
A Hierarchy of Deterministic Top-down
Tree Transformations

TR 93-10a
Giora Slutzki and Sandor Vagvolgyi

April 13, 1993

Iowa State University of Science and Technology
Department of Computer Science

226 Atanasoff
Ames, IA 50011

A Hierarchy of Deterministic Top-down Tree

Transformations

Giora Slutzki and S�andor V�agv�olgyi�

Department of Computer Science

Iowa State University

Ames, Iowa 50011, USA

Abstract

The class DTTDR (respectively, DTT) is the family of all deterministic top-
down tree transductions with deterministic top-down look-ahead (respectively, no
look-ahead). In this paper we prove that the two hierarchies : (DTTDR)n and
(DTTDR)n � DTT are proper and that they \shu�e perfectly" in the sense that
(DTTDR)n � DTT is properly contained in (DTTDR)n+1, for all n � 0. Using
these results we show that the problem of determining the correct inclusion rela-
tionship between two arbitrary compositions of tree transformation classes from the
set M = fDTA;DTT;DTTDR, DTTR g can be decided in linear time.

1 Introduction

There is a considerable interest in �nding inclusions and equalities that hold for composi-
tions of tree transformation classes. Such results are, for example, the following six ones.

(a) DTA �DTA = DTA (b) DTTR �DTTR = DTTR

(c) DTT � DTT �DTT (d) DTA �DTT = DTT 2 = DTT 3

(e) DTTDR � DTTDR �DTTDR (f) DTT �DTT � DTTDR

where DTA (respectively, DTT) stands for the class of tree transformations induced by
deterministic top-down tree automata (respectively, transducers) and the superscript R
(respectively, DR) stands for regular (respectively, deterministic top-down) look-ahead (see
[5],[15],[9],[10]). Results (a), (b) mean that DTA, DTTR are closed under composition, the
results (c), (e) states that DTT , DTTDR are not closed under composition, and (d) means

�On leave from Research Group on Theory of Automata, Hungarian Academy of Sciences, supported

by a grant from the Soros Foundation.

1

that the composition of three deterministic top-down tree transformations can be computed
by the composition of two, and moreover, the �rst one can be a deterministic top-down tree
automaton. It is easy to see that from the already veri�ed equalities and inclusions we
obtain new ones by substituting either side of a valid equation for an occurrence of the
other side. For example, (c) and (d) imply :

(g) DTT � DTA �DTT;

and (a), (d), (f), and (e) imply :

(h) DTA �DTA �DTT �DTT �DTT � DTTDR �DTTDR:

One may naturally raise the question whether (a)-(f) can be completed with �nitely many
other inclusions and equations such that by applying substitutions we can derive every
inclusion and equation which holds among the compositions of DTA, DTT , DTTDTR,
DTTR. In general, one may be interested in generating all valid equalities and inclusions
between compositions of tree transformation classes that are taken from a given �nite
reservoir of such classes. We formalize these questions in the following way. Let M be a
�nite set of tree transformation classes. We consider twomonoids de�ned in terms ofM : the
free monoidM� (with the operation of concatenation denoted by \�") and [M], the monoid
�nitely generated by M (with the operation of composition denoted by \�"). Strings over
M represent transformation classes in [M] by means of a homomorphism jj jj : M� ! [M]
de�ned by

jjY1 � Y2 � : : : � Ymjj = Y1 � Y2 � : : : � Ym :

We denote by I 2 [M] the tree transformation class consisting of all identity tree transfor-
mations, i.e., I = jj�jj. Let � be the kernel of jj jj, i.e., the congruence relation induced by
the homomorphism jj jj :

� = ker(jj jj) = f(v; w) 2M� �M� j jjvjj = jjwjj g :

F�ul�op and V�agv�olgyi [12] raised the following problem. Give an algorithm which, given
Y1; : : : ; Ym; Z1; : : : ; Zn 2M , decides which one of the following four conditions holds:

(i) Y1 � : : : � Ym = Z1 � : : : � Zn ; (ii) Y1 � : : : � Ym � Z1 � : : : � Zn ;
(iii) Z1 � : : : � Zn � Y1 � : : : � Ym ; (iv) Y1 � : : : � Ym 1 Z1 � : : : � Zn ;

where \1 " stands for the incomparability relationship. They suggested an approach by
which such an algorithm can be constructed provided M is not \too general ". Our aim is
to apply this approach for the monoid M = fDTA;DTT;DTTDR, DTTR g. The choice
of M was motivated by equations and inclusions (a)-(f) and by the interesting hierarchy
results we obtain for [M]. Speci�cally, we show that (DTTDR)n and (DTTDR)n � DTT

2

form two proper hierarchies and that the second hierarchy �ts perfectly and properly \in
between" the consecutive levels of the �rst hierarchy, i.e. for all n � 0 :

(DTTDR)n �DTT � (DTTDR)n+1 :

The paper is organized as follows. In Section 2 we introduce and recall the notation and
basic concepts to be used. In Section 3 we outline the method of the paper. In Section 4
we give a Thue system TM � M� �M� which is our candidate for the set of generators of
�. TM contains the previously cited composition results (a), (b), and the \�rst half" of (d).
Then we prove a \soundness" result for TM , i.e., that for every (u; v) 2 TM , jjujj = jjvjj.
In this way elements of TM represent equalities over [M]. In Section 5 we give a subset
N of M� which is a candidate for a set of representatives for the congruence classes of �.
Then we give the inclusion diagram of the set f jjujj j u 2 N g, which is, in fact, the set of
tree transformation classes represented by the elements of N . In Section 6, we show that
the linear time algorithm of [3] can be applied such that, given w 2 M�, it computes a
representative u 2 N of the congruence class of w. In Section 7, we summarize our results.

2 Preliminaries

2.1 Tree Transducers

A ranked alphabet � is an alphabet in which every symbol has a unique rank (arity) in
the set of nonnegative integers. For any m � 0, we denote by �m the set of symbols in
� which have rank m. For a ranked alphabet � and a set H, the set of trees (or terms)
over � indexed by H, denoted by T�(H), is the smallest set U satisfying the following two
conditions:

(i) H [�0 � U ,
(ii) �(t1; : : : ; tm) 2 U whenever m > 0, � 2 �m and t1; : : : ; tm 2 U .

The set of trees over � is T�(;), and we simply write T� for T�(;). We specify a countable set
X = fx1; x2; ::: g of variables and set Xm = fx1; : : : ; xm g for every m � 0. We distinguish
a subset �T�(Xm) of T�(Xm) as follows: a tree t 2 T�(Xm) is in �T�(Xm) if and only if each
variable in Xm appears exactly once in t and the order of the variables in t is x1; : : : ; xm.
For example, if � = �0 [�2 with �0 = f a g and �2 = f� g, then �(x1; �(a; x1)) 2 T�(X1)
but �(x1; �(a; x1)) =2 �T�(X1). On the other hand, �(x1; �(a; x2)) 2 �T�(X2). The notion of
tree substitution is de�ned as follows. Let m � 0, t 2 T�(Xm) and h1; : : : ; hm 2 H, where
H is an arbitrary set. We denote by t[h1; : : : ; hm] the tree which is obtained from t by
replacing each occurrence of xi in t by hi for every 1 � i � m. Let � and � be two ranked
alphabets. Then any subset of T� � T� is a tree transformation from T� to T�. For a tree
language L, the partial identity f (t; t) j t 2 L g is denoted by ID(L).

