A Hierarchy of Deterministic Top-down
Tree Transformations

TR 93-10a
Giora Slutzki and Sandor Vagvolgyi

April 13, 1993

lowa State University of Science and Technology
Department of Computer Science
226 Atanasoff
Ames, |A 50011

A Hierarchy ot Deterministic Top-down Tree
Transformations

*

Giora Slutzki and Sandor Vagvolgyi
Department of Computer Science

ITowa State University
Ames, Iowa 50011, USA

Abstract

The class DTTPE (respectively, DTT) is the family of all deterministic top-
down tree transductions with deterministic top-down look-ahead (respectively, no
look-ahead). In this paper we prove that the two hierarchies : (DTTPE)* and
(DTTPEY" o DTT are proper and that they “shuffle perfectly” in the sense that
(DTTPEY" o DTT is properly contained in (DTTPE)"+1 for all n > 0. Using
these results we show that the problem of determining the correct inclusion rela-

tionship between two arbitrary compositions of tree transformation classes from the
set M = {DTA,DTT,DTTPE DTTR} can be decided in linear time.

1 Introduction

There is a considerable interest in finding inclusions and equalities that hold for composi-
tions of tree transformation classes. Such results are, for example, the following six ones.

(a) DTAo DTA=DTA (b) DTTRo DTT® = DTTR
(¢) DTT C DTT o DTT (d) DT Ao DTT = DTT? = DTT?
(e) DTTPE c DTTPE o DTTPR (f) DTT o DTT C DTTPER

where DT A (respectively, DTT) stands for the class of tree transformations induced by
deterministic top-down tree automata (respectively, transducers) and the superscript R
(respectively, DR) stands for regular (respectively, deterministic top-down) look-ahead (see
[5],[15],[9],[10]). Results (a), (b) mean that DT A, DTT® are closed under composition, the
results (c), (e) states that DTT, DTTP® are not closed under composition, and (d) means

*On leave from Research Group on Theory of Automata, Hungarian Academy of Sciences, supported
by a grant from the Soros Foundation.

that the composition of three deterministic top-down tree transformations can be computed
by the composition of two, and moreover, the first one can be a deterministic top-down tree
automaton. It is easy to see that from the already verified equalities and inclusions we
obtain new ones by substituting either side of a valid equation for an occurrence of the
other side. For example, (¢) and (d) imply :

(¢) DIT € DT Ao DIT,
and (a), (d), (f), and (e) imply :

(h) DTAo DTAo DTT o DIT o DTT C DTTP® o DTTPE,

One may naturally raise the question whether (a)-(f) can be completed with finitely many
other inclusions and equations such that by applying substitutions we can derive every
inclusion and equation which holds among the compositions of DT'A, DTT, DTTPTE,
DTTZE. In general, one may be interested in generating all valid equalities and inclusions
between compositions of tree transformation classes that are taken from a given finite
reservoir of such classes. We formalize these questions in the following way. Let M be a
finite set of tree transformation classes. We consider two monoids defined in terms of M: the
free monoid M* (with the operation of concatenation denoted by “-”) and [M], the monoid
finitely generated by M (with the operation of composition denoted by “o”). Strings over
M represent transformation classes in [M] by means of a homomorphism || || : M* — [M]

defined by

1Yi- Yo ..oV, = YioY,0...0Y),

We denote by I € [M] the tree transformation class consisting of all identity tree transfor-
mations, i.e., [= ||Al|. Let 8 be the kernel of || ||, i.e., the congruence relation induced by
the homomorphism || || :

0 = ker(|| []) = {(v,w) € M™>x M™ | [[o]| = [|w][}

Filop and Vagvolgyi [12] raised the following problem. Give an algorithm which, given
Yi...., Y., Z1,....Z, € M, decides which one of the following four conditions holds:

