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Structural Equivalence and ETOL Grammars'

Kai Salomaa? Derick Wood? Sheng Yu*
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Abstract

For a given context-sensitive grammar G we construct ETOL grammars G; and G5 that are
structurally equivalent if and only if the language generated by G is empty, which implies that
structural equivalence is undecidable for ETOL grammars. In contrast, structural equivalence is
decidable for EOL grammars and for extended EOL grammars. In fact, we show that structural
equivalence i1s undecidable for propagating ETOL grammars in which the number of tables is
restricted to be at most two. A stronger notion of equivalence that requires the sets of syntax
trees to be isomorphic is shown to be decidable for ETOL grammars.

1 Introduction

When considering various devices such as grammars and automata for defining languages, a central
question is to determine whether two such devices are equivalent; that is, whether they generate (or
recognize) the same language. It is well known that language equivalence is undecidable for context-
free and EOL grammars, since two grammars may, in general, be language equivalent although the
derivations of a given sentence are completely different. When dealing with sequential or parallel
context-free grammars, we may consider the notion of structural equivalence, also known as strong
equivalence, instead of language equivalence. Two grammars are structurally equivalent if the
structures of the syntax trees that correspond to each sentence are the same. We define the
structure of a syntax tree as the tree that is obtained by deleting the nonterminals that label
internal nodes. An even stronger notion of equivalence, which we call syntax equivalence, requires
that the sets of syntax trees are identical modulo a renaming of the nonterminal symbols.

Paull and Unger [9], and McNaughton [5] showed that structural equivalence of context-free
grammars is decidable. Thatcher [15, 16] gave a considerably simpler proof of decidability by
reducing it to the emptiness problem of finite-state tree automata. Ginsburg and Harrison [2]
established the decidability of a more restricted problem, namely, they encoded the syntax trees of a
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context-free grammar as a bracketed context-free language and showed that equivalence of bracketed
languages is decidable. Thatcher [15] also established decidability of structural equivalence for
extended context-free grammars (“context-free grammars” that have productions with regular right-
hand sides), and Cameron and Wood [1, 18] give a grammatical proof of decidability that is similar
to McNaughton’s proof for context-free grammars as expounded by Salomaa [12].

The question of structural equivalence for EOL grammars was first raised by Ottmann and
Wood [7, 8], where they also obtained partial decidability results for certain restricted types of
grammars. FOL structural equivalence was shown to be decidable by Salomaa and Yu [14] using
the automata-theoretic approach of Thatcher [15, 16]. The same proof can be used to see that
syntax equivalence of EOL grammars is also decidable. An alternative grammatical proof for the
decidability of EOL structural equivalence was given by Niemi [6] based on the approach of Ottmann
and Wood [8]. The grammatical proof is more complicated (asin the case of context-free grammars),
but it has the advantage that it produces for a given EOQL grammar a structurally equivalent normal
form such that two EOL grammars in the normal form are structurally equivalent if and only if
they are isomorphic. This decidability result has been extended by Cameron and Wood [1, 18] to
extended EOL grammars (“EOL grammars” that have productions with regular right-hand sides).
The complexity of the EOL structural equivalence problem has been studied by Salomaa et al. [13].
Recently, Istrate [3] has shown that structural equivalence of ETOL grammars is decidable when
we require that corresponding syntax trees use isomorphic sequences of tables. The decidability
of structural equivalence for TOL and EDTOL grammars remains open. We conjecture that TOL
structural equivalence is decidable since every level in two structurally equivalent syntax trees must
give identical terminal strings. We cannot relabel the internal nodes of a syntax tree as we do for
ETOL syntax trees. It was noted by Salomaa and Yu [14] that structural equivalence is undecidable
for indexed grammars.

Here we show that structural equivalence is undecidable for ETOL grammars. More specifically,
structural equivalence is already undecidable for a propagating EOL grammar and a propagating
ETOL grammar. Furthermore, the number of tables in the ETOL grammar can be restricted to
two. In contrast we show that syntax equivalence is decidable for ETOL grammars. These results
demonstrate that the notions of structural and syntax equivalence are essentially different.

The proof of undecidability uses a reduction from the emptiness problem for context-sensitive
languages, which is a well known undecidable problem [12, 17]. For a given context-sensitive
grammar G, we construct ETOL grammars GG; and G5 that are structurally equivalent if and only
if L(G) = 0. The construction is considerably simplified by the use of a normal form for context-
sensitive grammars in which the productions have only one-sided context that was established by
Penttonen [10].

Intuitively, the grammar Gy simulates the context-sensitive grammar G by ignoring the context
conditions. For technical reasons we add new branches to the derivations in G4 that we use
to guarantee that the syntax trees are in one-to-one correspondence with their structures. The
grammar (9 simulates G in a similar way but, in addition, it nondeterministically verifies that
the context conditions of GG are violated at least once. Intuitively, G5 uses a context-sensitive
production once, which can be accomplished by sending, nondeterministically, messages down the



syntax tree. The choice of table that is used to delete the messages gives the necessary context

information for the context-sensitive derivation step.

2 Preliminaries

We assume that the readers are familiar with the basics of formal language theory and with ETOL
grammars in particular [11, 12, 17]. In the following, we review the definitions of the syntax trees
of ETOL grammars.

