

Static and dynamic algorithms for

k-point clustering problems

Amitava. Datta Hans-Peter Lenhof
Christian Schwarz Michiel Smid

MPI-I-93-108 February 1993

.Static and dynamic algorithms for k-point
clustering problems*

Amitava Datta Christian Schwarz Hans-Peter Lenhof
Michle! Smid

Max-Planck-Institut für Informatik

W-6600 Saarbrücken, Germany

February 18, 1993

Abstract

Let S be a set of n points in d-space aild let 1 :5 k :5 n be an integer. A
unified approach is given for solving the problem of finding a sub set of S of size
k that mjnimizes some closeness measure, such as the diameter, perimeter or the
circumradius. Moreover, data structures are given that maintain such a subset
under insertions and deletions of points.

1 Introduction

We eonsider clustering problems of the following type. Given a set S of n points in
d-dimensional space and an integer k between one and n, find a subset of S of size k
that rnjnjmjzes some closeness measure. As an exam.ple, we may want to rnjnjrnjze the
perimeter of the convex hull of the k points. This measure was considered by Dobkin
et al. [4]. Other measures were eonsidered by Aggarwal et al. [1]. To be more precise,
they gave algorithms for finding k points such that their diameter, or their enclosing
square, or the perimeter of their enclosing reet angle is as small as possible. Smid [11]
also e6nsidered the ease of rnjnjmjzing the enclosing square.

Eppstein and Eriekson [5] give a general framework for solving such k-point clustering
problems. They start by eomputing for each point its 9(k) nearest neighbors, where the
eonstant depends on the problem. Then they use this information to reduee the original
problem to O(njk) subproblems for only O(k) points eaeh. Every single subproblem is
solved by some other algorithm A for the k-point clustering problem in quest ion. (In this
reduetion, the parameter k remams ·the same, but the size of the point set is redueed.)
H T(n,k) resp. S(n,k) denote the time resp. space eomplexity of algorithm A running
on a set of size n, then the entire running time of their algorithm is bounded by

O(nlog n + nk + ~ T(O(k), k)) if d = 2

*This work was supponed by the ESPRIT Basic Research Actions Program, under contract No. 7141
(project ALCOM II).

1

and
O(nklog n + ~ T(O(k), k)) if d > 2.

Moreover, their algorithm uses space

O(nlog n + nk + S(O(k),k)) if d = 2

and
O(nk + S(O(k), k)) if d > 2.

In this paper, we improve the results of [5) by generalizing techniques that were
designed for closest pair problems. U sing the search technique of [7], we also reduce the
problem to O(njk) subproblems for O(k) points each. Our reduction, however, is more
direct and it circumvents the necessity to compute eCk) neighbors for each point. For
any dimension d ~ 2, the resulting algorithm has a running time of

n
O(nlogn + k T(O(k),k))

and it uses space
O(n+ S(O(k),k)).

Hence, our algorithm uses strictly less space than the one in [5), and our time bound
does not exceed that of [5).

Eppstein and Erickson also consider the problem of maintaining the optimal k-point
subset if points are inserted. In the planar case, their result is a data structure of size
O(n log n + S (O(k), k)) with an insertion time of

0(1og2 n + klog n + T(O(k), k)).

They mention that for higher dimensions their method gives results that are only slightly
better than brute force.

We give a data structure that, for any dimension d ~2, maintains the optimal k-point
subset in

O(logn + T(O(k),k))

time per insertion, using only O(n + S(O(k), k)) space.
Eppstein and Erickson mention that no fully dynamic solutions, i.e., solutions that

maintain the optimal solution under insertions and deletions of points, are known. We
show that the technique of [10) can be generalized to give such a fully dynamic data
structure. It uses

O(nlogd(njk) + S(O(k),k))

spaceand it has an amortized update time of

O(log nlogd-1(njk) + logd(njk) log log n + T(O(k), k) logd(njk)).

Note that it is not a surprise that techniques for closest pair problems can be applied
here: If k = 2, finding k points with minimal diameter is exact1y the dosest pair problem.

This paper is organized as follows. In Section 2, we define the dass of problems that
we can solve and we give the general algorithm for solving them. In order to apply
this general algorithm, we need a variant of a grid. If we use a standard grid, then we

2

need the non-algebraic floor function to identify the grid-cell that contains a given point.
In Section 3, we introduce a degraded grid that has basically the same properties as
a standard grid, but for which we do not need the floor function. In this way, we get
algorithms that fall inside the algebraic decision tree model. The notion of degraded grid .
we use is simpler than the one in [7]. In Section 4, we use the search method of [7] to
construct a degraded grid, such that each grid box contains O(k) points and at least one
box contains at least k points. This grid is needed to reduce the k-clustering problem
for the n points of our input set S to O(n/k) subproblems for O(k) points each.

In Section 5, we give several applications of our general algorithm. The results
improve the previously best known algorithms. For an overview of the results, see Table 1
in Section 5.

In Section 6, we give the data structure that maintains the optimal k-point subset
under insertions. Section 7 gives a data structure that supports both insertions and
deletions. The results of these two sections aresummanzed in Tables 2 and 3. We finish
the paper in Section 8 with some concluding remarks.

2 A general approach

Let S be a set of n points in d-dimensional space and let k be an integer such that
1 < k < n. A d-dimensional axes-parallel rectangle of the form

where ~ and bi, 1 < i ::; d, are realnumbers is called a box. H bi = ~ + 6 for all i, then
the box is called a 8-box. The closure of a box, i.e., the product of d closed intervals
[~ : bi] is called a closed box. Throughout this paper, we will use the following notations:

• p, denotes a function that maps a set V of points in d-space to areal number p,(V),
the meastire of V.

• P(S, k) denotes the problem of finding a subset of S of size k whose measure is
mjnimal among all k-point subsets.

• P,opt(S) denotes this minimal measure.

• Sopt denotes a k-point subset of S such that p,(Sopt) = P,opt(S).

• Adenotes an algorithm that solves problem P(S, k).

• T(n, k) resp. S(n, k) denote the time resp. space complexity of algorithm A.

As an example, we can take for p,(A) the diameter of the set A. Then P(n, k) is
the problem of finding a subset of size k whose diameter is minimal among all k-point
subsets. We make the following assumptions ab out the measure p,.