(i)Yio...0Y,, = Zyo...07,, (i) Yio...0Y,, C Zjo...027,,
(iii) Z10...0Z, C Yyo...0Y, , (iv)Yio...oY,, X Zjo...0%, ,

where “M” stands for the incomparability relationship. They suggested an approach by
which such an algorithm can be constructed provided M is not “too general”. Our aim is
to apply this approach for the monoid M = { DT A, DTT, DTTPE, DTT®}. The choice
of M was motivated by equations and inclusions (a)-(f) and by the interesting hierarchy

results we obtain for [M]. Specifically, we show that (DTTPE)" and (DTTPH)* o DTT

form two proper hierarchies and that the second hierarchy fits perfectly and properly “in
between” the consecutive levels of the first hierarchy, i.e. for all n > 0 :

(DTTPH)" o DTT C (DTTPH)" .

The paper is organized as follows. In Section 2 we introduce and recall the notation and
basic concepts to be used. In Section 3 we outline the method of the paper. In Section 4
we give a Thue system Ty C M* x M* which is our candidate for the set of generators of
6. Ty contains the previously cited composition results (a), (b), and the “first half” of (d).
Then we prove a “soundness” result for Ty, i.e., that for every (u,v) € Ta, ||ul] = ||v]].
In this way elements of Ty represent equalities over [M]. In Section 5 we give a subset
N of M* which is a candidate for a set of representatives for the congruence classes of 4.
Then we give the inclusion diagram of the set {||u|| | v € N }, which is, in fact, the set of
tree transformation classes represented by the elements of N. In Section 6, we show that
the linear time algorithm of [3] can be applied such that, given w € M*, it computes a
representative u € N of the congruence class of w. In Section 7, we summarize our results.

2 Preliminaries

2.1 Tree Transducers

A ranked alphabet ¥ is an alphabet in which every symbol has a unique rank (arity) in
the set of nonnegative integers. For any m > 0, we denote by ¥,, the set of symbols in
Y which have rank m. For a ranked alphabet ¥ and a set H, the set of trees (or terms)
over ¥ indexed by H, denoted by Tx,(H), is the smallest set U satisfying the following two
conditions:

(i) HUX, C U,
(ii) o(t1,...,ty) € U whenever m > 0, 0 € ¥, and t4,...,1, € U.

The set of trees over ¥ is Tx(0), and we simply write T, for Tx(0). We specify a countable set
X = {ax1,29,... } of variables and set X,, = { z1,...,2,, } for every m > 0. We distinguish
a subset Tx(X,,) of Tx(X,,) as follows: a tree t € Tx(X,,) is in Tx(X,,) if and only if each
variable in X, appears exactly once in ¢ and the order of the variables in ¢ is x1,...,x,,.
For example, if ¥ = ¥q U ¥y with ¥g ={a} and ¥ = { o}, then o(x1,0(a,21)) € Tu(X71)
but o(zy,0(a,z1)) ¢ Te(X;). On the other hand, o(zy,0(a,z3)) € Te(X3). The notion of
tree substitution is defined as follows. Let m >0, ¢t € Ty (X,,) and hy,..., h,, € H, where
H is an arbitrary set. We denote by t[hq,..., h,] the tree which is obtained from ¢ by
replacing each occurrence of x; in ¢t by h; for every 1 < < m. Let ¥ and A be two ranked
alphabets. Then any subset of T x Ta is a tree transformation from Ty, to Ta. For a tree
language L, the partial identity { (¢,7) | ¢t € L} is denoted by I D(L).

Definiton 2.1 A top-down tree transducer (tt for short) is a system A =< ¥, A, A, Ag, P >,
where

(1) ¥ is a ranked input alphabet;

(2) A'is a ranked output alphabet;

(3) A is a ranked state alphabet, it is a unary alphabet, i.e., A = As;
also, AN (XUAUX) = 0;

(4) Ao is a subset of A, the set of initial states;

(5) P is a finite set of rules of the form

alo(xy, ..., xm)) — 1

where m > 0,0 € ¥,,, a € A, and t € TaA(A(X,,)). (Here and in what follows, for a
unary ranked alphabet A and a set L of terms, A(L) denotes the set {a(t)|a €
Aandt e L}.)