Let A be a finite set. The cardinality of A is denoted #A and the power set of A is P(A).
The family of finite multisets over A is M(A). A multiset is denoted by listing its elements in
double braces. Let ¢« € A and B = {{b1,...,b,,}} € M(A); then, #,[B] denotes the number of

occurrences of a in the sequence bq,...,0b,,. Also,
base(B) ={a € A : #.,[B] > 1}.

The set of finite strings (resp. nonempty finite strings) over A is A* (resp. A*). The empty string
is denoted by A. For @ € A and w € A*, #,(w) denotes the number of occurrences of a in the

string w. Also we define

alph(w) ={a € A : #,(w)>1}.
An ETOL grammar G is specified by a tuple

(1) G=(V,X,5H),

where V' is a finite alphabet of nonterminals, ¥ is a finite alphabet of terminals, S € V is the initial
nonterminal, and H is a finite set of tables of productions from V to finite subsets of (V U X)*.
We define a table h € H as a finite set of productions @ — w, where ¢ € V and w € (VUX)*. A
grammar G is an EOL grammar if it has only one table, that is, #H = 1. We say that a grammar
is propagating if the right side of every production is nonempty, that is, for all h € H, a € V:
(a — A) ¢ h. Propagating ETOL and EOL grammars are called EPTOL and EPOL grammars,
respectively. Although we can restrict our attention to EPTOL grammars for the undecidability of
ETOL structural equivalence, for the decidability of syntax equivalence we need to deal with ETOL
grammars to obtain the strongest result.

In the following, G denotes an ETOL grammar as in (1). Let Fg be the set of all rooted
ordered trees where the nodes are labeled by elements of V' U X U {;\} Here A is a new symbol
corresponding to the empty string A. The set of nodes of 7' € F{; is denoted as dom(7"), the domain
of T'. The label function associating an element of V U X U {;\} to each node of 7" is denoted by
laby : dom(T) — V U X U {A}.

We define the parallel derivation relation —p"C Fg x Fg as follows. Let T,7" € Fg. Then
T —2* T"if and only if 77 is obtained from 7" as follows. Assume that 7" has n external nodes
U, ..., Uy, where labr(u;) = a; € V' U {;\}, t=1,...,n. Consider a table h ¢ H and for every
i€ {1,...,n} such that a; # A choose a production

a; — by bl € h,
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b; eVuX,j=1,...k, k >0. If a; # A and k; > 1, then in 7" the node u; has k; successors
labeled respectively by the symbols b}, .. "b;w‘ If a; # Aand k; = 0, then the node u; has exactly

one successor labeled by the symbol A Ifa; = ;\, then u; has no successors in 7”.
The set of syntax trees S(G) of an ETOL grammar G is defined by

S(G) = {T e g . S/ (—>gar)* T},

where S’ is the tree with a single node labeled by 5.

In a syntax tree T all paths from the root to an external node labeled by an element of V U
Y} have the same length. Note that a path from the root to a node labeled with A need not
be the same length as the paths from the root to nodes labeled with elements of V' U X. In
an EPTOL grammar, however, all root-to-external-node paths as the same length. According to
our definition, if a tree T € S(G') has an external node labeled by a terminal symbol, then the
derivation cannot be continued from 7T, that is, G is synchronized, see the text of Rozenberg
and Salomaa [11]. We observe that the assumption of syncronization does not affect our results.
Given a nonsynchronized ETOL grammar, we can convert it into an equivalent synchronized ETOL
grammar by introducing a new nonterminal symbol, a nonterminal partner, for each terminal
symbol in the grammar. Next, we replace every appearance of a terminal symbol in the productions
of the grammar with its partner and, finally, add to each table a production that rewrites each
nonterminal partner as its corresponding terminal symbol. Clearly, every terminal syntax tree in
the nonsynchronized grammar corresponds to a terminal syntax tree in the synchronized grammar
that has an extra last level that uses the added productions and conversely. Thus, based on
this construction, two nonsynchronized ETOL grammars are structurally equivalent if and only if
their synchronized versions are structurally equivalent. Alternatively, since nonsynchronized ETOL
grammars are a wider class than synchronized grammars, the undecidablity carries over directly.

A syntax tree T € §(G) is terminal if all external nodes of T are labeled by elements of XU {A}.
The set of terminal syntax trees of GG is denoted by T'S(G).

Let ey : (VUXU{A})* — (V UX)* be the morphism defined by the conditions ey(a) = a if
a € VUY and eyx(A) = \. For T € Fg denote by wr (€ (V UX U {A})T) the string obtained by
catenating from left to right the symbols labeling the external nodes of T'. The yield of T is defined
as

yield(T') = ex(wr).
The set of sentential forms of an ETOL grammar G is
sf(G) = {yield(T) : T € S(G)}.
The relation —g" determines a parallel derivation relation =7 on (V U X)* as follows. Let
wy,wy € (VUX)*. Then wy =¢" ws if and only if there exist T; € Fg, i = 1,2, with yield(7}) = w;
such that Ty —g" T5. The language generated by G is
LG)=sf(G)nY"  ={we ¥ : §(=5") w}.

Clearly the preceding definition of L((G) is equivalent to the standard definition of the language
generated by an ETOL grammar given by Rozenberg and Salomaa [11].