3

De�niton 2.1 A top-down tree transducer (tt for short) is a system A =< �;�; A; A0; P >,
where

(1) � is a ranked input alphabet;
(2) � is a ranked output alphabet;
(3) A is a ranked state alphabet, it is a unary alphabet, i.e., A = A1;

also, A \ (� [� [X) = ;;
(4) A0 is a subset of A, the set of initial states;
(5) P is a �nite set of rules of the form

a(�(x1; : : : ; xm))! t

where m � 0, � 2 �m, a 2 A, and t 2 T�(A(Xm)). (Here and in what follows, for a
unary ranked alphabet A and a set L of terms, A(L) denotes the set f a(t) j a 2
A and t 2 L g.)

Computation of tt's is formalized as follows. De�ne the binary relation)A on the
set T�(A(T�)) so that for any t; s 2 T�(A(T�)), t)A s if and only if the following two
conditions hold:

(a) there is a rule a(�(x1; : : : ; xm))! r in P ,
(b) s can be obtained from t by replacing an occurrence of a subtree a(�(t1; : : : ; tm)) of

t by r[t1; : : : ; tm], where t1; : : : ; tm 2 T�.

Clearly, the relation)A is interpreted as a method of rewriting terms into terms.
The re
exive, transitive closure of)A, denoted by)�

A, is interpreted as the computation
relation of A. The tree transformation computed by A is the relation

�A = f (t; s) 2 T� � T� j a(t)
�
)
A
s for some a 2 A0 g:

We now introduce some special types of tt's. Let A =< �;�; A; A0; P > be a tt. We
say that A is

(a) a deterministic top-down tree transducer (dtt) if A0 is a singleton and there are no
two di�erent rules in P with the same left-hand side;

(b) a top-down tree automaton (ta) if � = � and each rule in P is of the form
a(�(x1; : : : ; xm))! �(a1(x1); : : : ; am(xm)) where a; a1; : : : ; am 2 A; in that case,
the tree transformation �A is a partial identity on T�;

(c) a deterministic top-down tree automaton (dta) if A is a ta and a dtt.

The class of all tt's (respectively, dtt's, ta's, and dta's) is denoted by TT (respectively,
DTT , TA, and DTA). The tree language recognized by a ta A is L(A) = dom(�A): The
classes of tree languages recognized by ta's and dta's are

R = dom(TA); and DR = dom(DTA):

4

Here R is the well-known class of recognizable tree languages, equal to the class of all
tree languages de�nable by bottom-up tree automata. It is well known that DR � R or
equivalently DTA � TA; a proof can be found in [4] or [13].

Top-down tree transducers with look-ahead, one of the main topics of this paper, were
de�ned in [5]. It transpired that they have a number of nice properties, especially in the
deterministic case. For example, the class of deterministic top-down tree tree transforma-
tions with regular look-ahead is closed under composition. The concept of look-ahead also
proved useful in other contexts [6], [7], [8]. Following [5], F�ul�op and V�agv�olgyi [9], [10]
de�ned and studied top-down tree transducers and deterministic top-down tree automata
with deterministic top-down look-ahead capacity.

Let C � R be a class of tree languages. A top-down tree transducer with C look-ahead

(ttC) is a system A =< �;�; A; A0; P >, where the components are de�ned exactly as in
De�nition 2.1, except that the rules in P are of the form

< a(�(x1; : : : ; xm))! t; L1; : : : ; Lm >

where
a(�(x1; : : : ; xm))! t

is an ordinary tt-rule, as in De�nition 2.1, and for each 1 � i � m, Li � T� is a language
in C . The look-ahead tree languages L1; : : : ; Lm act as \guards" for the application of the
above rule.

The one-step computation of A is the binary relation)A on T�(A(T�)) de�ned such
that t)A s if and only if

(a) there is a rule < a(�(x1; : : : ; xm))! r; L1; : : : ; Lm > in P , and
(b) t has a subtree t0 = a(�(t1; : : : ; tm)) with ti 2 Li (1 � i � m) and s is obtained

by substituting r[t1; : : : ; tm] for an occurrence of t0 in t.

It can be seen from the de�nition of)A what the notion look-ahead means: a rule
can be applied at a node of a tree only if the direct subtrees of that node are in the tree
languages given in the rule. As usual,)�

A, the re
exive, transitive closure of)A, formalizes
the concept of computation of ttC's, and the binary relation

�A = f (t; s) 2 T� � T� j a(t)
�
)
A
s for some a 2 A0 g

de�nes the tree transformation induced by A.
We de�ne the following varieties of ttC. Let A =< �;�; A; A0; P > be a ttC. We say

that A is

(a) a top-down tree automaton with C look-ahead (taC) if A is a ttC with � = � and
each rule in P is of the form < a(�(x1; : : : ; xm))! �(a1(x1); : : : ; am(xm));
L1; : : : ; Lm > where a1; : : : ; am 2 A;

5

(b) a deterministic top-down tree transducer with C look-ahead (dttC) if A0 is a singleton
set and Li \ L0i = ; holds for some i, 1 � i � m; whenever
< a(�(x1; : : : ; xm))! r1; L1; : : : ; Lm > and < a(�(x1; : : : ; xm))! r2; L01; : : : ; L

0
m >

are di�erent rules in P ;
(c) a deterministic top-down tree automaton with C look-ahead (dtaC) if A is a taC and

a dttC .

Note that if A is deterministic, then A can apply at most one rule at any given node.
This is because for any two di�erent rules in P with the same left-hand side there exists
a variable xi such that the two look-ahead sets corresponding to xi are disjoint. The tree
language recognized by a taC A is L(A) = dom(�A): The class of all tree transformations
de�ned by all ttC 's (respectively dttC 's, taC 's, and dtaC 's) is denoted by TTC (respectively
DTTC, TAC, and DTAC).

Example 2.2 Let � = �0 [�2 be a ranked alphabet, where �0 = f 1; 0 g and �2 = f� g.
For each m � 0, de�ne the tree em 2 T�(Xm+1) as follows: e0 = x1 and, for m � 1,
em = �(x1; em�1[x2; : : : ; xm+1]), i.e., em is the tree �(x1; : : : ; �(xm; xm+1) : : :). We say that
a tree in T� is even (odd) if it contains even (odd) number of 1's. We denote by Le (Lo)
the set of all even (odd) trees over �. Note that 0 2 Le and 1 2 Lo. For each integer n � 0,
the tree language Cn � T� is de�ned as follows:

(a) C0 = f 1; 0 g,
(b) for n � 1, Cn is the smallest set satisfying

(i) 1; 0 2 Cn and
(ii) �(t; r) 2 Cn whenever t 2 Cn�1 and r 2 Cn.

The elements of Cn are called n-nested combs. Note that Cn = f em(t1; : : : ; tm; y) j m �
0; y 2 f 1; 0 g and t1; : : : ; tm 2 Cn�1 g. Obviously, for i < j, we have Ci � Cj. We put
Ce
n = Cn \ Le and Co

n = Cn \ Lo.

The following result was proved in [5].

Proposition 2.3 Let A be a ttR. Then dom(�A) 2 R:

By Proposition 2.3, we can iterate the look-ahead tree languages, without leaving R, as
follows. Let DR0 be DR and let, for n � 1, DRn be the class of tree languages recognizable
by deterministic top-down tree automata with DRn�1 look-ahead. By Proposition 2.3,
DRn � R for every n � 0. F�ul�op and V�agv�olgyi [11] proved the following result.

Proposition 2.4 For each n � 1, Ce
n 2 DRn �DRn�1. Moreover, for every n � 0, DRn is

closed under intersection.

