ d > 2. 

The running time is the same as in [5]. There, however, the spaee eomplex:i.ty is 
. O(nlog n + nk + P log k) if d = 2, arid O(nk + kdlog k) if d > 2. 
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measure 11 dimension 1 time space 

diameter 2 nlog n + nk2 logZ k n 
diameter d>2 nlog n + 2UVe)n n+k2 

Loo-diameter 2 nlogn + nlog 41 k n 
Loo-diameter d>2 n log n + nk~/2-1 log:.! k n + k~/2 

perimeter 2 nlog n + nk3 n+k:.! 

Loo-perimeter 2 nlogn + nk2 n 
circumradius 2 nlogn + nklog k n + kZlogk 
circumradius d>2 n log n + nk~-l log:.! k n + kdlogk 

Table 1: Static solutions. 

6 Maintaining an optimal k-point subset under in­
sertions 

In this section, we consider the problem of mainta.ining the optimal solution SOfit if points 
are inserted into S. This problem was also considered in [5]. They solve it byapplying 
the logarithmic method of Bentley [2]. For the planar case, the resulting data structure 
has size O( n log n + S( O( k), k» and an insertion time of O(log2 n + k log n + T( O( k), k». 
We iniprove both complexity bounds. 

Lemma 12 The value JLopt (S) does not increase i/ we insert a .point into S. 

Proof: It suffices to show that S ~ S' implies JLOfIt(S') < JLOfIt(S). This is clear, since 
JLOfIt(S') is determined by more k-point subsets than JLOfIt(S) .• 

Recall the meaning of the constant c in Assumption 2. 

Lemma 13 Let B be a box that contains at least (2c)dk points 0/ S. For 1 < i :5 d, 
let Tni resp. Mi denote the minimal resp. mazimal i-th coordinate 0/ any point in Sn B. 
Then there is an index i such that Mi - mi > 2JLopt (S). 

Proof: Assume the claim is false. Then there is a 6 < 2JLOfIt(S) and a closed 6-box that 
contains all points of Sn B. Partition this box into (2c)d closed subboxes with sides of 
length 6/(2c). Then one of these closed subboxes contains at least k points of S. This 
contradicts Assumption 2, because 6/(2c) < JLoPt(S)/c .• 

In [9], it is shown how a partition of d-space into at most n boxes can be maintained 
in O( n) space, such that point location queries can be solved in O(log n) time, and 
such that a box can be split into two boxes in O(log n) amortized time. (The two new 
boxes must still be axes-parallel.) Using a technique described in [3], the time for a split 
operation can even be made worst-case. 

In . the following insertion algorithm, we assume that we have a partition of d-space 
into boxes such that 

• each point of S is contained in exactly one box of the partition, 

• each box in the partition has sides of length at least JLopt(S), 
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• each box in the partition contains at most (2c)dk points of S. 

Moreover, we assume that this partition is stored using the method of [3]. With each 
box of this partition, we store a list of all points of S that are contained in it. 

The insertion algorithm: We denote the current value of JLopt(S) by JLopt. Recall that 
Sopt denotes the optimal k-point subset of the current set S. Let p = (PbP2, ... ,Pd) be 
the point to be inserted. 

Step 1. Find all boxes of the partition that overlap the (2JLopt)-box that is centered at 
p. These boxes are found by performing 3d point location queries with the points 

(PI + €lJLopt,'P2 + €2JLopt,··· ,Pd + €dJLopt), €1, €2,···, €d E {-I, 0, I}. 

Let S' be the set of points of S that are contained in these boxes. 

Step 2. H IS'I ~ k, solve problem P(S',k) using algorithm A. Let S~t be the optimal 
k-point subset of S'. H JL(S~Pt) < JLopt then set JLopt := JL(S~Pt) and Sopt := S~t· 

Step3. Output JLopt and Sopt. 

Step 4. Insert p into the box of the partition that contains it. H this box contains 
(2c)dk + 1 points, then split this box into two boxes with sides of length at least JLopt 
such that both new boxes contain at most (2c)dk points. (By Lemma 13, this is possible.) 