Assumption 1 There exists a closed p,opt(S)-box that contains the optimal solution Sopt.

Assumption 2 There exists an integer constant C such that for any 8 < p,opt (S) / C, any
closed 6-box contains less than k points of S.

3

This eonstant c will be used throughout this paper.
For example, in Section 5 we will show that the diameter measure satisfies these

assumptions with c = r Vdl.

Remark: Hthe optimal solution Sopt is eontained in a (c'JLopt(S))-box for some eonstant
c', then we define JL' := C'JL and search for a k-point sub set S~t of S such that JL'(S~t) is
mjnjmal among all k-point subsets. It is dear that S~Pt = Sopt and that Assumption 1
holds for JL'.

Lemma 1 Let b be areal number. Assume there exists a closed b-box that contains at
least k points of S. Then, JLopt (S) :::; c5 and there exists a closed (c5)-box that contains
the optimal solution Sopt.

Proof: By Assumption 1, we only have to prove that JLopt(S) :::; cb. This follows from
Assumption 2 .•

We show how to reduce problem P(n,k) to O(n/k) subproblems P(S',k) for subsets
S' of size O(k). Each of these subproblems is then solved using algorithm A. First, we
need the following

Definition 1 Let b be a positive real number, let er :::; ß be positive integers, and let R
be a collection of b-boxes such that

1. each box in R contains at least one point of S,

2. each point of S is contained in exactly one box of R,

3. there is a box in R that contains at least er points of S,

-4. each box in R contains at most ß points of S.

ThenR is called an (er,ß;b)~covering ofS.

Now we ean give the algorithm.

Step 1. Compute a positive real number b together with a (k, 2dk; b)-eovering R of S.

In Seetion 4, we show that such a b and such a eovering R exist and that they ean be
found in O(nlog n) time using O(n) space. Moreover, it will be shown there how this
eolleclion can be stored in a data strueture of size O(n) such that point loeation queries
ean be solved in O(log n) time. This data strueture ean be built in O(n log n) time.

Step 2. lnitialize JLopt := 00 and Sopt := 0.

Step 3. For eaeh box B E R, do the following:

3.1 Find all boxes in R that overlap the (2c + 1)b-box that is eentered at B. These
boxes are found as follows:

Let (bI, b2 , •• • , bd) be the "lower-Ieft" eorner of B. Then, in the data strueture for
R, loeate the (2c + 1)d points

(bI + €Ib, b2 + €2b, ... , bd + €db),

for Ei E {-c, -c + 1, . .. ,c - 1, cl, 1 :::; i :::; d.

4

3.2 Let S' be the set of points of S that are contained in the boxes that are found
in Step 3.L H IS'I ~ k, solve problem P(S', k) using algorithm~. Let S~Pt be
the optimal k-point sub set of S'. H JL(S~t) < JLopt, then set JLopt := JL(S~t) and
S '- S' opt·- opt·

Step 4. Output JLopt and Sopt.

Theorem 1 The algorithm correctly solves problem P(S, k). Moreover, there is a
constant d such that the algorithm takes O(nlogn + (n/k)T(dk,k)) time and uses
O(n + S(c'k, k)) space.

Proof: By Lemma 1, there is a closed (cS)-box that contains the optimal solution. It is
clear that this box must be contained in the (2c + 1)6'-box that is centered at some box
of R. The algorithm checks all these (2c + l)6'-boxes. H there are less than k points in
such a box, then it does not contain the optimal solution. This proves the correctness of
the algorithm.

Each box of R contains at most 2dk points. Moreover, the point location queries in
Step 3.1 find at most (2c+ 1)d boxes of R. Therefore, set S' in Step 3.2 has size at most
(2c + 1)d2dk.

There are at most (2c + 1)d n/k boxes B E R that yield a subset S' of size at least k.
Hence, algorithm Ais called at most (2c + l)dn /k times.

As mentioned already, we will show later that the real number 6' and the covering
R can be computed in O(nlog n) time using O(n) space. Moreover, in time O(nlog n),
this collection can be build into a data structure of size O(n), such that point location
queries can be solved in O(log n) time.

This proves that the running time of the algorithm is bounded by

and amount of space used is bounded by

This completes the proof .•

3 Degraded grids

In the previous section we saw that we need areal number 6' and a (k, 2dkj 6')-covering
R for s. Moreover, we need a data structure for these boxes that support point location
queries. Assume that the value of 6' and a 6'-box containing at least k points are known
already. Then, of course, we can take a grid with mesh size 6' containing this box, and
take for R the set of non-empty grid cells. Then, however, we need the fioor-function to
find the cell that contains a given point. Hence, the algorithm falls outside the algebraic
decision tree model.

In this section, we introduce so-called degraded grids, that have basically the same
properties as standard grids. We can build and search in a degraded grid, however,
without using the fioor-function.

5

To give an intuitive idea, in a standard 8-grid, we divide d-space into slabs of width
8. The grid is then defined by fixing an arbitrary point of JR4 to be a lattice point of the
grid. So, if e.g. (0, ... ,0) is a lattice point, then for 1 < i ~ d, a slab along the i-th axis
consists of the set of all points in d-space that have their i-th coordinates between j8
and (j + 1)8 for some integer j. In a degraded 8-grid, we also have slabs. The difference
is that slabs do not necessarily start and end at multiples of 8. Moreover, slabs have
width at least 8, and slabs that contain points of S have width exactly 8. That is, while
a 8-grid may be defined independently of the point set by fixing an arbitrary point of
JR4 to be a lattice point, the degraded 8-grid is defined in terms of the point set stored
in it.

We give a formal definition, treating the case d = 1 first.

Definition 2 Let S be a set 0/ n real numbers and let 8 be a positive real number. Let
al, a2, ... ,az be a sequence 0/ real numbers such that

1. tor all 1 ~ j < I, aj+1 ~ aj + 8,

2. tor all pES, al ~ p < az,

3. tor all 1 < j < I, i/ there is a point pES such that aj ~ p '< aj+1, then
aj+1 = aj + 8.

The collection 0/ intervals [aj : aj+d, 1 ~ j < I, is called a one-dimensional degraded
8-grid for S.