Let T € TS(G). The structure of the terminal syntax tree T, strg(7T), is the external-node-
labeled tree obtained from 7" by removing the labels of all internal nodes of T' (that is, nodes that
are not external). Formally, strq(7') = 7" can be defined as follows. Let ¢ be a new symbol not in
VUX. Then dom(7”) = dom(7T), labg/(u) = laby(u) if u is an external node of T" and labg(u) = ¢
if w is an internal node of 7. We denote

STS(G) = {stre(T) : T € TS(G)}.

Now we can define the various notions of equivalence of grammars considered here. Let 7 and
G5 be ETOL grammars. The grammars 7 and G5 are said to be

o language equivalent if L(Gy) = L(Gy),
o structurally equivalent if STS(G1) = ST S(G2), and
o syntax equivalent if TS(G1) and T'S(G;) are equal modulo a renaming of the nonterminals.

Note that syntax equivalent grammars are always structurally equivalent and structural equivalence
in turn implies language equivalence. It is well known that language equivalence is undecidable
already for context-free grammars. Structural equivalence of context-free and EOQL grammars is
decidable [5, 6, 8, 9, 14, 15, 16]. Syntax equivalence of context-free grammars is considered in
Ginsburg and Harrison [2].

To conclude this section we recall the definition of a normal form for context-sensitive gram-
mars established by Penttonen [10]. A PNF (Penttonen-normal-form) context-sensitive grammar is
specified by a tuple Gpyp = (Un, Ur, I, P), where Uy is a finite set of nonterminals, Uy is a finite
set of terminals, I € Uy is the initial nonterminal, and P is a set of productions of the following

three types:
¢ Right-context productions: BD — C'D, where B,C, D € Uy
¢ Context-free productions: B — C'D, where B,C, D € Uy
e Terminating productions: B — b, where B € Un, b € Uy

Thus, we allow only one-sided context in the productions. The productions of P define, in a
natural way, the (sequential) rewrite-relation = ¢, . C (UxUUp)t x (UyUUr)T and the language
generated by Gpyr is
_ + . +
L(GPNF) = {w € UT 1 :>GPNF w}

Strictly speaking, instead of the preceding productions with a right context condition Penttonen
normal form [10] allows only left context in the productions of the grammar, (that is, productions of
the form DB — DC'.) The definitions are, however, completely symmetric. Penttonen [10] proved
the following result.

Theorem 2.1 (Penttonen [10]) For an arbitrary context-sensitive grammar Geogs (with no length
reducing productions) we can effectively construct a PNF grammar Gpnp such that L(Gpyp) =

L(Gcs).



3 Syntax equivalence

For context-free and EOL grammars both syntax equivalence and structural equivalence are decid-
able [2, 5, 6, 14]. Before proving our main undecidability result, we show that syntax equivalence
is decidable for ETOL grammars.

Lemma 3.1 Given ETOL grammars G; = (V;,%;, 5, H;), i = 1,2, we can effectively decide
whether
TS(Gh) =TS5(Gy).

Proof. We say that an ETOL grammar G is reduced if all nonterminal and terminal symbols of
G appear in some terminal syntax tree of G. Using standard methods we can effectively find the
subsets V/ C V;, ¥ C %;, 1 < ¢ < 2, that consist of all symbols appearing in some tree T' € T'S(G;).
Thus, we can also effectively construct a reduced grammar G} that is syntax equivalent to G;, for
¢t = 1,2, simply by removing the unnecessary symbols of V; U X; and the productions that contain
some of these symbols. Hence, without loss of generality, we can assume that the grammars Gy
and G5 are reduced and that V3 =V, =V, ¥ = Xy = X, 57 = 55 = 5, because if, say, V1 # V5
and G4 and Gy are reduced, then T'S(G) # T'S(Gy).

The proof is based on the straightforward observation that T°S(G4) C T'5(G9) if and only if, for
every set of productions py,...,p, € h, h € Hy, that can be used in one parallel step of a successful
derivation of (1, there exists a table h’ € Hy such that py,...,p, € I'. We define a family 1 of
multisets over ¥V UY that determines which sets of productions of Hy are simultaneously applicable
in a derivation starting from the initial nonterminal. Also, we define a collection 7, of sets over
V' U 3 that determines which sets of productions of H; yield a sentential form that can eventually
be rewritten to a terminal string or sentence. (Note that, although G is reduced, it is still possible
that, for productions a; — w;, ¢ = 1,2, belonging to a table of Hy, the string wyw, cannot yield
a sentence.) Then, to complete the proof it is sufficient to show that the sets vy, 7 (and the
corresponding sets 7z, 172 constructed for the grammar (3) are recursive. We now give the details
of the proof.

For h € H;, 1 <1 < 2, we denote by M}, the maximal number of productions of h that have
the same left-hand side @ € V. Then, we define

M =max{M;, : he H;, 1 <i<2}.
We say that w € (V UX)* covers a multiset B € M(V UX) if
e alph(w) = base(B), and
o (VaeVUY) #4.(w)> #,[B].

Intuitively, if w covers B, then w consists of exactly those symbols that belong to B and the
multiplicity of each symbol @ in B is at most the number of occurrences of a in the string w.
Let Qs consist of all multisets B € M(V U X) such that

(Va e VUY) #,B] <M.



For ¢ = 1,2, we define a family v, C M(V U X) of multisets as:
v =4B : B € Qp and (Fw € sf(G};)) such that w covers B}.