6

2.2 Thue Systems and String Rewriting Systems

Let � be an alphabet. The empty string and the length of a string w 2 �� are denoted,
respectively, by � and jwj. Recall that �� is the free monoid generated by � under the
operation of concatenation with � as identity. A Thue system T over � is a �nite subset
of �� � �� and each element (u; v) of T is called a rewriting rule. The Thue congruence

generated by T is the re
exive, transitive closure$�
T of the relation $T de�ned as follows:

for any w; z 2 ��; w$T z if and only if there exist x; y 2 �� and (u; v) 2 T such that either
w = xuy and z = xvy, or, w = xvy and z = xuy. It is well-known that $�

T is the least
congruence over �� containing T . The reduction relation induced by T is denoted by !T

and de�ned as follows: for any w; z 2 ��; w!T z if and only if w$T z and jwj > jzj: A
word w 2 �� is irreducible for T (or T -irreducible) if there is no z 2 �� such that w!T z:
The set of all irreducible strings for T is denoted by IRR(T): We say that T is Church-
Rosser if for all w; z 2 ��; if w$�

T z, then there exists an x 2 �� such that w!�
T x and

z!�
T x.
A string rewriting system S (over �) is a \one-way" version of a Thue system in that

its �nite set of rewriting rules can be used in one direction only. The relation !�
S is the

re
exive, transitive closure of the relation !S de�ned by: for w; z 2 ��, w!S z if there
exist x; y 2 �� and (u; v) 2 S such that w = xuy and z = xvy. We say that z can be
derived from w in S, if w!�

S z holds. The symmetric, re
exive and transitive closure $�
S

of !S is a congruence over ��. It is called the Thue congruence generated by S. We say
that

(a) S is noetherian if there are no in�nite chains of the form w1!S w2!S : : : ;
(b) S is Church-Rosser if for every w; z 2 ��, w$�

S z implies that w!�
S x and z!�

S x
for some x 2 ��.

A word w is called irreducible with respect to S (or S -irreducible) if there is no z such
that w!S z. The set of all S-irreducible words is denoted by IRR(S).

We now mention a su�cient condition for S to be noetherian. A weight function is
a mapping � : � ! f 1; 2; : : : g, where for a 2 �; �(a) is the weight of a. It can be
extended to a mapping � : �� ! f 1; 2; : : : g by letting �(�) = 0 and, inductively, de�ning
�(wa) = �(w) + �(a) for any w 2 �� and a 2 �. For example, if �(a) = 1 for each a 2 �,
then �(w) = jwj. We say that S is weight reducing with respect to � if, for each (u; v) 2 S,
�(u) > �(v) holds. S is weight reducing if there is a weight function with respect to which
S is weight reducing. It should be clear that each weight reducing string rewriting system
is noetherian. The following theorem gives a necessary and su�cient condition for the
Church-Rosser property.

Theorem 2.5 ([14], [2]) A Thue system T (noetherian string rewriting system S) is
Church-Rosser if and only if each class of the congruence $�

T ($�
S) contains exactly one

T -irreducible (S-irreducible) element.

7

3 The Outline of the Method

In this section we de�ne precisely the problem we propose to solve and outline an approach
to its solution. The remainder of the paper will, in essence, implement the methodology
outlined here. LetM be a �nite set of tree transformation classes. We consider twomonoids
de�ned in terms of M : the free monoid M� (with the operation of concatenation denoted
by \�") and [M], the monoid �nitely generated by M (with the operation of composition
denoted by \�"). Strings over M represent transformation classes in [M] by means of a
homomorphism jj jj :M� ! [M] de�ned by

jjY1 � Y2 � : : : � Ymjj = Y1 � Y2 � : : : � Ym :

We denote by I 2 [M] the tree transformation class consisting of all identity tree transfor-
mations, i.e., I = jj�jj. Let � be the kernel of jj jj, i.e., the congruence relation induced by
the homomorphism jj jj :

� = ker(jj jj) = f(v; w) 2M� �M� j jjvjj = jjwjj g :

Let N be a set of representatives of the congruence classes of �. The elements of N are
called normal forms with respect to �. F�ul�op and V�agv�olgyi [12] posed the problem of
constructing an algorithm which, given Y1; : : : ; Ym; Z1; : : : ; Zn 2 M , decides which one of
the following four mutually exclusive conditions holds:

(i) Y1 � : : : � Ym = Z1 � : : : � Zn ; (ii) Y1 � : : : � Ym � Z1 � : : : � Zn ;
(iii) Z1 � : : : � Zn � Y1 � : : : � Ym ; (iv) Y1 � : : : � Ym 1 Z1 � : : : � Zn ;

where \1 " stands for the incomparability relationship. In [12] they suggested a method-

ology, by which such an algorithm can be constructed provided M is not \too general ".
Speci�cally, they suggested the following approach.

(a) Give a set of representatives N for the congruence classes of �.
(b) Give the inclusion diagram of the set jjN jj = f jjujj j u 2 N g, i.e., of the set of tree

transformation classes represented by normal forms. Note that jjN jj = [M]. Also
note that having this inclusion diagram, for any given u; v 2 N , we can read from
can read from the diagram, which one of the following conditions holds:

(i0) jjujj � jjvjj (ii0) jjvjj � jjujj
(iii0) jjujj = jjvjj (iv0) jjujj 1 jjvjj

(c) Give a �nite set T � M� �M� of generators of � (i.e., a Thue system T over M
such that $�

T = �) and give an algorithm that for any w 2M�, by a suitable
sequence of substitutions induced by T , computes the normal form of w, i.e., the
unique u 2 N for which w$�

T u.

8

Now we prove that once tasks (a)-(c) are accomplished, we have an algorithm that
decides, given Y1; : : : ; Ym; Z1; : : : ; Zn 2 M , which one of the conditions (i)-(iv) holds.
First, by the algorithm in (c), compute the normal forms u; v 2 N such that

Y1 � : : : � Ym
�
$
T
u and Z1 � : : : � Zn

�
$
T
v :

Since, by (c), we have$�
T = �, we also have

Y1 � : : : � Ym = jjujj and Z1 � : : : � Zn = jjvjj:

Thus, one of the conditions (i)-(iv) holds for Y1 � : : : � Ym and Z1 � : : : � Zn if and
only if the corresponding condition of (i0)-(iv0) holds for jjujj and jjvjj. Moreover, having
the inclusion diagram, by (b), we can read from the diagram which one of the conditions
(i0)-(iv0) holds. Hence we obtained the following.

Theorem 3.1 ([12]) Suppose that the tasks (a)-(c) have been executed forM . Then, there
is an algorithm which decides, given any tree transformation classes Y1; : : : ; Ym; Z1; : : : ; Zn 2
M , which one of the conditions (i)-(iv) holds.

When applying the above general method to concrete choices of M , it transpired that
it is useful to implement the tasks (a)-(c) by performing the following �ve steps.

(I) Give a �nite relation T � M��M� which is our candidate for the set of generators
of �. (Here we are advised to take into consideration known decomposition results
that hold among elements of M .)

(II) Prove that for every (u; v) 2 T , jjujj = jjvjj. (Otherwise, T cannot be a set of gene-
rators of �. In this way elements of T represent equalities over [M].) We note that
(II) implies the inclusion $�

T � � because, by (II), T � � and $�
T is the smallest

congruence on M� containing T .
(III) Give a subset N of M� which is a candidate for a set of representatives for the

congruence classes of �.
(IV) Give the inclusion diagram of the set jjN jj = f jjujj j u 2 N g, which is, in fact,

the set of tree transformation classes represented by the elements of N . By using
this inclusion diagram show that for any u; v 2 N , if u 6= v, then jjujj 6= jjvjj.

(V) Give an algorithm that for every w 2M� computes a u 2 N such that w$�
T u.

Next we prove that once we have successfully implemented steps (I)-(V), we have also
accomplished the tasks (a)-(c).

Lemma 3.2 ([12]) Suppose that we have carried out the steps (I)-(V). Then the tasks
(a)-(c) have also been accomplished.