Constructing a one-dimensional degraded 8-grid: Sort the elements of S. Let
PI ~ P2 ~ ... ~ Pn be the sorted sequence. Let al := PI. Let j > 1, and assume that
al, ... ,aj are defined already.

H there is an element in S that lies in the half-open interval [aj : aj + 8), then we set
aj+l := aj + 8. Otherwise, we set aj+1 to the value of the smallest element in S that is .
larger than aj. This construction stops if we have visited all elements of S.

Lemma 2 Let S be a set 0/ n real numbers and let 8 be a positive real number. I/ the
elements 0/ S are sorted, then we can construct a degraded 8-grid tor S in O(n) time
using O(n) space. Given this degraded grid, tor each element x ES, we can find all l
elements 0/ S that are contained in the interval 0/ x in time O(log n + l).

Proof: The proof follows immediately from the definition and the given algorithm.
Note that we store the intervals in a balanced tree. With each interval, we store a list
consisting of the elements of S that are contained in this intervaL •

We extend the definition of a degraded grid to higher dimensions.

Definition 3 Let S be a set 0/ n points in d-space and let 8 be a positive real number.
For 1 ~ i ~ d, let Si be the set 0/ i-th coordinates 0/ the points in S. Let

[~j : ai,j+1)' 1 ~ j < li,

6

be a one-dimensional degraded S-grid /or the set Si. The collection 0/ d-dimensional
boxes

d

II [ai;. : ai,;.+l), where 1 ,:::; ii < lil
i=l

is called a d-dimensional degraded S -grid for S.

See Figure 1 for an example. The following lemma follows immediately.

an

• • •
• •

•

• • • • • • •
• • • • •

•
Ic--- > S ---:. ~- S-~

Figure 1: Example of a degraded S-grid.

~
I
I
I
I

>
I
I
I
I

t
!
S

i

Lemma 3 Let p be a point 0/ Sand let B be the box in the degraded S-grid /or S that
contains p. Let e be an integer. All points 0/ S that are within distance eS /rom p are
contained in Band in the (2c + l)d - 1 boxes that surround B.

Constructing a d-dimensional degraded S-grid: Assume the points of S are stored
in an array S. For each 1 :::; i :::; d, sort the elements of Si. Give each element in Si a
pointer to its occurrence in S.

For each 1 < i < d, construct a one-dimensional degraded S-grid [as; : aiJ+l), 1 :::;
i < li, for the set Si using the algorithm. given above. During this construction, for
each i and each element Pi-which denotes the i-th coordinate of point p-such that
as; :::; Pi < aiJ+lJ follow the pointer to S. Store with the point p in S the numbers ai;
and i.

At the end, each point in S stores with it two vectors of length d. H point p has
vectors (~,~, ... , hd) and (i1,h, ... ,id), then p is contained in the S-box with lower-Ieft
corner (h1 , h2 , ••• , bd). This S-box is part of the ii-th S-slab along the i-th axis.

These vectors implicitly define the degraded S-grid R. Note that each ii is an integer
in the range from 1 to n. Hence, we can sort the vectors (ilJi2, ... ,id) in O(n) time
by using radix-sort. This gives the non-empty boxes of the degraded grid, sorted in
lexicographical order.

7

We summarize in the following lemma.

Lemma 4 Let S be a set of n points in d-space and let 8 be a positive real number.
Assume the points of S are stored in an array S. Moreover, assume that for each
1 ::; i ::; d, the elements of Si are sorted, and each element of this set contains apointer
to the corresponding point in S.

Then we can construct a d-dimensional degraded 8 -grid for S in O(n) time using
O(n) space. Moreover, we can preprocess this grid in O(n) time, such that for any point
p in S, we can report alU points of S that are contained in the 8-boz of p, in O(log n+l)
time.

4 Constructing a degraded grid with O(k) points
per cell

In this section, we give the algorithm that computes the real number 8 together with a
corresponding (k, 2dkj 8)-covering R for S.

Recall the notion of weighted median: Let Zl, Z2, ... ,Zn be a sequence of n real
numbers such that everyelement Zi has a weight Wi, which is a positive real number.
Let W = ~j=l Wj. Element Zi is called a weighted median if

L Wj < W/2 and L Wj ~ W/2.
j:=j<=' j:=j$=.

The weighted median can be computed in O(n) time. (See e.g. [7] for a proof.)
Let S be a set of n points in d-space. In this section, we will use the following

notations:

• Assume 8 is areal number and R is a degraded 8-grid for S. Number the boxes of
R (arbitrarily) 1,2, ... ,r = IRI and define ni to be the number of points of S that
are contained in the i-th box of R. Then we denote M(R) = maxli" ni .

• Let S' be a sub set of S of size 2d k with minimal Loo-diameter among all (2dk)-point
subsets. Then, 8* denotes the Loo-diameter of S'.

Lemma 5 Using these notations, the following holds:

1. For any 8 ~ 8* and any degraded 8-grid R for S, we have M(R) ~ k.

2. For any 8 ::; 8* and any degraded 8-grid R for S, we have M(R) < 2dk.

Proor: Let 8 ~ 8* and let R be a degraded 8-grid for S. The set S' is contained in an
axes-parallel square with sides of length 8*. This square overlaps at most 2d boxes of R.
Since S' has size 2d k, there must be one box in R that contains at least k points of S.
This shows that M(R) ~ k.

Let 8 ::; 8* and let R be a degraded 8-grid for S. Assume that M(R) > 2dk. Then
there is a box in R that contains more than 2d k points of S. Since this box is the product
of half-open intervals of length 8, there are 2dk points in S with Loo-diameter less than
8. Since 8 ::; 8*, this contradicts the definition of 8*. •

8

The algorithm that is presented below searches for areal number 8 together with a
degraded 8-grid R for 5 such that k :::; M(R) :::; 2dk. This grid is the (k, ~k; 8)-covering
we want. Lemma 5 implies that there is a 8 for which such a covering exists, namely
8 = 8*. In fact, such a 8 is contained in theset of all Loo-distances between pairs of
points in 5. As in [7], we do a binary search in the larger set consisting of all possible
differences Ipi - qil, where P and q are points of 5 and 1 < i :::; d. Of course, we maintain
the candidate differences in an implicit way.