The collection -; of multisets can be effectively constructed. The family Qs is finite and, for a
given multiset B € Quy, we can determine whether B € +; as follows. Denote by Lp the set
{we (VUX)* : wcovers B}. Clearly, Lp is a regular language; thus, we can construct an ETOL
grammar G such that

L(GB) = sf(G))n Lp.

To decide whether B € v;, we merely check whether L(G?) is nonempty. Recall that the emptiness
problem for ETOL grammars is decidable [4].
Next, for i = 1,2, we define ; C P(V UX) by

par

(2) ni=Har, o an} (JwEXT) ar-ray (¢, )" wand ay,...,a, € VUL}

Note that, for A € P(V UX), the relation A € n; depends only on the set A although condition (2)
contains a sequence of elements of A. Similar to the preceding argument, using the decidability of
emptiness for ETOL grammars, we verify that 7; can be effectively constructed.

Now, for 7 = 1,2, define the set v; ¢ 1n; C Qpy as:

vion ={B : B €~; and base(B) € n;}.
Thus, B € v; on; if and only if there exist wy € (V U X)* and wy € ¥* such that wy covers B and
§ (=2 wn (5 s,

It should be clear that, if v1 © g1 # 72 ¢ 12, then T'S(G1) # T'S(G3). Therefore, we need consider
only the case
Yiom =720 =W,
Let B = {{b1,...,b,}} € Qs be such that base(B) C V. We say that B is (1,2)-consistent if

the following condition holds:
For every h € Hy and sequence

(3) probi—wi, o prt by —

of productions of h, where wy,...,w, € (V U X)*, such that

m

(4) |J alph(w;) € n1,
=1
there exists b’ € Hq such that py,...,p, € h'. Note that B is a multiset and the elements by, ..., b,
are not necessarily distinct.
We claim that
(5) TS(Gy) CTS(Ge)



if and only if
(6) (VB € w) B is (1,2)-consistent.

First assume that (6) holds and let
§ =Ty Ty~ T,

be the derivation of an arbitrary syntax tree T,, € T'S(G1). Let j € {0,...,n — 1} and assume that

the derivation step
Dj: T =& Tina

uses a table h € Hy. For a € V denote by D;(a) the number of different productions of h
with left side ¢ used in D;. Let B, be the multiset containing D;(a) copies of the element
a € V. Then yield(T;) covers B; and it follows that B; € v; o1y = w. (Note that B; € Qy
since D;(a) < M for every a € V.) Hence B; is (1,2)-consistent by the assumption (6). Since
yield(Tjy1) (=6 )" yield(T,) € ¥* it follows that the set of productions of & used in the derivation
step D; satisfies the condition (4). Now by the (1,2)-consistency condition there exists b’ € H,
that can be used to exactly simulate the derivation step D;, 0 < j <n —1. Thus T,, € T'S(G3).

Conversely, assume that B = {{b1,...,b,}} € w is not (1,2)-consistent. Then there exists
h € Hyand py,...,p, € hasin (3) and (4) such that

(7) P1, .- -, Pm are not contained in any table of H.

Since B € w, there exists T' € S(Gy) such that yield(T') covers B. Let {uj,...,u,} be the set of
external nodes of 7' that are labeled with elements of V. Since yield(T') covers B, there exists a
surjective mapping f from {uq,...,u,} to the multiset B such that f(u;) = labr(w;), 1 <@ < n.
Consider the derivation step

D:. T _%);ir 11,

where in an external node u;, 1 < ¢ < n, one applies the production p; : b; — w; where f(u;) = b;,
je{l,...,m}. Since f is surjective, the derivation step D uses all productions py,...,p,. Also,
since J7Z, alph(w;) € 1y, there exists Ty € T'S(Gq) such that Ty (=g )" T. On the other hand, it
is clear that Ty ¢ TS(G2). Note that by (7), T £A¢) Ti.

For a given multiset B € w, the (1,2)-consistency condition is decidable, since 7; can be com-
puted. Since w is finite and recursive, we can decide whether (5) holds. Finally, by symmetry, we
can determine whether TS(G3) C T'S(G). o

Since the number of nonterminals is finite the following result follows immediately from Lemma 3.1.

Theorem 3.1 Syntazx equivalence is decidable for FTOL grammars.

4 Structural equivalence

Here we prove our main result: structural equivalence of ETOL grammars is undecidable. In the

proof we need to consider only propagating grammars and, furthermore, one of the grammars can



be restricted to have only one table. The proof uses a reduction from the emptiness problem for
context-sensitive languages, which is well known to be undecidable [12, 17]. For a given PNF
context-sensitive grammar G'pyp we construct ETOL grammars G and G5 that are structurally
equivalent if and only if the language generated by G'pyp is empty. The grammar (7 essentially
simulates the derivation of G pyp but ignores the context conditions. The grammar G, is as Gy
but, in addition, it sends messengers down the syntax tree that nondeterministically verify that the
context condition of GpyF is violated somewhere in the syntax tree.

The construction that we use requires that the productions of the given context-sensitive gram-
mar have only one-sided context, more specifically, right-sided context. (The proof could easily be
modified to use left-sided context which is the original normal form of Penttonen.) Because of this
restriction, we need only two messengers in the syntax tree. More important, the right-sided context
allows us to interpret an arbitrary parallel derivation step of the corresponding ETOL grammar G,
Ty —%ir T5, as a sequence of rewrite steps of Gpyp, performed from left to right by checking the
context conditions only with respect to the initial sentential form, yield(7}). If we had productions
with two-sided context, the construction would be considerably more involved.