Proof. We �rst show that � = $�
T . By (I) and (II) we have $�

T � �. For the other
direction let w;w0 2 M� be such that w�w0. Then construct, by (V), the normal forms u

9

and u0 for which w$�
T u and w0$�

T u
0. Since $�

T � �, we also have w�u and w0�u0 from
which u�u0 follows. Then, by (III), u = u0 and thus w$�

T u = u0$�
T w

0. Hence � � $�
T .

Consequently we obtain $�
T = �, which together with (V) yields (c). Moreover, by (III)

and (V), it follows that N is indeed a set of representatives of �, hence we have (a). Finally,
by (IV), we have (b).

2

Remark Theorem 3.1 and Lemma 3.2 were proved in [12]. Because the proofs are short
(and relevant) we have reproduced them for the sake of completeness.

Our aim is to apply the (I)-(V) method to the set

M = fDTA;DTT;DTTDR; DTTR g;

where DTA, DTT , DTTDR, DTTR stand for the classes of all tree transformations de�ned
in Section 2.1. Our choice ofM is motivated by the known composition and decomposition
results and by the interesting hierarchy results we obtain in Section 5. We shall follow the
approach of F�ul�op and V�agv�olgyi [12] and perform the the steps (I)-(V) for the monoid [M]
induced by M .

4 The Thue System TM

Consider the set of tree transformations M = fDTA;DTT;DTTDR; DTTR g. We �rst
de�ne a �nite Thue system TM � M��M� whose Thue congruence is equal to �, the kernel
of the homomorphism jj jj : M� ! [M] de�ned in Section 3. TM consists of the following
13 rewriting rules.

(1) (DTA �DTTR; DTTR) (2) (DTTR �DTA;DTTR)
(3) (DTT �DTTR; DTTR) (4) (DTTR �DTT;DTTR)
(5) (DTTDR �DTTR; DTTR) (6) (DTTR �DTTDR; DTTR)
(7) (DTTR �DTTR; DTTR) (8) (DTA �DTTDR; DTTDR)
(9) (DTTDR �DTA;DTTDR) (10) (DTT �DTTDR; DTTDR)
(11) (DTT �DTT;DTA �DTT) (12) (DTT �DTA;DTT)
(13) (DTA �DTA;DTA)

Next we will argue that for every (�; �) 2 TM , jj�jj = jj�jj, or equivalently, (�; �) 2 �. This
will establish parts (I) and (II) of our method. For each i (1 � i � 13), if the i-th rewriting
rule of TM is (�; �), then the corresponding claim jj�jj = jj�jj will be denoted by (i0). We
thus have to prove that (i0) holds for 1 � i � 13. Almost all these claims are well-known
results which we summarize in the following lemma.

10

Lemma 4.1

(a) [5] DTTR �DTTR = DTTR. This establishes (70).
(b) DTA �DTTR = DTTR �DTA = DTT �DTTR = DTTR �DTT

= DTTDR �DTTR = DTTR �DTTDR = DTTR.
This follows from (a) and establishes (10), (20), (30), (40), (50), and (60).

(c) DTA �DTTDR = DTTDR. This follows from (100) and establishes (80).
(d)DTTDR�DTA = DTTDR. This follows by an easy construction and establishes (90).
(e) [9] DTT �DTT = DTA �DTT . This establishes (110).
(f) [12] DTT �DTA = DTT . This establishes (120).
(g) [Folklore] DTA �DTA = DTA. This establishes (130).

2

It remains to prove (100). We will need the following concept. Let A = (�;�; A; a0; P)
be a dttDR and p 2 �T�(Xn). We introduce the relation 7!A;p �)�

A. Intuitively, the
notation a(p[p1; : : : ; pn]) 7!A;p r[a1(pi1); : : : ; am(pim)] means that r[a1(pi1); : : : ; am(pim)] is
the tree resulting from the partial computation of A on p[p1; : : : ; pn] starting in state a and
down to the leaves of p without entering any of the subtrees pi. More formally,

(i) if p = x1; then p[p1; : : : ; pn] = p1 and a(p1) 7!A;p a(p1);
(ii) let p = �(t1; : : : ; tm), � 2 �m, m � 0,

a(�(t1; : : : ; tm)[p1; : : : ; pn]))A(q[a1(ti1); : : : ; ak(tik)])[p1; : : : ; pn]

for some q 2 �T�(Xk), k � 0, and aj(tij [p1; : : : ; pn]) 7!A;t0
ij
rij for 1 � j � k, where

for each tij 2 T�(Xlj), t
0
ij
2 �T (Xlj) is tij with its variables reindexed so that their

successive occurrences form left-to right are x1; x2; : : : ; xlj . Then

a(p[p1; : : : ; pn]) 7!A;p (q[ri1; : : : ; rik])[p1; : : : ; pn].

Lemma 4.2 Let B = (�;�; B; b0; P) be a dttDR and g � 0 an integer. Then for any
q 2 �T�(Xg) and b 2 B, there exists an integer k � 0, and for each 1 � i � k, there exists

a tree r(i) 2 T�(B(Xg)) and tree languages L(i)1 ; : : : ; L
(i)
g 2 DR (L(i)1 ; : : : ; L

(i)
g � T�) such

that the following conditions hold.

(a) For every 1 � i < j � k, there exists 1 � l � g with L(i)l \ L(j)l = ;.

(b) For all q1; : : : ; qg 2 T� and 1 � i � k, if q1 2 L
(i)
1 ; : : : ; qg 2 L

(i)
g , then

b(q[q1; : : : ; qg]) 7!B;q r(i)[q1; : : : ; qg]:

(c) For all q1; : : : ; qg 2 T�, r 2 T�(B(Xg)), if

b(q[q1; : : : ; qg]) 7!B;q r[q1; : : : ; qg];

then there exists 1 � i � k such that r = r(i), and q1 2 L
(i)
1 ; : : : ; qg 2 L

(i)
g .

Proof. For b 2 B, q 2 �T�(Xg); r 2 T�(B(Xg)); and L1; : : : ; Lg 2 DR, a construct

11

< b(q)! r;L1; : : : ; Lg > (�)

is called an extended rule of B for b and q. While the \rule part" b(q)! r of (�) is intended
to represent the computation of B down to the leaves of q, the languages L1; : : : ; Lg represent
the \cumulative look-ahead" conditions on the trees that can be substituted for x1; : : : ; xg
in order to enable B to reach the leaves labeled x1; : : : ; xg in q. For each node of q we will
construct a set of extended rules of B so that conditions (a)-(c) hold. The proof proceeds
by induction on the structure of q 2 �T�(Xg).

If q 2 Xg then q = x1 and we let k = 1; r(1) = b(q) = b(x1); and L(1)1 = T�. The
set of extended rules, in this case, has just the (trivial) rule : < b(x1) ! b(x1); T� >.
Condition (a) holds trivially and condition (c) follows from the de�nition of 7!B;x1. Let
q1; : : : ; qg 2 T�. Then

b(q[q1; : : : ; qg]) = b(q1) 7!B;q b(q1)
= b(q[q1; : : : ; qg])
= b(q)[q1; : : : ; qg]
= r(1)[q1; : : : ; qg] ,

establishing (b). Now suppose q 2 �0. If B has no rule with left-hand side b(q), then let
k = 0 and (a)-(c) hold trivially. Otherwise, let < b(q)! u; > be a rule in P (note that the
list of look-ahead languages is empty in this case). Since B is deterministic, it has no other
rules with b(q) as a left-hand side. De�ne k = 1 and r(1) = u. The set of extended rules of
B for b and q consists, in this case, of a single rule < b(q)! u; >. Conditions (a)-(c) hold
trivially.