The algorithm maintains the following information:

• Arrays Ab ... ' ~ of length n, where Ao contains the points of 5 sorted w.r.t. their
i-th coordinates. For each 1 < i < d, each point in Ao contains apointer to its
occurrence in Al .

• For each 1 :::; i :::; d and 1 < j < n, we store with Ao[jJ an interval [lij : h.;j], where
lij and h.;j are integers, such that j < lij :::; hij + 1 < n + 1.

We define the set of candidate diJJerences as folIows. Let p = (P1, ... , Pd) and q =
(qb . .. , qd) be two distinct points in 5, and let 1 < i < d. Moreover, let j and j' be such
that Ao[j] = p and Ao[j'] = q. Assume w.l.o.g. that j < j'. Then Iqi - Pil is a candidate
difference i:ff lij < j' :::; h.;j. Hence, the total number of candidate differences is equal to

d n-l

L L(hij -lij + 1).
i=l j=1

The aJ.gorithm makes a sequence of iterations. In each iteration, this summation is
decreased by a factor of at least one fouxth. The algorithm maintains the following

Invariant: At each moment, the value of 8* is contained in the set of candidate differ­
ences.

Initialization: Build the arrays AI, ... ,~. Then, for each 1 :::; i :::; d and 1 :::; j < n,
store with Ao[j] the interval [li; : h.;j] = [j + 1 : n].

N ow, the algorithm starts with the

Iteration:

Step 1. For each 1 :::; i :::; d and 1 :::; j < n, such that lij :::; h.;j, take the pair

and take the (positive) difference of their i-th coordinates. Give this difference weight
h.;j -lij + 1. This gives a sequence of at most d(n - 1) weighted differences.

Step 2. Compute a weighted median 8 of these weighted differences.

Step 3. Construct a degraded 8-grid R for 5, and compute M(R). There are three
possible cases.

3.1 Hk:::; M(R) :::; 2dk, then output 8 and R, and stop.

9

3.2 H M(R) < k, then for each pair

~[L(lij + h;j)J2J] and ~[j]

selected in the first step ,such that the difference of their i-th coordinates is at most
5, set lij := L(lij + hij)J2J + 1. Go to Step 1.

3.3 H M(R) > 24k, then for each pair

~[L{lij + hij)J2J] and ~[j]

selected in the first step such that the difference of their i-th coordinates is at least
5, set hij := L(lij + hij)J2J - 1. Go to Step 1.

Lemma 6 The algorithm correctly maintains the invariant.

Proof: After the initialization, the total number of candidate differences is equal to

4 n-l () ~ E (n - j) = d ; ,

i.e., the set of candidate differences equals the set of all d(~) d.i:fferences Ipi - qil. There­
fore, the invariant holds initially. Consider one iteration. First assume that Case 3.2
applies, i.e., M(R) < k. Then, Lemma 5 implies that 5 < 6*. The algorithm only
removes d.i:fferences Ipu - qu I from the set of candidate differences that are at most equal
to 5. Hence, at the end of the iteration, the invariant still holds.

H Case 3.3 applies, then Lemma 5 implies that 5 > 5*. Hence, we can remove
differences Ipu - qu I from the set of candidate differences that are at least equal to 5,
without invalidating the invariant .•

Lemma 7 The algorithm makes at most log4/3(dn2
) = O(logn) iterations.

Proof: At the start of the iteration, the set of candidate differences has size d(~). In
each iteration, the size of this set is decreased by a factor of at least one fourth. (See [7]
for a precise proof of this.) •

Theorem 2 In O(n log n) time and using O(n) space, we can compute areal number 5
and a degraded 5-grid R for S,such' that k ~ M(R) ~ 24k.

Proof: It follows from the above that the algorithm computes areal number 5 and a
degraded 5-grid R such that k < M(R) ~ 24k. The initialization of the algorithm takes
O(n log n) time. Moreover, O(log n) iterations are made, each taking O(n) time. This
proves that the entire algorithm has a running time of O(n log n). It is dear that the
algorithm uses only linear space .•

5 Applications

In this section, we consider several measures p, that satisfy Assumptions 1 and 2. For
each measme, we improve the previously best known bounds for solving problem P(n, k).
The results are summarized at the end of this section in Table 1.

10

5.1 Minimum diameter k-point subset

In this problem, JL(V) is the L2-diameter of the set V. Hence, we want to find k points
that have a minimal diameter. In order to show that the algorithm of Section 2 can be
applied, we only have to show that Assumptions 1 and 2 are satisfied. This is easily
proved:

Lemma 8 For I' the diameter measure, Assumptions 1 and 2 hold with c = r Ydl.
Proof: Consider the optimal k-point subset So,t. H there is no closed JLo,t(S)-box
that contains S o,t, then there must be two points in S o,t that have L2-distance larger
than JLo,t(S). This proves that Assumption 1 holds. To prove Assumption 2, let 8 <
JLopt (S) / r Yd 1. Assume there is a closed 8-box that contams at least k points of S. Then
there are k points that have L2-diameter at most ..;'d8< JLo,t(S). Thi,s is a contradiction. • •

It follows that we can apply oux general algorithm. Recall that we need an algo­
rithm A that is ca.lled for subsets of size E>(k). We take the algorithm of [5]. This
algorithm solves the problem in time T(n, k) = O(n3 log2 n) using S(n, k) = O(n)
space in the planar case. For the d-dimensional case, the algorithm runs in time
T(n, k) = O(knlog n + 20 (k)n) and uses spaceS(n, k) = O(kn). Applying Theorem 1
proves:

Theorem 3 Given a set S 0/ n points in d-space and an integer 1 ::; k < n, we can find
a subset 0/ size k with minimal diameter

1. in O(nlog n + nk2 log2 k) time and O(n) space, i/ d· = 2,

2. in O(nlog n + 20 (k)n) time and O(n + k2) space, i/ d > 2.

In [5], the running times are the same, but the space bounds are O(n log n + kn) if d = 2,
and O(kn) if d > 2.

5.2 Minimum Loo-diameterk-point subset

We want to find k points with minimal Loo-diameter, i.e., JL(V) is the Loo-diameter of the
set V. Note that this is the same as finding a smallest d-dimensional cube that contains .
at leaSt k points of S. The following lemma follows immediately.