Theorem 4.1 Given an EPOL grammar G and an EPTOL grammar G4, it is undecidable whether
(8) STS(Gh) = STS(Gy).

Proof. Let Gpyp = (Un,Ur, I, P) be an arbitrary PNF context-sensitive grammar. Let

(9) P1ye s Phys Pla+1 - -5 Pk nglgk
be an enumeration of the nonterminating productions of P, where py,..., pg, are the right-context
productions and pg, 41, ..., pr are the context-free productions of P. We construct an EPOL gram-

mar (1 and EPTOL grammar G such that (8) holds if and only if L(Gpnr) = 0.
Choose
Gy = (UN U {vav Sl}v Uru {$7 @}7 Slv {h})7

where XY, 51 are new nonterminal symbols, $, @ are new terminal symbols (X,Y,51,%,@ ¢ Un U
Ur), and the table h contains exactly the following productions:

(G1.0) 51 — IY.

(G1.1) B — CX'if p;: BD — CD, 1< i< ky, is a right-context production of P.
(G1.2) B—CDX'if p;: B— CD, ky <i <k, is a context-free production of P.
(G1.3) B — B for every B € Uy.

(G1.4) B — bif B — bis a terminating production of P.

(G1.5) X=X, X =85 Y—-Y,V—a.



Intuitively, the grammar G simulates the derivations of G pyp by ignoring the context conditions:
the productions defined in (G7.1) can be applied independently of the right context. In addition,
the grammar G4 adds, for each nonterminating production p;, ¢ copies of the nonterminal X to
the derivation tree. This technical modification ensures that a terminal syntax tree 7" € T'S(Gh)
is always uniquely determined by strg, (7). Also, for technical reasons, the production (G7.0)
introduces a “right endmarker” Y in the derivation. Note that the initial nonterminal 57 appears
only at the root of each syntax tree of G.

Claim 1. The function strg, : T'S(G1) — ST S(Gh) is injective.

Proof of Claim 1. Let 77,7, € T'S(G4) be such that strg, (11) = strg, (1%) = t. The tree T,
i = 1,2, is determined completely by the domain dom(7;) and the label function laby,. Since
strg, (T1) = strg, (1), it follows that dom(77) = dom(7%) = dom(¢) and labg, (u) = labyg,(u), for
every external node u. We show that, for every internal node u € dom(?), laby, (u) = labg,(u) by

induction on the distance d(u) of u from the root of ¢.

(i) If d(u) = 0 or d(u) = 1, then labg,(u) is uniquely determined by the production (G4.0),
1< <2

(ii) Let u be an internal node of ¢ that is not the root and let d(u) = e > 2. Let v be the parent of
w and let § = (uq,...,uy), m > 1, be the sequence of children of v, where u, = u, for some
re{l,...,m}. Let 2 = (ujq1,...,%y), 0 < j < m, be the subsequence of § that consists of
all nodes u; that are the roots of unary trees that have external nodes labeled with $. (From
the definition of the productions of Gy it follows that Z is necessarily a suffix of 7.)

(a) If Z is the empty sequence, then necessarily m = 1 and the production that is applied
at the node » in the syntax tree 7T;, 1 < ¢ < 2, has to be of the forms B — B,
B € Uy, or Y — Y. By the inductive assumption laby, (v) = labyg,(v) and it follows
that lab, (u) = labg, (u).

(b) If § = 2, then necessarily m = 1 and the production that is applied at v in T3, 1 <@ < 2,
has to be X — X.

(e¢) If § # Z and Z is nonempty, then 1 < j < m. Clearly, for i € {1,2} and n € {1,...,m},
lab,(u,) = X if and only if n > j. (The external nodes of the subtrees that correspond
to the nodes u;4q,..., uy, are labeled by the terminal symbol $.) Thus, the production
applied at the node v in T3, 1 < ¢ < 2, has to be the production that corresponds
(by (G1.1) or (G4.2)) to the production p,,_; of the grammar Gpyp. It follows that
laby, (u,) = labr, (u,), for all n € {1,...,m}.

We have completed the proof of the claim.

We say that a terminal syntax tree T € T'S((G) is context-sensitive if the rewrite steps that are
indicated in T do not violate the context conditions of the grammar Gpyp.
More formally, we define the context-sensitive derivation relation (of Gy with respect to Gpyr)

ar

on the set of syntax trees, —%1 [OS]QH%T, as follows. Let Ty,Ty € Fg, and Ty —%ir T5. Assume

10



that the sequence of external nodes of T} from left to right is (uq,...,u,) where u; is labeled by
A; e UvUA{X,Y, 51}, 7 =1,...,m. (Note that GGy is propagating.) Furthermore, assume that 75
is obtained from Ty by attaching r; > 1 successors labeled by the symbols Bi,.. .,Bf,i to the node
u;. Then,

B —ges T2
if and only if the following condition holds.

(CS) Let i € {1,...,m} be such that
By Bl =CX""1 CeUn,2<r; <k + 1.

