
Designing Multi-Commodity Flow Trees

Samir Khuller * Balaji Raghavachari t Neal Young ~

Abstract

The traditional multi-commodity flow problem assumes a given flow net-
work in which multiple commodities are to be maximally routed in response to
given demands. This paper considers the multi-commodity flow network-desigu
problem: given a set of multi-commodity flow demands, find a network subject
to certain constraints such that the commodities can be maximally routed.

This paper focuses on the case when the network is required to be a tree.
The main result is an approximation algorithm for the case when the tree is
required to be of constant degree. The algorithm reduces the problem to the
minimum-weight balanced-separator problem; the performance guarantee of the
algorithm is within a factor of 4 of the performance guarantee of the balanced-
~parator procedure. If Leighton and P~o's balanced-separator proced'~-e is
used, the performance guarantee is O(logn).

1 I n t r o d u c t i o n

Let a graph G = (V, E) represent multicommodity flow demands: the weight of each
edge e = {a, b} represents the demand of a distinct commodity to be transported
between the sites a and b. Our goal is to design a network, in which the vertices of
G will be embedded, and to route the commodities in the network. The maximum
capacity edge of the network should be low in comparison to the best possible in any
network meeting the required constraints. For example, the weight of each edge could
denote the expected rate of phone calls between two sites. The problem is to design a
network in which calls can be routed minimizing the maximum bandwidth required;
the cost of building the network increases with the required bandwidth.

We consider the case when the network is required to be a tree, called the tree
congestion problem. Given a tree in which the vertices of G are embedded, the load
on an edge e is defined as follows: delete e from T. This breaks T into two connected

"Department of Computer Science, University of Maryland, College Park, MD 20742. E-mail :
s amir@r umd. edu.

tComputer Science Department, Pennsylvania State University, University Park, PA 16802. E-
mail : :rbkQcs .psu. edu. Part of this work was done while this author was visiting UMIACS.

lInstitute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.
E-mail : you.ugCm~iacs.umd.eda. Research supported in part by NSF grants CCR-8906949 and
CCK-9111348.

Lecture Notes in Computer Science 709: 433-441 (1993)	doi:10.1007/3-540-57155-8_268

434

components. If S is the set of vertices from G in one of the connected components,
then load(e) is equal to

w (s , 3) =
(~,y)EE,~E$,yE~

In other words, the demand of each edge e = {a, b} in G, maps to the unique path in
T from a to b, and loads each edge on the path. The load of a single edge is the sum
of the demands that load this edge.

In this paper we study two different versions of this problem.

1.1 R o u t i n g T r e e P r o b l e m

The following problem was proposed and studied by Seymour and Thomas [ST].

Definition 1 [ST] A tree T is called a routing tree if it satisfies the following condi-
tions:

 9 The leaves of T correspond to vertices of G.

 9 Each internal vertex has degree 3.

The congestion of T is the maximum load of any edge of T. The congestion of G,
denoted by fiG, is defined to be the minimum congestion over all routing trees T of G.

We would like to find a routing tree T with minimum congestion (that achieves

Seymour and Thomas showed that this problem is NP-hard by showing that graph
bisection can be reduced to this problem. They also showed that in the special case
when G is planar, the problem can be solved optimally in polynomial time.

We provide a polynomial time approximation algorithm for the congestion problem
when G is an arbitrary graph. Our algorithm computes a routing tree T whose
congestion is within an O(log n) factor from the optimal congestion (Section 3). The
alg6rithm extends to the case when the routing tree is allowed to have vertices of
higher degree.

1.2 C o n g e s t i o n T r e e P r o b l e m

We also study the case when T is required to be a spanning tree of a given feasibility
graph GF. We show that the problem is NP-complete (Section 4). In the special
case when GF is complete, we show that an optimal solution can be computed in
polynomial time 1. We conjecture that using ideas similar to the ones used to solve
the routing tree problem, one can design an O(log n) approximation scheme for the
congestion tree problem.

aWe actually show that if the Gomory-Hu cut tree Taw of G [GH, Gu] is a subgraph of GF then
Ta.~ is an optimal solution.

435

1.3 Main Ideas
Our algorithm is a simple divide-and-conquer algorithm that uses the Leighton-Rao
[LR] balanced separator algorithm to split the graph. By a naive application of the
LR algorithm, one obtains an O(log 2 n) approximation factor. Our main contribution
is to show that by a subtle application of LR, one can actually obtain an O(log n)
approximation factor. We suspect that this kind of an application of LR will actually
be useful for other problems as well (in improving approximation factors by a factor
of log n).