Lemma 9 For I' the Loo-diameter, Assumptions 1 and 2 hold with c = 1.

Agam, we take the algorithm A from [5]. This a.lgorithm solves the problem in
O(nd/ 2 log2 n) time using O(nd/ 2) space. Applying Theorem 1 proves:

Theorem 4 Given a set S 0/ n points in d-space and an integer 1 < k ::; n, we can find
a subset 0/ size k with minimal Loo-diameter

1. in O(nlog n + nlog2 k) time using O(n) space, i/ d = 2,

2. in O(nlog n + nkd/ 2- 1 log2 k) time using O(n + kd/ 2) space, i/ d > 2.

In [5], the time resp. space bounds are O(nklog n + nkd/ 2- 1 log2 k) resp. O(nk + kd/ 2)

for d > 2. For d = 2, they give a variant of the a.lgorithm using time and space
O(n log n + nk). The previously best linear space solution for the plan ar case was given
by Smid [11]. He obtains a. running time of O(nlog n + nklog2 k).

11

5.3 Minimum perimeter k-point subset

For this problem, the points are planar. We want to find k points whose eonvex hull has
minimal perimeter. That is, JL(V) is the perimeter of the eonvex hull of V.

Lemma 10 For JL the perimeter measure, Assumptions 1 and 2 hold with e = 4.

We take the algorithm A from [4]. This algorithm has a running time of O(n3 k) and
uses O(nk) spaee. Then Theorem 19ives:

Theorem 5 Given a set S 0/ n points in the plane and an integer 1 ~ k < n, we can
find a subset 0/ size k with minimal perimeter in O(n log n + nk3) time using O(n + P)
space.

In [5], the same running time is obtained, but the spaee bound is O(nlog n + nk + k3
).

Lemma 10 also holds if we take for JL the Loo-perimeter. Then, we want to find k
points such that the perimeter of their axes-parallel enclosing reet angle is minimal. We
take for A the brute-foree algorithm of [1]. This algorithm runs in time O(n3

) and uses
O(n) spaee. Theorem 1 yields:

Theorem 6 Given a set S 0/ n points in the plane and an integer 1 < k < n, we can
find a subset 0/ size k with minimal Loo -perimeter in O(n log n + nP) time using O(n)
space.

This result improves the spaee bound in [5] from O(nlogn + nk) to O(n). The time
bound is the same as in [5].

5.4 Minimum circumradius k-point subset

This is a problem in d-spaee again. We want to find a smallest ball that contains at least
k points. Henee, we can take for JL(V) the diameter of the smallest ball that contains V.

Lemma 11 For JL the circumradius measure, Assumptions 1 and 2 hold with e = r .Jdl.

We take the algorithm A from [5]. This algorithm runs in time O(ndlog2 n) and uses
spaee O(nd log n). In the planar ease, the time and space bounds are both O(n2 log n).
Applying Theorem 1 gives:

Theorem 7 Given a set S 0/ n points in d-space and an integer 1 ~ k < n, we can find
a subset 0/ size k with minimal circumradius

1. in O(nlog n + nklog k) time using O(n + Plog k) space, i/ d = 2,

2. in O(n log n + nkd- 1 log2 k) time using O(n + kd log k) space, i/ d > 2.

The running time is the same as in [5]. There, however, the spaee eomplex:i.ty is
. O(nlog n + nk + P log k) if d = 2, arid O(nk + kdlog k) if d > 2.

12

measure 11 dimension 1 time space

diameter 2 nlog n + nk2 logZ k n
diameter d>2 nlog n + 2UVe)n n+k2

Loo-diameter 2 nlogn + nlog 41 k n
Loo-diameter d>2 n log n + nk~/2-1 log:.! k n + k~/2

perimeter 2 nlog n + nk3 n+k:.!

Loo-perimeter 2 nlogn + nk2 n
circumradius 2 nlogn + nklog k n + kZlogk
circumradius d>2 n log n + nk~-l log:.! k n + kdlogk

Table 1: Static solutions.

6 Maintaining an optimal k-point subset under in­
sertions

In this section, we consider the problem of mainta.ining the optimal solution SOfit if points
are inserted into S. This problem was also considered in [5]. They solve it byapplying
the logarithmic method of Bentley [2]. For the planar case, the resulting data structure
has size O(n log n + S(O(k), k» and an insertion time of O(log2 n + k log n + T(O(k), k».
We iniprove both complexity bounds.

Lemma 12 The value JLopt (S) does not increase i/ we insert a .point into S.

Proof: It suffices to show that S ~ S' implies JLOfIt(S') < JLOfIt(S). This is clear, since
JLOfIt(S') is determined by more k-point subsets than JLOfIt(S) .•

Recall the meaning of the constant c in Assumption 2.

Lemma 13 Let B be a box that contains at least (2c)dk points 0/ S. For 1 < i :5 d,
let Tni resp. Mi denote the minimal resp. mazimal i-th coordinate 0/ any point in Sn B.
Then there is an index i such that Mi - mi > 2JLopt (S).

Proof: Assume the claim is false. Then there is a 6 < 2JLOfIt(S) and a closed 6-box that
contains all points of Sn B. Partition this box into (2c)d closed subboxes with sides of
length 6/(2c). Then one of these closed subboxes contains at least k points of S. This
contradicts Assumption 2, because 6/(2c) < JLoPt(S)/c .•

In [9], it is shown how a partition of d-space into at most n boxes can be maintained
in O(n) space, such that point location queries can be solved in O(log n) time, and
such that a box can be split into two boxes in O(log n) amortized time. (The two new
boxes must still be axes-parallel.) Using a technique described in [3], the time for a split
operation can even be made worst-case.

In . the following insertion algorithm, we assume that we have a partition of d-space
into boxes such that

• each point of S is contained in exactly one box of the partition,

• each box in the partition has sides of length at least JLopt(S),

13

• each box in the partition contains at most (2c)dk points of S.

Moreover, we assume that this partition is stored using the method of [3]. With each
box of this partition, we store a list of all points of S that are contained in it.