For the inductive step suppose q = �(t1; : : : ; tm) 2 �T�(Xg) for some � 2 �m, m � 1.
Suppose that ti has gi occurrences of variables; thus g = g1 + g2 + : : : + gm. For each ti,
let t0i 2 �T�(Xgi) be ti with its variables reindexed so that their successive occurrences from
left to right are x1; x2; : : : ; xgi. Let 1 � h � g. The variable xh in q is reindexed into xs(h)
so that if xh occurs in tj then xs(h) occurs in t

0
j and 1 � s(h) � gj. Let j(h) be the j such

that xh occurs in tj.
Now, if B has no rule with left-hand side b(�(x1; : : : ; xm)) then let k = 0 and conditions

(a)-(c) are satis�ed trivially. Otherwise, consider a rule of P :

< b(�(x1; : : : ; xm))! u[b1(xi1); : : : ; bl(xil)];L1; : : : ; Lm > (��)

where u 2 �T�(Xl), and b1; : : : ; bl 2 B. We now explain how to construct the set of extended
rules of B for b and q, that are associated with the rule (��). Taking a union of all these
sets of extended rules, for various rules (��) for b(q(x1; : : : ; xm)), gives the required set of
extended rules of B for b and q. The cardinality of this set is the required k. Let the dta
An =< �;�; An; an0 ; Pn >, 1 � n � m, recognize the look-ahead language Ln from (��).
Moreover, suppose that for 1 � n � m, and arbitrary trees p1; : : : ; pgn 2 T�,

12

an0(t
0
n[p1; : : : ; pn])

�
)
An

(t0n[a
n
1(x1); : : : ; a

n
gn
(xgn)])[p1; : : : ; pgn]:

Now, by induction hypothesis, for each 1 � j � l, pick an extended rule of B for bj and t0ij :

< bj(t
0
ij
)! u0j; M

(j;ij)
1 ;M

(j;ij)
2 ; : : : ;M (j;ij)

gij
> ;

and let uj be de�ned from u0j by restoring the original indexing of variables (i.e., replacing
index s(h) by h). De�ne a corresponding extended rule of B for b and q

< b(q)! u[u1; : : : ; ul]; N1; N2; : : : ; Ng >

where for 1 � h � g,

Nh = (
\

ij=j(h)

M
(j;ij)
s(h)) \ L(Aj(h)(a

j(h)
s(h)))

where An(ans(h)) (1 � n � m) is the dta An with initial state ans(h) instead of an0 .
It is now easy to check that condition (a) holds by induction hypothesis and because

B is deterministic. Similarly, condition (c) holds by induction hypothesis and because we
consider all the rules (��) for b(�(x1; : : : ; xm)). It is also easy see that if q1 2 N1; : : : ; qg 2 Ng

then
b(q[q1; : : : ; qg]) 7!B;q r[q1; : : : ; qg]

where r = u[u1; : : : ; ul]; thus condition (b) holds.
2

Lemma 4.3 DTT �DTTDR = DTTDR .

Proof. Let A = (�;�; A; a0; P1) be a dtt and B = (�;�; B; b0; P2) be a dttDR. We
construct the dttR C = (�;�; A� B; (a0; b0); P3) as follows. The rule

< (a; b)(�(x1; : : : ; xm))! r[(a (1); b1)(x�(1)); : : : ; (a (g); bg)(x�(g))]; J1; : : : ; Jm >

is in P3 where � : f 1; : : : ; gg ! f 1; : : : ; mg if the following conditions hold.

(a) a(�(x1; : : : ; xm))! q[a1(x�(1)); : : : ; an(x�(n))] 2 P1, where q 2 �T�(Xn), n � 0,
� : f 1; : : : ; ng ! f 1; : : : ; mg.

(b) < b(q)! r[b1(x (1)); : : : ; bg(x (g))];L1; : : : ; Ln > is an extended rule of B for b
and q, where g � 0, r 2 �T�(Xg), and : f 1; : : : ; gg ! f 1; : : : ; ng.

(c) For each 1 � j � g, �(j) = �((j)).
(d) For each 1 � j � m, Jj =

T
fdom(�A(ai) � ID(Li)) j �(i) = j; 1 � i � n g if there

exists an 1 � i � n, such that �(i) = j, and Jj = T� otherwise.

By part (f) of Lemma 4.1, for each 1 � i � n, �A(ai) � ID(Li) 2 DTT . Thus, by Theorem
3.1 in [5], for each 1 � i � n, �A(ai) � ID(Li) 2 DR. As DR is closed under composition,

13

see (g) of Lemma 4.1, for each 1 � j � m, Jj 2 DR. Hence C is a dttDR. In order to
show that �C = �A � �B, it is enough to prove that for an arbitrary state (a; b) of C and trees
p 2 T�, r 2 T�, the equivalence

(a; b)(p)
�
)
C
r if and only if (9q 2 T�)(a(p)

�
)
A
q and b(q)

�
)
B
r):

holds. This can be done by induction on the structure of p.
2

We summarize the results of this section in the following theorem which is a simple conse-
quence of Lemma 4.1 and Lemma 4.3.

Theorem 4.4 For every (�; �) 2 TM , jj�jj = jj�jj, or equivalently, (�; �) 2 �.

5 The Inclusion Diagram

In this section we continue to implement the methodology outlined in Section 3, by executing
steps (III) and (IV). For (III) we have to give a subset N � M�, our candidate for the set
of representatives of the congruence classes of �. Here is our candidate:

N = f I;DTA;DTT;DTA �DTT;DTTR g [
f (DTTDR)n j n � 1 g [
f (DTTDR)n �DTT j n � 1 g :

According to (IV), we have to give an inclusion diagram for the set jjN jj = f jjwjj j w 2 N g:
Indeed we will show that the elements of jjN jj can be arranged into a proper hierarchy, all
inside DTTR. This hierarchy result is the main technical contribution of this paper. It is
displayed in Figure 1.

The properness of inclusion for the initial levels of the hierarchy is trivial:

I � DTA � DTT (1)

and Rounds [15] and F�ul�op and V�agv�olgyi [9], [10], have shown

DTT � DTT �DTT = DTA �DTT � DTTDR : (2)

To establish the hierarchy result it su�ces to prove the two proper inclusions in

(DTTDR)n � (DTTDR)n �DTT � (DTTDR)n+1 (3)

for all n � 1, and

S1
n=0(DTT

DR)n � DTTR . (4)

14

q I

qDTA

qDTT

qDTA �DTT

qDTTDR

qDTTDR �DTT

q (DTTDR)2

q (DTTDR)2 �DTT

q

q

q

q

S1
n=0(DTT

DR)n

qDTTR

Fig. 1. The inclusion diagram of the monoid [M].

Note that the union on the left-hand side of (4) is not an element of jjN jj. The inclusions
in (3) and (4) are obvious so we will concentrate on the properness issue. We will use the
classes of tree languages DRn, n � 0, de�ned in Section 2.1, and the languages of n-nested
combs, see Example 2.2 and Proposition 2.4 of Section 2.1.

We �rst discuss and prove some results about the domains of deterministic top-down tree
transducers with DRn look-ahead. An early result (without look-ahead) dom(DTT) = DR
is proved in [5]. This was extended in [10]: dom(DTTDR) � DR1. We generalize these
results in the following lemma.