2 P r e l i m i n a r i e s
A cut in a graph G is a set of edges which separate G into two pieces S and S = V \ S .
A cut can be represented by the vertex set S. The weight of a cut S, denoted by
W(S, S), is the sum of the weights of those edges which have one endpoint in S and
one endpoint in S. We use W(v) to refer to the sum of the weights of the edges
incident to v. A cut S is b-balanced if n - b _< IS l < (1 - b) - n. The definition is
extended to the case when vertices are weighted as follows. Let U be a non-negative
weight function on the vertices and let U(S) be the sum of the weights of all the
vertices in S. A cut S is b-balanced if

b U(V) < U(S) <_ (1 - b). U(V)

Defini t ion 2 A)~-approximate minimum b-bisector is a b-balanced cut whose weight
is at most)~ times the weight of a minimum-weight 89 cut, for some constant

The following result was proved by Leighton and Rao ([LR], Section 1.4).

T h e o r e m 2.1 ([LR]) It is possible to compute an O(logn)-approzimate minimum
l-bisector in polynomial time.

The above theorem can be extended to the case when vertices are given non-
negative weights [Rao, Tar].

Def ini t ion 3 Let T be a tree and let u be a vertex of degree two in T. Let v and w
be the neighbors of u. The following operation is said to short-cut u in T - delete u
from T :and add the edge {v, w}. Short-cutting T implies the deletion of all vertices
of degree two by short-cutting them in arbitrary order.

3 R o u t i n g Tree P r o b l e m
W(v) corresponds to the total weight between v and other vertices and is called the
load of a vertex. Note that the load of any vertex v is a lower bound on fla, because
the edge incident to the leaf corresponding to v in any routing tree has to handle this
load.

436

L e m m a 3.1 For any vertez v, W(v) < fla.

Given a procedure to compute a ~-approximate minimum b-bisector, our algorithm
finds a routing tree whose congestion is at most)~/b times the optimal congestion.

3 .1 L o w e r B o u n d s

We show two ways of finding lower bounds on the weight of the optimal solution. First,
we show that the weight of a minimum-weight balanced separator is a lower bound
on flQ. Second, we show that the optimal solution for the problem in a subgraph
G t induced by an arbitrary set of vertices V' C V is a lower bound on the optimal
solution of G. This implies that an optimal solution to a sub-problem costs no more
than any feasible solution to the whole problem.

L e m m a 3 . 2 Let G = (V, E) be a graph with non-negative weights on the edges. Sup-
pose we are given a non-negative weight function U(v) on the vertices. Let the weight
of each vertez be at most one-half of the total weight of all the vertices. Let Q be
the weight of a minimum-weight b-balanced separator of G for any b < 1/3. Then
Q<_f~.

Proof. Let T be a routing tree with congestion fa . Each edge e of T naturally
induces a cut in G as follows: delete e from T to obtain subtrees T1 and T2. Let
Se be the set of yertices in G that are leaves of T1 (this yields a cut in G). Clearly,

~ r r I *~'kS,,ae) is the congestion on edge e and hence W(S'~,~) _< fa . Since T is a tree
of degree three, and by the assumption on the weights of vertices, it contains at least
one edge e' which yields a b-balanced separator. Since Q is the minimum b-balanced
separator of G we have Q <_ W(Se,, S~,) <_ f t . D

L e m m a 3.3 Let G = (V, E) be a graph. Let H be a subgraph of G. Then fH ~ fiG"

Proof. Let T be a routing tree with congestion fla. We will generate a routing tree
TH for H from T such that the load of any edge in TH is at most the load of some
edge in T. We generate the tree TH from T as follows. Let VH be the vertex set of H.
Mark the leaves of T corresponding to VH. Repeatedly delete the unmarked leaves of
T until it has no unmarked leaves. Delete all vertices of degree two by short-cutting
the tree, thus yielding TH. The tree that we generate has VH as its leaves and all its
internal vertices have degree three. Hence it is a routing tree for H. Cuts in TH can
be associated with corresponding cuts in T and hence the load on any edge in TH is
at most the load of its corresponding edge in T. [:]

3 . 2 T h e R o u t i n g T r e e A l g o r i t h m

Our basic approach is to subdivide the graph into pieces which are smaller by a
constant fraction using an approximately minimum bisector. Since computing a
minimum-weight balanced separator is also NP-hard, we use approximation algo-
rithms designed by Leighton and Rao [LR] for computing approximately minimum-
weight balanced separators (or approximate minimum bisectors). The solutions for

- 437

the pieces are obtained recursively. All internal vertices of the solution tree have de-
gree three except for the root. The two trees are glued together by creating a new root
and making the roots of the pieces as the children of the new root. If implemented
naively, this procedure leads to an O(log 2 n) factor approximation. Using balancing
techniques, we improve the performance ratio to O(log n).