This means that the production 4; — Bi -- B;l of h corresponds to the right-context pro-
duction p,,—q1 : A;D — CD of P for some D € Uy. Then, there exists j € {i + 1,...,m}

such that A;41 = Ai4o =---=A;,_1 = X and A; = D; that is, the next nonterminal symbol
different from X in the yield of T3 is D as required by the context condition of the production
Pri—1-

The set of context-sensitive syntax trees of G is defined as
Scs(G1) =A{T € Fa, : 51 (=G jos)" T
where S denotes the tree with one node labeled with the initial nonterminal ;. Also define
TScs(Gh) = Scs(Gr)NTS(Gy).

Claim 2. T'Scs(Gy) # 0 if and only if L(Gpnr) # 0.
Proof of Claim 2. Let f\ : (UvUUr U{X,Y,$,@})" — (Uy U Ur)* be the morphism defined by
fla)=a, fora € Uy UUr, and fr(X)= f(Y) = fi($) = /(@) = A

First assume that T'Scs(G1) # 0 and let

TO . gar

par . par
1[05] Tl - Tm

Gilcs] T T aes]

be a parallel context-sensitive derivation of T, € T'Scs(G1), where Tj is the tree with one node
r

labeled by S;. From condition (CS) in the definition of the relation —%i (cs) it follows that

(10) Nyield(T;)) =6, p H(yield(Tig1)),

1 <2< m—1. Note that the productions of Gpnp involve only right context conditions. Hence
if we ignore the external nodes labeled by the nonterminal X, then a parallel derivation step of

(1 that satisfies (CS) correctly simulates a sequence of derivation steps of Gpnp performed from
left-to-right. By (10) it follows that

I = fiyield(Th)) =5, H(yield(Ty)) € Uf;
thus, L(Gpnr) # 0.
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For the proof in the “if”-direction, assume that

2%
1 = wyg =Gpnp W1 =Gpyp " T Gpyr Wm = Gpyp Wmtls

where wq, ..., w,, € U]'\i}, Wmt1 € U:'p" and the derivation w,, :>5PNF W41 uses only the terminat-
ing productions of Gpnp. Since the context conditions of G pyp involve only nonterminals, every
string w41 € L(Gpnp) has a derivation of this form. We show that, for every i € {0,...,m},
there exists 1; € Scs(G1) such that

(11) (yield(T;)) = w; and yield(T3) € (Unv U{X, Y })™
(i) For ¢ = 0, we choose Ty to be the tree obtained from S7 with the production (G1.0).

(i1) Assume that there is a T; € Scg(G1) that satisfies (11), ¢ < m. Assume that w;;; is obtained
from w; using a production p; : BD — CD, (B,C,D € Un), 1 < j < ky. The case where
the production is context-free is similar and simpler. Let u be the external node of T; that
is labeled with the corresponding occurrence of the nonterminal B. We construct 7,41 by
applying, to the external node u, the production

B— CX’

of h and to all other external nodes appropriate productions £ — E, F € UyU{X,Y }. Since
D(yield(T;)) = wy, it is clear that this derivation step satisfies the condition (CS).

Since w,, can be rewritten to give w,, 1 using only terminating productions, there exists T}, 41 €

TScs(Gh) such that T, —%T[OS] Tn+t1 using the productions (G1.4) and X — $, Y — @. This

concludes the proof of the claim.

Next, we define the EPTOL grammar G5. Intuitively, the grammar G5 generates exactly all syn-
tax trees of GG1 that are not context-sensitive. We augment the nonterminals of G'; with additional
components that nondeterministically verify that the context condition is violated somewhere in
the syntax tree. For this purpose, G5 needs more than one table. Let Z = {z, 2,2} and define
the EPTOL grammar Gy = (V, X, 5, H), where

o V=UnU{X,Y}U({(UnvU{Y,51})x Z),
e X =Uru{s, @},

o §=(5,2)€eV,and

o H=Ag9,01,...,9% }, where ky is from (9).

The tables g, 91, ..., gk, are defined as follows. The table ¢ contains productions (G1.1) — (G1.5) of
h and additionally the following productions:

(GQ.O) (i) (51,2’) — (I, Z)Y,
(i1) (S1,2) — (I, 21)(Y, 22).
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(G2 1) f B—CX'€h, B,C € Un, 1< i< ki, then
(1) (B,2) = (C,2)X,
(i) (B,z;) — (C,z) X% j=1,2.
(G2.2) f B— CDX'€h, B,C,D € Uy, k1 <i<k, then
(i) (B,z) = (C,2)DX", (B,z) — C(D,2)X",
(11) (sz) - (Cv Zl)(D722)Xi7
(iii) (B, z) — C(D,2)X,
(iv) (B, 2) — (C,2) DX

(G2.8) For every B € Uy, the productions (B,z) — (B,z2), (B,z;) — (B,%;), j = 1,2, and,
(Y, 29) — (Y, 29).

Let r € {1,...,k1} and assume that the right-context production p, of GpnF is of the form
(12) pr: BD —CD, (B,C,De€Uy).
The table g, contains the productions (G4.1) — (G1.5) of h and the productions
(M7) (B,z) — CX".
(M3) (E,z3) — w, where F € (Uy —{D})U{Y}, we (UnU{X,Y})T and K — w € h.