Lemma 5.1 For every n � 0, dom(DTTDRn) � DRn+1 :

Proof. We proceed by an induction on n. For n = 0 the result follows from [10]. Suppose
that the result holds for integers smaller than n. We apply the usual power set construction.
Let A =< �;�; A; a0; P > be a dttDRn. De�ne the dtaDRn B =< �;�; B; b0; P 0 > where
B = P (A), the power set of A, b0 = f a0 g, and P 0 is the set of all rules of the form

< b(�(x1; : : : ; xm))! �(b1(x1); : : : ; bm(xm));K1; : : : ; Km >

15

constructed in the following way:

(i) Let b 2 P (A), m � 0, and � 2 �m be such that for each a 2 b there exists at least
one rule with left-hand side a(�(x1; : : : ; xm)) in P .

(ii) For each a 2 b choose a rule < a(�(x1; : : : ; xm))! ta;La1; : : : ; L
a
m > from P . For

each 1 � i � m, de�ne bi = f a0 2 A j a0(xi) occurs in ta g and Ki =
T
a2bL

a
i :

The following fact can be proved by induction on the structure of trees: for each t 2 T�,
and b 2 B, b(t))�

B t if and only if for each a 2 b there exists r 2 T� with a(t))�
A r.

Therefore, �B = f (t; t) j t 2 dom(�A) g and so dom(�A) = dom(�B).
2

Next we look at the relationship betweenDTTDRn and the composition classes (DTTDR)n.
The proof of the �rst lemma is straightforward and we omit it.

Lemma 5.2 For every n � 0, DTTDRn �DTA = DTTDRn:

Lemma 5.3 For every n � 1, DTTDRn�1 �DTTDR � DTTDRn:

Proof. Let A = (�;�; A; a0; P1) be a dttDRn�1 and B = (�;�; B; b0; P2) be a dttDR. We
construct the dttR C = (�;�; A� B; (a0; b0); P3) as follows. The rule

< (a; b)(�(x1; : : : ; xm))! r[(a1; b1)(x�(1)); : : : ; (ag; bg)(x�(g))];M1; : : : ;Mm >

with r 2 T�(Xg), g � 0, and � : f 1; : : : ; gg ! f 1; : : : ; mg, is in P3 if the following conditions
hold.

(a) < a(�(x1; : : : ; xm))! q[a1(x�(1)); : : : ; an(x�(n))];K1; : : : ; Km > 2 P1, where
q 2 �T�(Xn), � : f 1; : : : ; ng ! f 1; : : : ; mg.

(b) < b(q)! r[b1(x (1)); : : : ; bg(x (g))];L1; : : : ; Ln > is a generalized rule of B, where
 : f 1; : : : ; gg ! f 1; : : : ; ng.

(c) For each j, 1 � j � g, �(j) = �((j)).
(d) For each 1 � j � m, Mj = Kj \ (

T
fdom(�A(ai) � ID(Li)) j �(i) = j; 1 � i � g g)

if there exists an i, 1 � i � g, such that �(i) = j, and Mj = Kj otherwise.

By Lemma 5.2, for each 1 � i � g, �A(ai) � ID(Li) 2 DTTDRn�1 and by Lemma 5.1,
the domain of a dttDRn�1 is in DRn. Moreover, DRn�1 � DRn and DRn is closed under
intersection. Hence Mj 2 DRn for 1 � j � m. Thus C is a dttDRn.

In order to show that �C = �A � �B, it is enough to prove that for arbitrary state (a; b)
of C and trees p 2 T�, r 2 T�, the equivalence

(a; b)(p)
�
)
C
r if and only if (9q 2 T�)(a(p)

�
)
A
q and b(q)

�
)
B
r):

holds. This can be done by induction on the structure of p.
2

16

Lemma 5.4 For every n � 1, (DTTDR)n � DTTDRn�1.

Proof. By induction on n. For n = 1 the statement is trivial. Let us assume that n � 2,
and (DTTDR)n�1 � DTTDRn�2. Then

(DTTDR)n = (DTTDR)n�1 �DTTDR

� DTTDRn�2 �DTTDR by induction hypothesis
� DTTDRn�1 by Lemma 5.3.

2

An immediate consequence of Lemma 5.1 and Lemma 5.4 is the following corollary.

Corollary 5.5 For every n � 0, dom((DTTDR)n) � DRn.

To set up the proper inclusion results we will need the following key lemma about Ce
n, the

language of n-nested combs with even number of 1's.

Lemma 5.6 For every n � 1; Ce
n 2 dom((DTTDR)n):

Proof. It su�ces to show that f (t; 0) j t 2 Ce
n g 2 (DTTDR)n. We prove this by induction

on n. Let n = 1. Recall that C1 = f em(t1; : : : ; tm; y) j m � 0; and t1; : : : ; tm; y 2 f 1; 0 g g.
De�ne the dttDR A =< �;�; A; ae; P >, where

(a) � = �0 [�2, �0 = f 1; 0 g, �2 = f� g, and A = f ae; ao g
(b) P consists of the following rules:

< ae(�(x1; x2))! ao(x2); f 1 g; T� >, < ae(�(x1; x2))! ae(x2); f 0 g; T� >,
< ao(�(x1; x2))! ae(x2); f 1 g; T� >, < ao(�(x1; x2))! ao(x2); f 0 g; T� >,
< ao(1)! 0; >, < ae(0)! 0; >.

Intuitively, the transducer A comes down the \spine" of the input tree (which should be
a comb) and checks, with its look-ahead, the left child of the current node. Moreover, A
memorizes in its state the parity of the number of 1's encountered so far. A is in state
ae (respectively, ao) if the number of the already read 1's is even (odd). Finally, when A
arrives at the nullary symbol occurring at the end of the spine, A �nds the parity of the
total number of occurrences of 1 in the input tree. If there are even number of 1's in the
input tree, then A outputs 0, otherwise A halts without output. It is easy to see that
�A = f (t; 0) j t 2 Ce

1 g.

Suppose that n � 2, and that the claim holds for n�1. Recall that Cn = f em(t1; : : : ; tm; y) j
m � 0; y 2 f 1; 0 g and t1; : : : ; tm 2 Cn�1 g. De�ne the dttDR A =< �;�; A; a1; P >, where

(a) � = �0 [�2, �0 = f 1; 0 g, �2 = f� g, and A = f a1; a2; : : : ; an�1; ae; ao g ;

(b) P consists of the following rules: for each 1 � i � n� 2,
< ai(�(x1; x2))! �(ai+1(x1); ai(x2));T�; T� >,

17

< an�1(�(x1; x2))! �(ae(x1); an�1(x2));T�; T� >,
< ai(1)! 1; >, < ai(0)! 0; >, < an�1(1)! 1; >, < an�1(0)! 0; >,
< ae(�(x1; x2))! ao(x2); f 1 g; T� >, < ae(�(x1; x2))! ae(x2); f 0 g; T� >,
< ao(�(x1; x2))! ae(x2); f 1 g; T� >, < ao(�(x1; x2))! ao(x2); f 0 g; T� >,
< ao(1)! 0; >, < ao(0)! 1; >, < ae(1)! 1; >, < ae(0)! 0; >.

Roughly, A trims the \outermost" 1-combs o� an input tree t 2 Cn and replaces them with
a 0 or 1 depending on the parity of the number of 1's. A does the trimming only to the
extent necessary to make the output tree an element of Cn�1. Note that �A(ae) = f (t; 0) j
t 2 Ce

1 g [f (t; 1) j t 2 Co
1 g. It follows that for each tree t = em(t1; : : : ; tm; y) with m � 0,

y 2 f 1; 0 g and t1; : : : ; tm 2 Cn�1, a1(t))�
A em(t

0
1; : : : ; t

0
m; y) where for each i, 1 � i � m,

(i) t0i 2 Cn�2, (ii) t0i = ti if ti 2 Cn�2, and (iii) t0i is even if and only if ti is even.