Suppose S, a subset of the vertices representing a subproblem, is split into two
pieces $1 and $2 using an approximate bisector. When the problem is solved recur-
sively on the two pieces, the main obstacle to obtaining an O(log n) approximation is
the following. In the worst case, it is possible that most of the load corresponding to
W(S, S) may fall on $1 or $2. If this happens repeatedly, an edge can be overloaded
proportionally to its depth in the tree. To avoid this, it is necessary to partition the
demand from S roughly equally among the pieces $1 and $2. The following idea solves
the problem and leads to an O(log n) approximate solution. Suppose we define a
weight U(v) for each vertex v in S according to the amount of demand from v to the
set S. Now when we split S, we use a cut that splits the vertices of S into sets of
roughly equal weights. Lemma 3.2 guarantees that the minimum value of such a cut
is a lower bound on/3s, which is a lower bound on/3a by Lemma 3.3.

A t 1
(a)

I

o
i

11

. !

I
I
i i
I

(b)

~ f

\

/

p

o..

2"->.
(c) (d)

Figure 1: Example to illustrate algorithm.

We illustrate the recursive step of the algorithm by an example in Fig. 1. The
algorithm first splits graph G into A, B by using an approximate bisector. Each
vertex in A is assigned a weight equal to the total demand it has to vertices in 1t.
Similarly vertices in B are assigned weights corresponding to their demands from/~.
The algorithm now recursively splits A and B by approximate bisectors. The weight
of each vertex in A1 is now increased by its demand to vertices in A2 (similarly for

438

sets As, B1,B2). The problem is solved recursively on each piece. These recursive
calls return with respective trees as solutions for the pieces A and B as shown. By
adding new edges and a new root vertex, the solution for the entire graph is obtained.

The algorithm given in Fig. 2 implements the above ideas. Given a graph G,
ROt/WE-TREE(V) returns a routing tree for G. To make sure that the root of the tree
has degree three, we can discard the root by short-cutting it.

ROUTE-TREE(S') - - Find a routing tree for S.
1 I f IS[= 1 t hen R e t u r n S as a tree on a single vertex.
2 For each v e S, fix its weight U(v) to be W({v}, S).
Let the sum of the weights of the vertices in S be Us.
3 I f for any vertex v, U(v) >_ Us/2 and Us ~ 0 t h en
4 ROUTE-TREE(S \ {v})
5 Create a new tree T by attaching the above tree and v as the children

of a new root r. R e t u r n T.
6 Find an approximate minimum-weight 88 separator for the

subgraph induced by S in G (if Us = O, find an unweighted balanced
separator). Let this break S into pieces $1 and $2.

7 ROUTE-TREE(S1)
8 ROUTE-TREE(S2)
9 Create a new tree T by attaching the two trees generated above as the

children of a new root vertex. R e t u r n T.

Figure 2: Approximation Algorithm to Find a Routing Tree

Let the algorithm use a A-approximate minimum 88 in Line 6. If Leighton
and Rao's [LR] balanced separator algorithm is used, A = O(log n). The following
theorem shows that the load of any edge is at most 4A times the optimal congestion.
We use induction to prove that our load-balancing technique splits the load properly.

T h e o r e m 3.4 (Pe r fo rmance) The algorithm in Fig. 2 finds a routing tree T for G
such that fit <-- 4Aflc.

Proof. The proof proceeds by induction on the level of recursion. In the first call
of ROUTE-TREE, G is split into two pieces S and S using an approximate bisector.
We then find routing trees for S and ,~ and connect the two roots with an edge e.
The load on e is W(S, S). By Lemma 3.2, the weight of a minlmum-weight balanced
separator is a lower bound on tic. The weight of the separator the algorithm uses is
guaranteed to be at most A times the weight an optimal separator. Hence the load
on edge e is at most Afla. This satisfies the induction hypothesis.

For the induction step, let us consider the case when we take a set ,5' and split it
into two pieces $1 and $2 (see Fig. 3). Let L be the load on the edge connecting the
tree for S to its parent. Similarly, let Li (i = 1, 2) be the load on the edge connecting
the tree for Si to its parent. Inductively, L <_ 4A/~c. We show that each L~ _< 4Aflc.

439

Z Z
Figure 3: Inductive proof.

Let U be the weight function defined by the algorithm in this recursive call. Note
that L = U(S) = W(S, S) and L, = W(SI, Si) = W(Si, S) + W(S1, SJ . Also observe
that U(Si) = W(S~, S).

Case I: If there is some vertex v in S whose weight U(v) is more than U(S)/2:
then we split S as S, = {o} and $2 = S \ {v}. Since Li = U(Si) + W(SI, $2) and
U(S1) > U(S)/2 > U(SJ it follows that L1 > L2. This is because U(S) is the sum of
V(Sx) and U(SJ. It remains only to bound Lx. The demand from v, W(v), is a lower
bound on the congestion (by Lemma 3.1) and therefore fig >_ W(v) = L1. Hence both
L1 and L2 satisfy the induction hypothesis.