Theorem 8 The insertion algorithm correctly maintains the optimal solution of problem 
P ( S, k). M oreoverl there is a constant c' such that the insertion time is bounded by 
O(logn + T( c'k, k)) and the amount of space tLSed is bounded by O( n + S( c'k, k)). 

Proof: Let JLopt = JLopt(S) and JL~pt = JLopt(S U {p}). We know from Assumption 1 
that the optimal solution for the set S U {p} is contained in a dosed JL~t-box. It is 
dear that if the optimal solution changes because of the insertion of p, then this optimal 
solution must be contained in the (2JL~t)-box which is centered at p. Since JL~pt ~ JLopt, 
it suffices to consider all points that are contained in the (2JLopt)-box centered at p. ' The 
algorithm indeed considers all these points. This proves that the optimal solution is 
correctly maintained. 

Next we show that the partition of d-space is correctly maintained. If a box in the 
partition is not split, then it has sides oflength at least JLopt ~ JL~Pt. The two new boxes 
that arise because of a split operation have sides of length at least JL~Pt. It is dear that 
the other two requirements also hold. 

It remains to prove the time and space bounds. The bound on the size of the data 
structure is dear. To insert a point, we perform 3d point location queries, each taking 
O(logn) time. Then we solve a problem peS', k) for a subset S' of size at most 3d(2c)dk. 
Finally, we may split a box. This takes O(log n + k) time. Hence, for an appropriate 
constant c', the entire insertion algorithm takes time O(log n + k + T( c' k, k )) = O(log n + 
T(c'k, k)), because T(c'k, k) = O(k) .• 

Table 2 shows the results that follow from this theorem and from the results in the 
previous section. 
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measure 11 dimension 1 insertion time space 

diameter 2 log n + k3 log2 k n 
diameter d>2 log n + 20 (Je) n +k2 

L oo -diameter 2 logn + klog;: k n 
Loo-diameter d>2 log n + kd/2 10g2 k n + kd

/
2 

perimeter 2 logn + k4 n+P 
Loo-perimeter 2 logn + k3 n 
circumradius 2 log n + k2 10g k n+ Plogk 
circumradius d>2 logn + kdlog2 k n + kdlogk 

Table 2: Semi-dynamic solutions. 

7 A fully dynamic data structure 

The algorithm of the previous section only works for insertions: The use of Lemma 12 
is crucial. In this section, we show that the method of [10] can be adapted such that the 
optimal k-point subset can be maintained under insertions and deletions. 

Recall that for Va set of points, JLopt(V) denotes the minimal measure of any k-point 
subset of V. ff V has size less than k, then JLopt(V) = 00. 

Let 1 < i < d. The space mi consists of 2i quadrants. (For i = 1, the quadrants of 
mi = m are (-00 : 0] and [0 : 00).) Quadrants are assumed to be closed. We number 
themarbitrarily. For 1 ::; j < 2i , we denote the j-th quadrant by Q~. 

As in [10], we recursively define data structures of type i for i = 0,1, ... ,d. The data 
structure of type d maintains the optimal solution Sopt and its measure JLopt(S). The 
data structure of type i stores a collection of 24- i sets. For 1 ::; j ::; 24- i , the j-th set of 
this collection lies in Q1-i 

X mi
. 

We start with the data structure of type o. For 1 < j < 24, let 'V; be a set of points 
that lies in the j-th quadrant of d-space, i.e., 'V; ~ Q;. (The 24 quadrants can intersect 
in an a.rbitrary point of m4. W.l.o.g. we take this point to be the origin. ) Let nj = I'V;I 
and n = 'Ejnj. Some of the n/s may be zero. 

The data structure of type 0: 

1. For 1 ::; j ::; 24, the points of'V; are stored in the leaves of a balanced binary search 
tree Tj , sorted by their Loo-distances to the origin. Points with equal Loo-distance 
to the origin are stored in lexicographical order. 