The insertion algorithm: We denote the current value of JLopt(S) by JLopt. Recall that
Sopt denotes the optimal k-point subset of the current set S. Let p = (PbP2, ... ,Pd) be
the point to be inserted.

Step 1. Find all boxes of the partition that overlap the (2JLopt)-box that is centered at
p. These boxes are found by performing 3d point location queries with the points

(PI + €lJLopt,'P2 + €2JLopt,··· ,Pd + €dJLopt), €1, €2,···, €d E {-I, 0, I}.

Let S' be the set of points of S that are contained in these boxes.

Step 2. H IS'I ~ k, solve problem P(S',k) using algorithm A. Let S~t be the optimal
k-point subset of S'. H JL(S~Pt) < JLopt then set JLopt := JL(S~Pt) and Sopt := S~t·

Step3. Output JLopt and Sopt.

Step 4. Insert p into the box of the partition that contains it. H this box contains
(2c)dk + 1 points, then split this box into two boxes with sides of length at least JLopt
such that both new boxes contain at most (2c)dk points. (By Lemma 13, this is possible.)

Theorem 8 The insertion algorithm correctly maintains the optimal solution of problem
P (S, k). M oreoverl there is a constant c' such that the insertion time is bounded by
O(logn + T(c'k, k)) and the amount of space tLSed is bounded by O(n + S(c'k, k)).

Proof: Let JLopt = JLopt(S) and JL~pt = JLopt(S U {p}). We know from Assumption 1
that the optimal solution for the set S U {p} is contained in a dosed JL~t-box. It is
dear that if the optimal solution changes because of the insertion of p, then this optimal
solution must be contained in the (2JL~t)-box which is centered at p. Since JL~pt ~ JLopt,
it suffices to consider all points that are contained in the (2JLopt)-box centered at p. ' The
algorithm indeed considers all these points. This proves that the optimal solution is
correctly maintained.

Next we show that the partition of d-space is correctly maintained. If a box in the
partition is not split, then it has sides oflength at least JLopt ~ JL~Pt. The two new boxes
that arise because of a split operation have sides of length at least JL~Pt. It is dear that
the other two requirements also hold.

It remains to prove the time and space bounds. The bound on the size of the data
structure is dear. To insert a point, we perform 3d point location queries, each taking
O(logn) time. Then we solve a problem peS', k) for a subset S' of size at most 3d(2c)dk.
Finally, we may split a box. This takes O(log n + k) time. Hence, for an appropriate
constant c', the entire insertion algorithm takes time O(log n + k + T(c' k, k)) = O(log n +
T(c'k, k)), because T(c'k, k) = O(k) .•

Table 2 shows the results that follow from this theorem and from the results in the
previous section.

14

measure 11 dimension 1 insertion time space

diameter 2 log n + k3 log2 k n
diameter d>2 log n + 20 (Je) n +k2

L oo -diameter 2 logn + klog;: k n
Loo-diameter d>2 log n + kd/2 10g2 k n + kd

/
2

perimeter 2 logn + k4 n+P
Loo-perimeter 2 logn + k3 n
circumradius 2 log n + k2 10g k n+ Plogk
circumradius d>2 logn + kdlog2 k n + kdlogk

Table 2: Semi-dynamic solutions.

7 A fully dynamic data structure

The algorithm of the previous section only works for insertions: The use of Lemma 12
is crucial. In this section, we show that the method of [10] can be adapted such that the
optimal k-point subset can be maintained under insertions and deletions.

Recall that for Va set of points, JLopt(V) denotes the minimal measure of any k-point
subset of V. ff V has size less than k, then JLopt(V) = 00.

Let 1 < i < d. The space mi consists of 2i quadrants. (For i = 1, the quadrants of
mi = m are (-00 : 0] and [0 : 00).) Quadrants are assumed to be closed. We number
themarbitrarily. For 1 ::; j < 2i , we denote the j-th quadrant by Q~.

As in [10], we recursively define data structures of type i for i = 0,1, ... ,d. The data
structure of type d maintains the optimal solution Sopt and its measure JLopt(S). The
data structure of type i stores a collection of 24- i sets. For 1 ::; j ::; 24- i , the j-th set of
this collection lies in Q1-i

X mi
.

We start with the data structure of type o. For 1 < j < 24, let 'V; be a set of points
that lies in the j-th quadrant of d-space, i.e., 'V; ~ Q;. (The 24 quadrants can intersect
in an a.rbitrary point of m4. W.l.o.g. we take this point to be the origin.) Let nj = I'V;I
and n = 'Ejnj. Some of the n/s may be zero.

The data structure of type 0:

1. For 1 ::; j ::; 24, the points of'V; are stored in the leaves of a balanced binary search
tree Tj , sorted by their Loo-distances to the origin. Points with equal Loo-distance
to the origin are stored in lexicographical order.

2. For 1 ::; j ::; 24, let Vi be the set of min((2C)4k, I'V;I) smallest-i.e., leftmost-points
in Tj. We store a variable 710 having value

710 = JLopt (l) Vj) .
J

The meaning of the variable TJo will become dear later. We consider updates of the
following type: ff we insert 0.1" delete a point p that lies in the j-th quadrant of d~space,
then we insert or delete p in the set 'V;. ff p lies on the boundary of several quadrants,
then we insert or delete p in only one (arbitrary) set 'V;. The following lemma is clear.

15

Lemma 14 The data structure ojtype 0 has size O(n). Moreover, there exists a constant
c', such that the data structure can be built in O(nlogn + T(c'k,k)) time and can be
maintained in O(log n + T(c'k, k)) time per insertion and deletion. During the building
and update algorithms, O(n + S(c'k, k)) space is needed.

Note that the data structure itself has only O(n) size. In order to build and maintain it,
however, we call algorithm A for a set of size O(k). This causes the extra term S(c'k, k).

N ow let 0 < i < d and assume that the data structure of type (i -1) has been defined
already. We define the data structure of type i.

For 1 < j < 2d
-

i , let Vi be a set of points that lie in Q1-i x IRi . Let nj = I Vi I and
n = :Ej nj. Some of the n;'s may be zero.