Let fz : (VUX)* — (UyUUrU{X,Y, 51,%,@})* be the morphism determined by the conditions:
fz((z,y)) =2, 2 € UNU{Y, 51}, y € Z, and fz(x) = when € Uy UUr U {X,Y,$,@}. The
function fz simply erases the second components belonging to Z from the nonterminals. Then
every production L — R belonging to the tables g,¢1,...,gx, has the property that

(13) fz(L) — fz(R) € h.

If T € S(Gy), we denote by fz(T') the tree defined by the conditions dom(fz(7")) = dom(7"), and
laby, (ry(u) = fz(labz(u)), v € dom(T'). Tt follows by (13) that

(14) (VT € S(Go)) f2(T) € S(Gy).

Hence it follows also that

STS(Gy) C STS(Gy).

Intuitively, the symbols z, z1, 25 can be seen as messengers that travel nondeterministically down
in a syntax tree of Gy and find a position where the syntax tree violates the context condition
(CS). In a sentential form of (3 the messengers z; and z; will always be forced to be located in
nonterminals Ny, No € Uy U {Y} that are separated only by a sequence of nonterminals X. Thus
Ny and N, represent consecutive nonterminals in the derivation of Gpyp that is simulated or Ny

is the rightmost nonterminal in the derivation of Gpyp and Ny =Y is the “right endmarker.” The
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tables of G5 are defined so that the only possibility to delete the symbols z; and 23 is to apply
productions of a table g,, 1 < r < kq, that force the context condition to be violated.

In the following we show that G5 generates exactly the structures of syntax trees of G that do
not correspond to a context-sensitive syntax tree.
Claim 3. STS(G3) = STS(Gh) — strg, (T'Scs(Gh)).
Proof of Claim 3. Let t € STS(Gq) — strg, (I'Scs(Gh)). By Claim 1, there exists a unique
T € TS(G1) —TScs(Gh) such that strg, (1) = t. Denote the parallel derivation sequence of T by

(15) To =t Ty =g =6, Tm =T,

where T is the tree with one node labeled by 57. (Note that given 7' the derivation sequence (15) is
uniquely determined.) Since 7" € T'Scs(Gh), there exists ¢ € {1,...,m—1} such that the derivation
step

(16) T, B Ty

does not satisfy the condition (CS). Thus in 7; there exists an external node u labeled with A € Uy
such that in the derivation step (16) at u we apply a production

(17) A—CX7 €h,

1 < j < kq, the next external node u’ of T; to the right from u that is labeled by an element different
from X is labeled with £ € Uy U{Y}, and the production p; of GpyF has the form AD — CD,
where D # F. Denote by ug the least common predecessor of v and u'; that is, ug is the common
predecessor of u and u’ furthest from the root of T;. Let the distance of ug from the root be e, that
is, ug is an external node of T, 0 < e < 7. We construct a derivation sequence of G5

(18) (91,2) =Ty —¢0 Ty = -+~ T,

as follows. The first components of the nonterminals in the derivation (18) simulate directly the
derivation (15), that is, fz(1!) =1T., ¢=0,...,m. The first ¢ steps of (18) use only the table ¢g. In
the first e derivation steps the messenger symbol z travels nondeterministically to the external node
ug of T/ using productions (G3.0)(i), (G2.1)(i), (G2.2)(i) and (G9.3). The external node ug is in
the natural way viewed also as a node of 7. In the following we always identify the corresponding
nodes of T, and T7, ¢ € {0,...,m}. Since ug is the least common predecessor of u and u’, it follows
that necessarily the production applied at ug in (15) is either (G1.0) or of the type (G1.2). (The
productions (G4.1) and (G7.3) have only one successor labeled by an element of Uy U {Y}.) In
the derivation step T —£ T/, at the node uo we use the corresponding production (G/2.0)(ii) or
(G2.2)(ii) that branches the z-messenger into the messengers z; and z;. By the definition of the
productions (G9.1)(ii), (G2.2)(iii),(iv) and (G2.3) it is clear that in the tree T the z;-messenger
has reached the node u and the z3-messenger is in the node «’. Note that in productions (G'9.2)(iii)
and (iv) the z-messenger always follows the rightmost branch not consisting of X-nonterminals
and the symbol zy always follows the leftmost branch. These paths are just the paths from ug to
the nodes u and o', since u and u’ are consecutive external nodes of T; when we disregard nodes

labeled by the X-nonterminals.
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Thus, the node w in 77 is labeled by (A, 21) and the node «’ is labeled by (E, z3); see (17). The
deriyation stepl T! —%zr T/, , uses the table g; to eliminate the messengers z; and 2, by productions
(M7) and (M3). (Here j is from (17).) At external nodes of 7! other than u and u’, we apply
the same productions as in (16), which is possible, since the table g; contains the productions

(G1.1)~(G4.5).

Now, yield(T/,,) = yield(T;41) and the derivation (18) can be completed as in (15); hence,
t=strg, (1)), T! € TS(Gy) implies that t € ST S(Gy).