2. For 1 ::; j ::; 24, let Vi be the set of min((2C)4k, I'V;I) smallest-i.e., leftmost-points 
in Tj. We store a variable 710 having value 

710 = JLopt ( l) Vj) . 
J 

The meaning of the variable TJo will become dear later. We consider updates of the 
following type: ff we insert 0.1" delete a point p that lies in the j-th quadrant of d~space, 
then we insert or delete p in the set 'V;. ff p lies on the boundary of several quadrants, 
then we insert or delete p in only one (arbitrary) set 'V;. The following lemma is clear. 
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Lemma 14 The data structure ojtype 0 has size O(n). Moreover, there exists a constant 
c', such that the data structure can be built in O(nlogn + T(c'k,k)) time and can be 
maintained in O(log n + T( c'k, k)) time per insertion and deletion. During the building 
and update algorithms, O(n + S(c'k, k)) space is needed. 

Note that the data structure itself has only O(n) size. In order to build and maintain it, 
however, we call algorithm A for a set of size O(k). This causes the extra term S(c'k, k). 

N ow let 0 < i < d and assume that the data structure of type (i -1) has been defined 
already. We define the data structure of type i. 

For 1 < j < 2d
-

i , let Vi be a set of points that lie in Q1-i x IRi . Let nj = I Vi I and 
n = :Ej nj. Some of the n;'s may be zero. 

The data structure of type i: All points of the set Uj Vi are stored in the leaves of 
one balanced binary search tree, sorted by their (d - i + 1 )-th coordinates. Points with 
equal (d - i + 1)-th coordinate are stored in lexicographical order. In each node u of 
this tree, we store a hyperplane Zd-i+1 = Uu , where Uu is the ma.x:i.mal (d - i + 1 )-th 
coordinate stored in its left subtree. 

Each node u of this tree contains the following additional information. 

1. If the subtree of u contains less than k points, then it contains a variable 'TU ( u) 
with value 00. 

2. Assume the subtree cf u contains at least k points. Let v resp. W be the left resp. 
right son of u. 

For 1 < j < 2d
-

i
, let v7' resp. Vr be the subsets of Vi that are stored in the subtrees 

of v resp. w. Note that Vj" ~ Q1-i X (-00 : uu ] x IRi-I, and Vj1D ~ Q1-i X [uu : 

) IRi-1 Th t . t . t .. h V" C Qd-i QI IRi - 1 00 X . a 15, w.r .. an appropna e ongm, we ave j _ j X I X , 

and Vj1D ~ Q1-i 
X Q~ X IRi

-
l • 

(a) We store in u apointer to a data structure of type (i - 1) which stores the 
2d

-
i+1 sets Vj" and Vj1D, 1 ::; j ::; 2d

-
i . Let TJi-1 be the variable that is stored 

with this data structure. 

(b) Let TJi( v) resp. TJi( w) be the variables that are stored with the no des v resp. 
w. We store in u a variable TJi( u) with value 

TJi(U) = min(TJi(V),TJi(W),TJi-d· 

Finally, the data structure of type i stores a variable TJi with value TJi = TJi( r ), where r is 
the root of the tree. 

We consider updates of the following type: If we insert or delete a point p that lies 
in Q1-i x IRi

, then we insert or delete p in the set Vi. Hp lies on the boundary of several 
regions, then we insert or delete p in only one (ar bitrary) set Vi. 

Note that the data structure of type d stores one set of points. We show that this 
data structure for the set S stores the optimal solution to problem P( S, k): 
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Lemma 15 Consider the data strucrure 0/ type d /or the set S. The value 1/d that is 
stored with this structure is equal to JLopt (S). 

Proof: First note that aJl 1/i(·)-variables have value eitheroo or JLopt(S') for some subset 
S' of S. Therefore, JLopt(S) < 1/d. 

The data structure of type d contains type 0 structures as substructures. H we can 
show that the 1/o-variable of one of these type 0 substructures has value JLopt(S), then it 
follows that 1/d ~ JLopt(S) and, hence, 1/d = JLopt(S). 