Thus the tree em(t01; : : : ; t
0
m; y) 2 Cn�1 and it is even if and only if t is even. By the induction

hypothesis we are done.
2

Lemma 5.7 For each n � 1, dom((DTTDR)n) � dom((DTTDR)n+1).

Proof. Obviously, dom((DTTDR)n) � dom((DTTDR)n+1): By Proposition 2.4, Ce
n+1 62

DRn, and by Corollary 5.5, dom((DTTDR)n) � DRn. Hence Ce
n+1 62 dom((DTTDR)n). On

the other hand, by Lemma 5.6, Ce
n+1 2 dom((DTTDR)n+1).

2

Lemma 5.8 For each n � 1, dom((DTTDR)n �DTT) = dom((DTTDR)n).

Proof. For any two relations �1 and �2, dom(�1 � �2) = dom(�1 � ID(dom(�2))). Since
dom(DTT) = dom(DTA) = DR and ID(dom(DTA)) = DTA, we have

dom((DTTDR)n �DTT) = dom((DTTDR)n �DTA)
= dom((DTTDR)n�1 �DTTDR �DTA)
= dom((DTTDR)n�1 �DTTDR) by Lemma 5.2
= dom((DTTDR)n).

2

The following theorem is an immediate consequence of Lemma 5.7 and Lemma 5.8. It
settles the second inclusion of (3).

Theorem 5.9 For each n � 1, (DTTDR)n �DTT � (DTTDR)n+1:

To prove the �rst inclusion of (3): (DTTDR)n � (DTTDR)n �DTT , we need some further
preparation. For every pair (n; k) of nonnegative integers, we de�ne the tree language Cn;k
as follows:

(a) C0;k = Cn;0 = f 1; 0 g, for all k; n � 0.

18

(b) Cn;k = f�(t; r) j t 2 Cn�1;k�1 and r 2 Cn;k�1 g for k; n � 1.

We observe that for each k and n, Cn;k is a �nite tree language and that Cn;k � Cn;
obviously, Cn is in�nite if n � 1. Moreover, it can be easily shown that a tree t in Cn
belongs to Cn;k if and only if the following conditions hold for each root-to-leaf path of t.

(a) The length of the path is at most k.
(b) The path chooses the left child at most n times.
(c) If the path chooses the left son less than n times then its length is exactly k.

By the above characterization of Cn;k we also observe that
S1
k=0 Cn;k � Cn. We put

Ce
n;k = Cn;k \ Le and Co

n;k = Cn;k \ Lo. Obviously we have](Ce
n;k) =](Co

n;k). F�ul�op and
V�agv�olgyi [11] have proved the following helpful result.

Lemma 5.10 For every n � 1 and every tree language L 2 T�, if L 2 DRn�1 , then

lim
k!1

](L \ Ce
n;k)�](L \ Co

n;k)

](Cn;k)
= 0 :

We are now ready to prove the �rst inclusion in (3)

Theorem 5.11 For each n � 1, (DTTDR)n � (DTTDR)n �DTT .

Proof. By contradiction. Let � = �0 [�2, �0 = f 1; 0 g, �2 = f� g and � = �0 = f $ g.
By the proof of Lemma 5.6, it is easy to see that the relation f(�(p; q); �(0; 0)) j p; q 2
Ce
n g 2 (DTTDR)n. Moreover, the tree transformation f (�(p; q); $) j p; q 2 T� g is in

DTT . Hence the tree transformation � = f (�(p; q); $) j p; q 2 Ce
n g � T� � T� is in

(DTTDR)n �DTT . Let us suppose that � 2 (DTTDR)n. Then by Theorem 5.5, there is a
dttDRn�1 A =< �;�; A; a; P > such that � = �A. Without loss of generality we may assume
that each rule of A with left-hand side a(�(x1; x2)) can be applied in the �rst step of some
derivation a(�(p; q)))�

A $ of A. Hence each rule with left-hand side a(�(x1; x2)) may have
either one of the following three forms:

< a(�(x1; x2))! b(x1);L1; L2 > where b 2 A,
< a(�(x1; x2))! b(x2);L1; L2 > where b 2 A, or
< a(�(x1; x2))! $;L1; L2 > .

Consider all rules with left-hand side a(�(x1; x2)) that delete the variable x1 :

< a(�(x1; x2))! a1(x2);K1; L1 > , : : : ; < a(�(x1; x2))! ai(x2);Ki; Li >,
< a(�(x1; x2))! $;Ki+1; Li+1 > , : : : ; < a(�(x1; x2))! $;Kj ; Lj >,

where 0 � i � j and Km; Lm 2 DRn�1 for 1 � m � j. Suppose that there is an m,
1 � m � j, such that Km 6� Ce

n and let r 2 Km � Ce
n. By our assumption, there are

trees pm; qm such that the mth rule can be applied in the �rst step of some derivation

19

a(�(pm; qm)))�
A $ of A. Since x1 is deleted and r 2 Km, a(�(r; qm)))�

A $ holds as well.
This contradicts the de�nition of �. Thus, for each 1 � m � j, Km � Ce

n.
Hence, by Lemma 5.10, for each 1 � m � j,

lim
k!1

](Km \ Ce
n;k)

](Cn;k)
= 0:

This being true for every 1 � m � j, it follows that [jm=1Km � Ce
n. Pick a tree u 2

Ce
n�[

j
m=1Km. In an analogous fashion consider all the rules with left-hand side (a(�(x1; x2))

which delete the variable x2 :

< a(�(x1; x2))! a1(x1);M1; N1 > , : : : ; < a(�(x1; x2))! ak(x1);Mk; Nk >,
< a(�(x1; x2))! $;Mk+1; Nk+1 > , : : : ; < a(�(x1; x2))! $;Ml; Nl >,

where 0 � k � l and Mm, Nm 2 DRn�1 for 1 � m � l. Note that l = k + j � i and
Ki+m = Mk+m, Li+m = Nk+m for 1 � m � j � i. By analogous arguments one can easily
show that there exists a tree v such that v 2 Ce

n � [lm=1Nm. Consider the tree �(u; v). It
should be clear that the tree �(u; v) 2 dom(�) is not in dom(�A). Contradiction.

2

We now show (4).

Lemma 5.12
S1
n=0(DTT

DR)n � DTTR.

Proof.

S1
n=0 dom((DTTDR)n) �

S1
n=0DRn by Corollary 5.5.

� R by Theorem 4.6 in [11]
= dom(DTTR) by results in [5].

2

We now summarize the results of this section in the following theorem.

Theorem 5.13 The diagram in Figure 1 is an inclusion diagram for f jjujj j u 2 N g.

In the light of Theorem 5.13, the following result is obtained by direct inspection of the
inclusion diagram of Figure 1.

Consequence 5.14 For any u; v 2 N , jjujj = jjvjj if and only if u = v.

Lemma 5.4 leaves open the question of equality of the classes (DTTDR)n and DTTDRn.
We conjecture that these classes are not equal. In fact we make the following stronger
conjecture.

Conjecture 5.15 DTTDR2 �
S1
n=0(DTT

DR)n 6= ;:

20

6 The Rewriting System SM

In this section we implement step (V), the last step, of the (I)-(V) method suggested in
Section 3. That is, we have to give an algorithm which for every w 2 M� computes a
normal form of w, i.e. a string u 2 N such that w$�

TM
u, where TM is the Thue system

constructed in Section 4. We will need the following theorem.

Theorem 6.1 ([1], [3]) For any Thue system T (weight reducing string rewriting system
S) there is a linear time algorithm which for every word w computes a T -irreducible (S-
irreducible) element u such that w$�

T u (w$�
S u).