For the converse, let t € STS5(Gy) and assume that ¢ = strg, (7)), T € TS(G2). By (14),
fz(T) € TS(GY); thus, t = stre, (fz(T)) € STS(Gy). Let

(19) (S1,2) = Ty —B2 Ty —P2r  _parq

be a derivation of T Since T is a terminal syntax tree, in some step T; —g. Tiy1 of (19),

0 <¢<m—1, we have to divide the messenger z to the pair of messengers z; and 2z, that are then
finally destroyed by productions (M) and (M) of a suitable table g,, 1 < r < kq, in a derivation
step T; —¢. Tj41, 1 <j < m —1. (There is no other way to delete the messenger symbols.) Tt is

easy to see inductively that, for all n € {i + 1,...,j}, we can write
yleld(Tn) = wl(Al, Zl)XS(AQ, Zz)wz,

where A; € Uy, Az € Uy U{Y }, w1 € (UvU{X})*, wy € (UnU{X,Y})*, and s > 0; that is, the
messenger symbols z; and 2 label consecutive nonterminals in the yield when we disregard nodes
labeled by X. From the form of the productions (M{) and (M), the derivation step fz(1}) —¢r
f7z(T';41) does not satisfy the condition (CS); thus, fz(1) € T'Scs(G1). Since strg, is injective, we
deduce that t ¢ strg, (1'Scs(Gh)), which completes the proof of Claim 3.

Combining Claims 2 and 3, we obtain ST'S(G1) = STS(G) if and only if L(Gpyr) = 0. By
Theorem 2.1, this implies that (8) is undecidable in general. ]

The following simple example illustrates the construction of the proof of Theorem 4.1.

Example 4.1 Consider the PNF grammar Gpnr = (Un,Ur, I, P) where Uy = {I, A, B,C},
Ur = {a,b} and P consists of the right-context production p; : CB — AB, the context-free
productions pp : I — CA, p3s: I — CB and the terminating productions A — a, B — b. (p1, pa,
ps are the names for the nonterminating productions as used in the proof of Theorem 4.1.)

Let G4 and Gy be the EP(T)0L grammars constructed from G'pyp as in the proof of Theo-
rem 4.1. The grammar G4 has for instance the following parallel derivation of a sentence:

(20) S =Py P cax xy 2P AxAx xy =P agassa.

(In the nonterminating parallel steps we always apply to the nonterminals X and Y the productions
X — X, Y — Y.) In the third parallel derivation step the grammar G rewrites the leftmost
nonterminal €' by a production simulating p; but ignoring the right-context condition. Thus G
can simulate the derivation (20) as follows:

(21)  (51,2) =22 (1, 2)Y 2P (0, 2)(A, 2) X XY 2P Axax xy =22 a$as$@.
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In the third parallel step of (21) /3 uses the table ¢y that verifies that the context condition is
violated in the consecutive nonterminals (C,z1) and (A, 2z2). It is clear that the structures of the
syntax trees corresponding to the derivations (20) and (21) are identical.

However, L(Gpnr) is nonempty and the EPOL grammar i1 has the following parallel derivation
simulating a correct context-sensitive derivation of Gpyp:

(22) Sy =Py P opxx xy 2P AxBX X XY =P asesssa

The EPTOL grammar G5 does not have any derivation with the same structure as the preceding
derivation. (If Gy attempts to “simulate” (22) it cannot get rid of the z-symbols.) Thus G and
(5 are not structurally equivalent as required since L(Gpnr) # 0.

The contrasting results of Theorems 3.1 and 4.1 can be interpreted by saying that, at least in
the ETOL case, one loses essential information about a derivation when going from syntax trees to
the corresponding structure trees.

In the proof of Theorem 4.1, the number of tables of the EPTOL grammar G5 depends on
the PNF context-sensitive grammar Gpyr. Every ETOL grammar is language equivalent to an
ETOL grammar that has only two tables [11], but the corresponding transformation clearly does
not preserve structural equivalence of the grammars. We can, however, strengthen Theorem 4.1

somewhat.

Theorem 4.2 Given an FPOL grammar Gy and an EPTOL grammar G5 that has two tables it is
undecidable whether

STS(Gy) = STS(Gs).

Proof. Given a PNF context-sensitive grammar G'pyp we construct the grammar 7 exactly as in
the proof of Theorem 4.1 and transform the grammar G5 into a grammar GY that has two tables as
follows. In %, we merge the tables gq,..., g, into one table by coding, in the messenger symbols,
the information about the production of Gpyp whose context condition the derivation is going to
violate. When the messenger z branches into two messengers using the production (G'9.2)(ii) or
(G'2.0)(ii), the grammar chooses, nondeterministically, a pair of messengers 27, 25, 1 <r < ky. The
first table of G, is essentially the table ¢ augmented with the preceding nondeterministic choice.
The second table g’ contains the productions (G1.1)—(G1.5) of h and, for every r € {1,...,k1} and
p, of Gpyr of the form given in (12), ¢’ contains the productions

o (B,z]) — CX".
o (F,z5) — w, where F € (Uy —{D})U{Y},we (UvU{X,Y})t and (F — w) € h.

Intuitively, in the syntax trees of %, we determine which of the tables ¢1,...,gr, will be used
to delete the messengers when we choose the symbols 2] and 25, 1 < r < Ey. It is clear that
STS(GY) = STS(Gy); therefore, we cannot decide whether (4 and G, are structurally equivalent.
O
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Theorem 4.2 is optimal with respect to the number of tables, since structural equivalence is
decidable for EOL grammars. On the other hand, it is clear that the proof method of Theorem 4.1
does not work if the tables of a ETOL grammar are homomorphisms; that is, we have EDTOL

grammars [11]. It is an open question whether structural equivalence is decidable for EDTOL

grammears.
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