We show that such a type 0 substructure exists. Consider the optimal k-point subset 
Sopt of S. Note that JL(Sopt) = JLopt(S). We inductively define a sequence 'Ul! 'U2, ••• , 'Ud 

of nodes having the following properties: 

• 'Ui is anode of a d~ta structure of type (d - i + 1). 

• 'Ui is anode of the data structure of type (d - i + 1) that is pointed to by 'Ui-l. 

• The subtree of'Ui contains aJl points of Sopt. 

• 'Ui is the highest node in its tree such that both its left and its right subtree contam 
points of S opt. 

To define 'Ul, consider the data structure of type d. Then, 'Ul is the highest node in 
its binary search tree such that both the leftand the right subtree of 'Ul contain points 
of Sopt. Let 1 < i < d and assume that 'Ul, 'U2, • •• , 'Ui-l have been defined aJready. Then, 
'Ui is the highest node in the binary tree of the data structure of type d - i + 1 that is 
pointed to by 'Ui-l, such that both the left and the right subtree of 'Ui contam points of 
Sopt. It is clear that the nodes defined in this way have the four given properties. 

Consider node 'Ud. This node belongs to the binary t!ee of a data structure of type 1, 
and it contams apointer to a data structure D of type O. We claim that the variable 1/0 
that is stored with D has value JLopt(S). This will complete the proof of the lemma. 

Let 1';, 1 < j < 2d
, be the sets that are stored in D. Note that Sopt ~ Uj 1';. 

Moreover, the sets 1';, some of which may be empty, lie in different quadrants that are 
defined by the hyperplanes that are stored in the nodes 'Ul! 'U2, ••• , 'Ud. We assume w.l.o.g. 
that these hyperplanes intersect in the origin. 

Let Vj, 1 ~ j < 2d
, be the subsets that define the value of 1/0. That is, 1/0 = 

JLopt(Uj Vj). (See the definition of the data structure of type 0.) H we can show that 
Sopt ~ Uj Vj, then we must have 1/0 = JLopt(S). 

Assume this is not the case. Let p be a point of S opt that does not belong to Uj VJ. 
Assume w l.o.g. that p lies in the first quadrant of IRd, i.e., aJl coordinates of p are 
non-negative. 

Since IV{I = min((2c)dk, lVii) and since pE Vi \ V{, we have IV {I = (2c)dk. Let S be 
the maximal Loo-distance between any point of V{ and the origin. Then, V{ is contained 
in the closed box [0 : S]d. This closed box contams (2c)dk points of S. Partition it into 
(2c)d closed subboxes, each with sides of length SJ(2c). One of these closed subboxes 
contains at least k points of S. Hence, by Lemma 1, JLopt(S) ~ c· SJ(2c) < S. 

Consider agam point p. This point -has Loo-distance at least S to the origin. Let 
1 ~ 1 < d be an index such that Pl, i.e., the l-th coordinate of p, is at least equal to S. 
Our choice of the nodes 'Ul, 'U2, • •• , 'Ud implies that there is a point q E Sopt whose l-th 
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coordinate is non-positive. Hence, there are two points p and q in Sopt that are at Loo-
distance at least 6 from each other. On the other hand, we know from Assumption 1, that 
the set Sopt is contained in some J'opt(S)-box. In particular, the Loo-distance between p 

and q is at most J'opt(S). Thisproves that 6 ~ J'opt(S), which is a contradiction. Hence, 
we have shown that Sopt ~ Uj VJ. This completes the proof .• 

The data structure of type i is similar to a range tree. (See e.g. [8].) To maintain it 
under insertions and deletions, we take the binary trees from the dass of BB[a]-trees. 
First, we analyze its space complexity. Let G(n, i) be the size ofa data structure of 
type i storing n points. Then, G( n, 0) = O( n ). Let i > 1. The data structure of 
type i consists of a binary tree, having size O( n). Each node of this tree whose subtree 
contains at least k points, has apointer to a data structure of type (i -1). For all nodes 
on one level, these type (i - 1) structures together have size at most G(n, i-I). Since 
there are O(log(n/k» levels whose nodes contain pointers to type (i - 1) structures, 
we get the following recurrence: G(n,i) = O(n + G(n, i -1) log(n/k», which solves to 
G(n,d) = O(nlogd(n/k». 