Case ~: Otherwise, the algorithm distributed U(S) into the weights of the vertices
of S and then used a A-approximate ~-bisector of S. By the induction hypothesis, the
edge from the subtree of S to its parent has a load L (= U(S)) of at most 4Afla.

Since W(S~,S) = U(S~) <. ~U(S) and W(S1,SJ < Aria (by Lemmas 3.2 and 3.3)
we have:

Li = W(Si, S) + W(S,, $2) <_ 32~t3c + Aria.
D

T h e o r e m 3.5 (R unn ing T i m e) The routing tree algorithm in Fig. 2 runs in poly-
nomial time. Iq

Corol la ry 3.6 The algorithm in Fig. 2 finds in polynomial time a routing tree T for
G such that fir = O(log n)fla.

Note : Our algorithm also handles the case when vertices of G are allowed to be
internal vertices of the output tree. Lemmas 3.2 and 3.3 are valid in this case als0. The
lower bound in Lemma 3.1 weakens by a factor of 3. This lower bound is not critical
to the performance ratio, so the performance ratio of the algorithm is unchanged.

440

Our algorithm can be generalized to find routing trees when every internal vertex
may have degree up to k, for any k > 3. We obtain the same O(log n) approximation
factor, independent of k. An algorithm obtaining an approximation factor of n/k is
straightforward and is useful as k approaches n.

4 General Congest ion Problem

4 .1 N P - C o m p l e t e n e s s

In this section we show that the following problem is NP-complete. Given a graph
G = (V, E) representing a demand network. Each edge e = {a, b} has a nonnegative
weight w(e) that represents the demand between the sites a and b. We are also given
a feasibility graph G ~ and an integer D. The problem is to find a tree T that is a
subgraph of G', such that when the demands of the edges in G aremapped to the
tree T the congestion on each edge is at most D.

The reduction is done from the k Edge-Disjoint Paths Problem, known to be
NP-Complete [G J].
k Edge-Dis joint Pa ths P r o b l e m : Given an undirected graph H = (V, E), and sets
S = {sl,s2,... ,sk} and T = {tl,t2,.. . ,tk} are there k mutually edge-disjoint paths
P1,P~,...,P~ such that Pi connects sl with tl ?

It is easy to see that this problem can be reduced to the general t ree congestion
problem. For the reduction we construct G' from H. For each vertex u E V, if u
has degree d(u), we create a clique on d(u) vertices, ul,u2,...,ud(~). For each edge
from v to w we introduce an edge from vl to wj where these are distinct vertices (not
shared with any other edges). (Informally, each vertex is "exploded" into a clique,
and the edges incident on the vertex are made incident on distinct clique vertices.)
The demand graph G has edges between sl and tl (for all i). If there is a solution
to the disjoint paths problem, clearly that yields a congestion tree with bandwidth
one. The set of paths Pi can form cycles, but these cycles can be "pried" apart in G'
since we replaced each vertex with a clique. These can now be connected to form a
congestion tree with bandwidth one.

If there is a solution to the congestion tree problem it is clear that this yields
a solution to the edge-disjoint paths problem (the demand edge from st to sj gets
mapped to a path in the tree and causes a load of one on each edge). Since the
bandwidth is restricted to one, no other path can use the same edge (even when we
go from G' to H).

4 . 2 P o l y n o m i a l l y S o l v a b l e C a s e

In this section we show that when Tall C_ GF (the feasibility graph contains the
Gomory-Hu cut tree) we can solve the congestion problem optimally. (This is certainly
the case when GF is a complete graph.)

Given the demand graph G, we compute the Gomory-Hu cut tree TcH [GH, Gu].
This is the tree that is used to route the calls. This yields an optimal solution for the
following reason: consider any edge e = {s, t} with load L(e). Tall has the property

441

that L(e) is the value of the s-t min cut. Clearly any s-t min cut is a lower bound on
the optimal congestion.

Theorem 4.1 Tall is an optimal solution to the congestion problem.

R e f e r e n c e s
[CJ]

[GH]

[Cu]

[LR]

[Rao]
[ST]

[Tar]

M. R. Garey and D. S. Johnson, "Computers and Intractability: A guide to
the theory of NP-completeness', Freeman, San Francisco (1979).

R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of SIAM~
9(4): 551-570, 1961.

D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM
Journal on Computing, 19(1): 143-155, 1990.

F. T. Leighton and S. Ran. An approximate max-flow min-cut theorem for
uniform multicommodity flow problems with applications to approximation
algorithms. In Proc. 29th Annual Symp. on Foundations of Computer Sci-
ence, pages 422-431, October 1988. White Plains, NY.

S. Ran. Personal communication.

P. Seymour and R. Thomas. Call routing and the rat catcher. Workshop on
Algorithms and Combinatorial Optimization, March 1991. Atlanta, GA.

l~. Tardos. Personal communication.