The data structure of type i: All points of the set Uj Vi are stored in the leaves of
one balanced binary search tree, sorted by their (d - i + 1)-th coordinates. Points with
equal (d - i + 1)-th coordinate are stored in lexicographical order. In each node u of
this tree, we store a hyperplane Zd-i+1 = Uu , where Uu is the ma.x:i.mal (d - i + 1)-th
coordinate stored in its left subtree.

Each node u of this tree contains the following additional information.

1. If the subtree of u contains less than k points, then it contains a variable 'TU (u)
with value 00.

2. Assume the subtree cf u contains at least k points. Let v resp. W be the left resp.
right son of u.

For 1 < j < 2d
-

i
, let v7' resp. Vr be the subsets of Vi that are stored in the subtrees

of v resp. w. Note that Vj" ~ Q1-i X (-00 : uu] x IRi-I, and Vj1D ~ Q1-i X [uu :

) IRi-1 Th t . t . t .. h V" C Qd-i QI IRi - 1 00 X . a 15, w.r .. an appropna e ongm, we ave j _ j X I X ,

and Vj1D ~ Q1-i
X Q~ X IRi

-
l •

(a) We store in u apointer to a data structure of type (i - 1) which stores the
2d

-
i+1 sets Vj" and Vj1D, 1 ::; j ::; 2d

-
i . Let TJi-1 be the variable that is stored

with this data structure.

(b) Let TJi(v) resp. TJi(w) be the variables that are stored with the no des v resp.
w. We store in u a variable TJi(u) with value

TJi(U) = min(TJi(V),TJi(W),TJi-d·

Finally, the data structure of type i stores a variable TJi with value TJi = TJi(r), where r is
the root of the tree.

We consider updates of the following type: If we insert or delete a point p that lies
in Q1-i x IRi

, then we insert or delete p in the set Vi. Hp lies on the boundary of several
regions, then we insert or delete p in only one (ar bitrary) set Vi.

Note that the data structure of type d stores one set of points. We show that this
data structure for the set S stores the optimal solution to problem P(S, k):

16

Lemma 15 Consider the data strucrure 0/ type d /or the set S. The value 1/d that is
stored with this structure is equal to JLopt (S).

Proof: First note that aJl 1/i(·)-variables have value eitheroo or JLopt(S') for some subset
S' of S. Therefore, JLopt(S) < 1/d.

The data structure of type d contains type 0 structures as substructures. H we can
show that the 1/o-variable of one of these type 0 substructures has value JLopt(S), then it
follows that 1/d ~ JLopt(S) and, hence, 1/d = JLopt(S).

We show that such a type 0 substructure exists. Consider the optimal k-point subset
Sopt of S. Note that JL(Sopt) = JLopt(S). We inductively define a sequence 'Ul! 'U2, ••• , 'Ud

of nodes having the following properties:

• 'Ui is anode of a d~ta structure of type (d - i + 1).

• 'Ui is anode of the data structure of type (d - i + 1) that is pointed to by 'Ui-l.

• The subtree of'Ui contains aJl points of Sopt.

• 'Ui is the highest node in its tree such that both its left and its right subtree contam
points of S opt.

To define 'Ul, consider the data structure of type d. Then, 'Ul is the highest node in
its binary search tree such that both the leftand the right subtree of 'Ul contain points
of Sopt. Let 1 < i < d and assume that 'Ul, 'U2, • •• , 'Ui-l have been defined aJready. Then,
'Ui is the highest node in the binary tree of the data structure of type d - i + 1 that is
pointed to by 'Ui-l, such that both the left and the right subtree of 'Ui contam points of
Sopt. It is clear that the nodes defined in this way have the four given properties.

Consider node 'Ud. This node belongs to the binary t!ee of a data structure of type 1,
and it contams apointer to a data structure D of type O. We claim that the variable 1/0
that is stored with D has value JLopt(S). This will complete the proof of the lemma.

Let 1';, 1 < j < 2d
, be the sets that are stored in D. Note that Sopt ~ Uj 1';.

Moreover, the sets 1';, some of which may be empty, lie in different quadrants that are
defined by the hyperplanes that are stored in the nodes 'Ul! 'U2, ••• , 'Ud. We assume w.l.o.g.
that these hyperplanes intersect in the origin.

Let Vj, 1 ~ j < 2d
, be the subsets that define the value of 1/0. That is, 1/0 =

JLopt(Uj Vj). (See the definition of the data structure of type 0.) H we can show that
Sopt ~ Uj Vj, then we must have 1/0 = JLopt(S).

Assume this is not the case. Let p be a point of S opt that does not belong to Uj VJ.
Assume w l.o.g. that p lies in the first quadrant of IRd, i.e., aJl coordinates of p are
non-negative.

Since IV{I = min((2c)dk, lVii) and since pE Vi \ V{, we have IV {I = (2c)dk. Let S be
the maximal Loo-distance between any point of V{ and the origin. Then, V{ is contained
in the closed box [0 : S]d. This closed box contams (2c)dk points of S. Partition it into
(2c)d closed subboxes, each with sides of length SJ(2c). One of these closed subboxes
contains at least k points of S. Hence, by Lemma 1, JLopt(S) ~ c· SJ(2c) < S.

Consider agam point p. This point -has Loo-distance at least S to the origin. Let
1 ~ 1 < d be an index such that Pl, i.e., the l-th coordinate of p, is at least equal to S.
Our choice of the nodes 'Ul, 'U2, • •• , 'Ud implies that there is a point q E Sopt whose l-th

17

coordinate is non-positive. Hence, there are two points p and q in Sopt that are at Loo-
distance at least 6 from each other. On the other hand, we know from Assumption 1, that
the set Sopt is contained in some J'opt(S)-box. In particular, the Loo-distance between p

and q is at most J'opt(S). Thisproves that 6 ~ J'opt(S), which is a contradiction. Hence,
we have shown that Sopt ~ Uj VJ. This completes the proof .•

The data structure of type i is similar to a range tree. (See e.g. [8].) To maintain it
under insertions and deletions, we take the binary trees from the dass of BB[a]-trees.
First, we analyze its space complexity. Let G(n, i) be the size ofa data structure of
type i storing n points. Then, G(n, 0) = O(n). Let i > 1. The data structure of
type i consists of a binary tree, having size O(n). Each node of this tree whose subtree
contains at least k points, has apointer to a data structure of type (i -1). For all nodes
on one level, these type (i - 1) structures together have size at most G(n, i-I). Since
there are O(log(n/k» levels whose nodes contain pointers to type (i - 1) structures,
we get the following recurrence: G(n,i) = O(n + G(n, i -1) log(n/k», which solves to
G(n,d) = O(nlogd(n/k».