Note that if the system T (S) in Theorem 6.1 is Church-Rosser, then, by Theorem 2.5, u
is the unique irreducible element in the congruence class containing w. However, our Thue
system TM is not Church-Rosser because DTA �DTT and DTT �DTT are both irreducible
while being congruent with respect to TM . Fortunately, this is not a serious obstacle as we
are able to de�ne a weight reducing (and hence noetherian) rewriting system SM such that
TM and SM induce identical congruence classes (i.e., $�

TM
and $�

SM
are equal), each such

class contains a unique irreducible element with respect to SM , and N = IRR(SM). Once
such an SM has been de�ned and shown to have the required properties, Theorem 6.1 gives
us the linear time algorithm needed to satisfy step (V) of our method.

De�ne the rewrite system SM to consist of exactly the pairs of TM (of course SM
uses those pairs \one-way" only, while TM can use them in a \two-way" fashion), and
let the weight function � : M ! f 1; 2; : : : g be de�ned by: �(DTA) = 1 and �(DTT) =
�(DTTDR) = �(DTTR) = 2. It is easy to check that SM is weight reducing with respect
to �, and that $�

SM
is identical to $�

TM
.

Theorem 6.2 N = IRR(SM).

Proof. It should be clear that N � IRR(SM). Conversely, we show that IRR(SM) � N ,
that is, for each word w 2 IRR(SM), w 2 N . We proceed by induction on the length of w.
If jwj � 1, then

w 2 f I;DTA;DTT;DTTDR; DTTR g � N:

Now suppose that jwj = n > 1 and our statement holds for all words v with jvj � n�1.
Then w = v � U , where U 2 M , v is irreducible with respect to SM , and 1 � jvj = n � 1.
It follows that U 62 fDTTR; DTA g, because for each V 2 M and U 2 fDTTR; DTA g,
V � U is a left-hand side of some rule in SM . Thus either U = DTT or U = DTTDR.

First, consider the case where U = DTT . For each V 2 fDTT;DTTR g, V � DTT
is a left-hand side of some rule of SM . Hence the last letter V of v is either DTA or
DTTDR. By the induction hypothesis, v 2 N ; hence, if V = DTA then v = DTA, and if
V = DTTDR, then v = (DTTDR)k for some k � 1. Thus, either w = DTA �DTT 2 N or
w = (DTTDR)k �DTT 2 N .

Now suppose that U = DTTDR. For each V 2 fDTA;DTT;DTTR g, V �DTTDR is a

21

left-hand side of some rule of SM . Hence the last letter V of v is DTTDR. By the induction
hypothesis, v 2 N , and hence v = (DTTDR)k for some k � 1. Thus w = (DTTDR)k+1 2 N .

2

It follows from Theorem 6.2 that in every congruence class of $�
SM

(and hence in ev-
ery congruence class of $�

TM
) there is exactly one SM -irreducible element which is also

TM-irreducible . (Incidentally, by Theorem 2.5, this implies that SM is Church-Rosser.)
Moreover, the algorithm in Theorem 6.1 computes, for every word w 2 M�, the unique
normal form u 2 N of w (because N = IRR(SM)). By Theorems 6.1 and 6.2 we have
obtained the following result.

Theorem 6.3 There is a linear time algorithm that for every word w computes an SM -
irreducible element u 2 N such that w$�

SM
u.

7 Summary

In this section we summarize our results. We have carried out the implementation of steps
(I)-(V), of the methodology described in Section 3, that is to say,

(I) We gave a �nite relation TM � M� �M� which is our candidate for the set of
generators of �.

(II) We proved that for every (u; v) 2 TM , jjujj = jjvjj.
(III) We gave a subset N �M� which is a candidate for a set of representatives of �.
(IV) We gave the inclusion diagram of the set jjN jj = f jjujj j u 2 N g, which is the set

of tree transformation classes represented by the elements of N . By using this
inclusion diagram we veri�ed that for any u; v 2 N , jjujj = jjvjj if and only if u = v.

(V) We have shown that the linear time algorithm of [3] can be applied such that
for every w 2M� the algorithm computes the unique u 2 N such that w$�

T u.

By Lemma 3.2, this implies the following result.

Theorem 7.1

(a) N , the set of normal forms, is a set of representatives for the congruence classes of
�.

(b) The diagram of Figure 1 is the inclusion diagram of the set jjN jj = f jjujj j u 2 N g,
i.e., of the set of tree transformation classes represented by normal forms.

(c) TM �M� �M� is a �nite set of generators of � (i.e., a Thue system over M such
that $�

T = �) and we have shown the applicability of an algorithm which for every
w 2M�, by a suitable sequence of substitutions induced by TM , computes the
normal form of w, i.e., the unique u 2 N for which w$�

T u.

22

Therefore, by Theorem 3.1, we obtain the following theorem which answers the question
posed in Section 3.

Theorem 7.2 There is a linear time algorithm which for any tree transformation classes
Y1; : : : ; Ym; Z1; : : : ; Zn 2 M decides which one of the following four mutually exclusive
conditions holds.

(i) Y1 � : : : � Ym = Z1 � : : : � Zn ; (ii) Y1 � : : : � Ym � Z1 � : : : � Zn ;
(iii) Z1 � : : : � Zn � Y1 � : : : � Ym ; (iv) Y1 � : : : � Ym 1 Z1 � : : : � Zn :

References

[1] R. V. Book, Con
uent and other types of Thue systems, J. Assoc. Comput. Mach. 29

(1982) 171-182.

[2] R. V. Book, Thue systems and the Church-Rosser property: replacement systems,
speci�cation of formal languages and presentations of monoids, in Progress in Com-

binatorics on Words, (L. Cummings ed.) Academic Press, 1983, New York, pp. 1-38.

[3] V. Book and P. O'Dunlaing, Testing for the Church-Rosser property,Theoret. Comput.

Sci. 16 (1981) 223-229.

[4] J. Engelfriet, Bottom-up and top-down tree transformations { a comparison, Mathe-

matical Systems Theory 9 (1975) 198-231.

[5] J. Engelfriet, Top-down tree transducers with regular look-ahead, Mathematical Sys-

tems Theory, 10 (1976/1977) 289-303.

[6] J. Engelfriet and H. Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1985)
71-146.

[7] J. Engelfriet and H. Vogler, Pushdown machines for the macro tree transducer, Theoret.
Comput. Sci. 42 (1986) 251-368.

[8] J. Engelfriet and H. Vogler, High level tree transducers and iterated pushdown trans-
ducers, Acta Inform. 26 (1988) 131-192.

[9] Z. F�ul�op and S. V�agv�olgyi, Top-down tree transducers with determinstic top-down
look-ahead, Inform. Process. Lett. 33 (1989/90) 3-5.

[10] Z. F�ul�op and S. V�agv�olgyi, Variants of top-down tree transducers with look-ahead,
Mathematical Systems Theory 21 (1989) 125-145.

23

[11] Z. F�ul�op and S. V�agv�olgyi, Iterated deterministic top-down look-ahead, in Proc.

FCT'89, Lecture Notes in Computer Science, Vol. 380, Springer-Verlag, 1989, Berlin,
pp. 175-184.

[12] Z. F�ul�op and S. V�agv�olgyi, Decidability of the inclusion in monoids generated by tree
transformation classes, in Tree Automata and Languages, (M. Nivat and A. Podelski
eds.) Elsevier Science Publishers B.V. 1992, Amsterdam, pp. 381-408.

[13] F. G�ecseg and M. Steinby, Tree Automata, Akad�emiai Kiad�o, Budapest, 1984.

[14] M. Jantzen, Con
uent String Rewriting, Springer-Verlag, Berlin, 1988.

[15] W. C. Rounds, Mappings and grammars on trees, Math. Systems Theory 4 (1970)
257-287.

24

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR 93-10a
Submission Date: April 13, 1993