The update algorithm is virtually the same as in [10]. Rebalancing is done by means 
of rotations. Moreover, as in [10], we can apply dynamic fractional cascading. We refer 
the reader to that paper for the details. H U(n, i) denotes the amortized update time, 
then we can show that U( n, 0) = O(log n + T( O(k), k», 

U(n, 1) = O(log n + log(n/k) log log n + T(O(k), k) log(n/k», 

and 

U(n, i) = O(log n + U(n, i-I) log(n/k) + logi(n/k) log log n + T(O(k), k)/k logi(n/k». 

The last term in the bound on U( n, 1) and the last two terms in the recurrence for U( n, i) 
are the amortized rebalancing costs. It follows that 

U(n, d) = O(log nlogd- 1(n/k) + logd(n/k) log log n + T(O(k), k) logd(n/k». 

Note that during the update algorithm, we need an extra amount S(O(k),k) of space, 
because we call the algorithm A for subsets of size O(k). 

The data structure of type d, as presented so far, only maintains the optimal measure 
J'opt(S). It does not give the optimal k-point sub set Sopt that realizes this measure. We 
can easily extend the data structure such that it also maintains Sopt: Maintain apointer 
to the node in the substructure of type 0 whose 77o-variable has value JLoPt(S). (That is, 
node Ud in the proof of Lemma 15.) Then after an update, if the value of J'opt(S) has 
changed, we follow the pointer to this node and recompute JLopt(S). This gives us the 
new optimal k-point subset Sopt. 

We have proved the following: 

Theorem 9 There e:cists a data structure that maintains the optimal solution 0/ problem 
P( S, k) under insertions and deletions. For some constant c' this data structure uses 
O(nlogd(n/k) + S(c'k, k» space and it has an amortized update time 0/ 

O(log nlogd- 1(n/k) + logd(n/k) log log n + T(c'k, k) logd(n/k». 

Table 3 shows the results that follow from this theorem. 
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measure 11 dimension 1 update time space 

diameter 2 J(n,k,2) + k3 logZ klogZ(n/k) nlogZ(n/k) 
diameter d>2 J( n, k, d) + 20 (k) logct( n/ k) nlogct(n/k) + k2 

Lee-diameter 2 J(n, k, 2) + klogZ klogZ(n/k) n log;&( n/ k) 
Lee-diameter . d> 2 J(n, k, d) + kd/ 2 logZ k logd( n/k) nlog4(n/k) + kd

/
2 

perimeter 2 J(n,k,2) +k4 log;&(n/k) nlogZ(n/k) + k2 

Lee-perimeter 2 J(n, k, 2) + PlogZ(n/k) nlogZ(n/k) 
circumradius 2 J(n, k, 2) + k2 log k logZ(n/k) nlog;&(n/k) + kZlogk 
circum.radius d>2 J(n, k, d) + kdlogZ klogd(n/k) nlogd(n/k) + kctlog k 

Table 3: Fully dynamic solutions. The update times are amortized. J( n, k, d) denotes 
the function lognlogd- 1(n/k) +logd(n/k) loglogn. 

8 Concluding remarks 

We have given a UDified approach for solving k-point clustering methods. The main 
technique was to reduce the problem to subproblems for O( n/ k) points, which were 
solved by some other algorithm A. In this way, it suffices to solve the problem for 
instances where n and k are proportional. Any improvement for such a problem gives 
improved static and dynamic solutions. 

There remain some open problems. First, can the randomized data ~tructure of 
Golin et al.[6], that maintains the closest pair in a point set, be e:xtended to maintain 
the optimal k-point subset? 

Second, our method does not apply for the problem of finding the axes-parallel rect­
angle of minimal area that contains at least k points. It is clear that this measure does 
not satisfy Assumption 1. Can our techniques be generalized such that such measures 
can also be handled? 
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