The update algorithm is virtually the same as in [10]. Rebalancing is done by means
of rotations. Moreover, as in [10], we can apply dynamic fractional cascading. We refer
the reader to that paper for the details. H U(n, i) denotes the amortized update time,
then we can show that U(n, 0) = O(log n + T(O(k), k»,

U(n, 1) = O(log n + log(n/k) log log n + T(O(k), k) log(n/k»,

and

U(n, i) = O(log n + U(n, i-I) log(n/k) + logi(n/k) log log n + T(O(k), k)/k logi(n/k».

The last term in the bound on U(n, 1) and the last two terms in the recurrence for U(n, i)
are the amortized rebalancing costs. It follows that

U(n, d) = O(log nlogd- 1(n/k) + logd(n/k) log log n + T(O(k), k) logd(n/k».

Note that during the update algorithm, we need an extra amount S(O(k),k) of space,
because we call the algorithm A for subsets of size O(k).

The data structure of type d, as presented so far, only maintains the optimal measure
J'opt(S). It does not give the optimal k-point sub set Sopt that realizes this measure. We
can easily extend the data structure such that it also maintains Sopt: Maintain apointer
to the node in the substructure of type 0 whose 77o-variable has value JLoPt(S). (That is,
node Ud in the proof of Lemma 15.) Then after an update, if the value of J'opt(S) has
changed, we follow the pointer to this node and recompute JLopt(S). This gives us the
new optimal k-point subset Sopt.

We have proved the following:

Theorem 9 There e:cists a data structure that maintains the optimal solution 0/ problem
P(S, k) under insertions and deletions. For some constant c' this data structure uses
O(nlogd(n/k) + S(c'k, k» space and it has an amortized update time 0/

O(log nlogd- 1(n/k) + logd(n/k) log log n + T(c'k, k) logd(n/k».

Table 3 shows the results that follow from this theorem.

18

measure 11 dimension 1 update time space

diameter 2 J(n,k,2) + k3 logZ klogZ(n/k) nlogZ(n/k)
diameter d>2 J(n, k, d) + 20 (k) logct(n/ k) nlogct(n/k) + k2

Lee-diameter 2 J(n, k, 2) + klogZ klogZ(n/k) n log;&(n/ k)
Lee-diameter . d> 2 J(n, k, d) + kd/ 2 logZ k logd(n/k) nlog4(n/k) + kd

/
2

perimeter 2 J(n,k,2) +k4 log;&(n/k) nlogZ(n/k) + k2

Lee-perimeter 2 J(n, k, 2) + PlogZ(n/k) nlogZ(n/k)
circumradius 2 J(n, k, 2) + k2 log k logZ(n/k) nlog;&(n/k) + kZlogk
circum.radius d>2 J(n, k, d) + kdlogZ klogd(n/k) nlogd(n/k) + kctlog k

Table 3: Fully dynamic solutions. The update times are amortized. J(n, k, d) denotes
the function lognlogd- 1(n/k) +logd(n/k) loglogn.

8 Concluding remarks

We have given a UDified approach for solving k-point clustering methods. The main
technique was to reduce the problem to subproblems for O(n/ k) points, which were
solved by some other algorithm A. In this way, it suffices to solve the problem for
instances where n and k are proportional. Any improvement for such a problem gives
improved static and dynamic solutions.

There remain some open problems. First, can the randomized data ~tructure of
Golin et al.[6], that maintains the closest pair in a point set, be e:xtended to maintain
the optimal k-point subset?

Second, our method does not apply for the problem of finding the axes-parallel rect­
angle of minimal area that contains at least k points. It is clear that this measure does
not satisfy Assumption 1. Can our techniques be generalized such that such measures
can also be handled?

References

[1] A. Aggarwal, H. Imai, N. Katoh and S. Suri. Finding k points with minimum diam­
eter and related problems. J. Algorithms 12 (1991), pp. 38-56.

[2] J.L. Bentley. Decomposable searching problems. Inform. Proc. Lett. 8 (1979), pp.
244-251.

[3] R.F. Cohen and R. Tamassia. Combine and conquer. Report CS-92-19, Brown Uni­
versity, Providence, 1992.

[4] D.P. Dobkin, R.L. Drysdale and L.J. Guibas. Finding smallest polygons. In: F.P.
Preparata (ed.), Advances in Computing Research, Vol. 1, Computational Geome­
try, J .A.1. Press, London, 1983, pp. 181-214.

[5] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal poly­
topes. Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms, 1993, pp. 64-73.

19

[6] M. Golin, R. Raman, C. Schwarz and M. Smid. Randomized data structures for
the dynamic closest-pair problem. Proc. 4th Annual ACM-SIAM Symp. on Discrete
Algorithms, 1993, pp. 301-310.

[7] H.P. Lenhof and M. Smid. Enumerating the k closest pairs optimally. Proc. 33rd
Annual IEEE Symp. Foundations of Computer Science, 1992, pp. 380-386.

[8] F.P. Preparata and M.l. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

[9] C. Schwarz, M. Smid and J. Snoeyin.k. An optimal algorithm for the on-line closest
pair problem. Proc. 8th ACM Symp. on Computational Geometry, 1992, pp. 330-
336.

[10] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic time.
Discrete Comput. Geom. 7 (1992), pp. 415-431.

[11] M. Smid. Finding k points with a smallest enclosing square. Report MPI-I-92-152,
Max-Planck-Institut für Informatik, Saarbrücken, 1992.

20

	93-1080001
	93-1080002
	93-1080003
	93-1080004
	93-1080005
	93-1080006
	93-1080007
	93-1080008
	93-1080009
	93-1080010
	93-1080011
	93-1080012
	93-1080013
	93-1080014
	93-1080015
	93-1080016
	93-1080017
	93-1080018
	93-1080019
	93-1080020
	93-1080021
	93-1080022
	93-1080024_1