Computation of tt’s is formalized as follows. Define the binary relation = 4 on the
set Ta(A(Tx)) so that for any t,s € Ta(A(Tx)), t =4 s if and only if the following two
conditions hold:

(a) there is a rule a(o(xy,...,2m)) — rin P,
(b) s can be obtained from ¢ by replacing an occurrence of a subtree a(o(t1,...,1,)) of
t by r[ty,...,ty], where t1,... t,, € Tx.

Clearly, the relation =4 is interpreted as a method of rewriting terms into terms.
The reflexive, transitive closure of = 4, denoted by =%, is interpreted as the computation
relation of A. The tree transformation computed by A is the relation

Ta=1{(ts) €Ty xTh | a(t)%sfor some a € Ag }.

We now introduce some special types of tt’s. Let A =< ¥, AL A, Ag, P > be a tt. We
say that A is

(a) a deterministic top-down tree transducer (dtt) if Ag is a singleton and there are no
two different rules in P with the same left-hand side;

(b) a top-down tree automaton (ta) if ¥ = A and each rule in P is of the form
alo(x1,...,xm)) = olar(x1),. .., an(x,)) where a,aq,...,a, € A; in that case,
the tree transformation 74 is a partial identity on T¥;

(c) a deterministic top-down tree automaton (dta) if A is a ta and a dtt.

The class of all tt’s (respectively, dtt’s, ta’s, and dta’s) is denoted by T'T (respectively,
DTT, TA, and DT A). The tree language recognized by a ta A is L(A) = dom(74). The

classes of tree languages recognized by ta’s and dta’s are

R =dom(TA), and DR = dom(DTA).

Here R is the well-known class of recognizable tree languages, equal to the class of all
tree languages definable by bottom-up tree automata. It is well known that DR C R or
equivalently DT'A C T'A; a proof can be found in [4] or [13].

Top-down tree transducers with look-ahead, one of the main topics of this paper, were
defined in [5]. It transpired that they have a number of nice properties, especially in the
deterministic case. For example, the class of deterministic top-down tree tree transforma-
tions with regular look-ahead is closed under composition. The concept of look-ahead also
proved useful in other contexts [6], [7], [8]. Following [5], Filop and Vagvolgyi [9], [10]
defined and studied top-down tree transducers and deterministic top-down tree automata
with deterministic top-down look-ahead capacity.

Let € C R be a class of tree languages. A top-down tree transducer with C' look-ahead
(1Y) is a system A =< 3, A, A, Ag, P >, where the components are defined exactly as in
Definition 2.1, except that the rules in P are of the form

<alo(xr,...,xm)) = t; Lyyoooy Ly >

where
alo(xy, ..., xm)) — 1

is an ordinary tt-rule, as in Definition 2.1, and for each 1 < ¢ < m, L; C Ty is a language
in C'. The look-ahead tree languages Ly, ..., L,, act as “guards” for the application of the
above rule.

The one-step computation of A is the binary relation =4 on TA(A(Ty)) defined such
that t = 4 s if and only if

(a) there is a rule < a(o(xy,...,2m)) — 1 L1,..., Ly > in P, and
(b) t has a subtree t' = a(o(t1,...,tm)) with ¢; € L; (1 <¢ < m) and s is obtained
by substituting r[ty,...,,] for an occurrence of ¢’ in ¢.

It can be seen from the definition of =4 what the notion look-ahead means: a rule
can be applied at a node of a tree only if the direct subtrees of that node are in the tree
languages given in the rule. As usual, =%, the reflexive, transitive closure of = 4, formalizes
the concept of computation of t#¢’s, and the binary relation

Ta=1{(ts) €Ts xTh | a(t)%s for some a € Ao }

defines the tree transformation induced by A.
We define the following varieties of tt¢. Let A =< X, A, A, Ag, P > be a ttY. We say
that A is

(a) a top-down tree automaton with C' look-ahead (ta®) if A is a t1¢ with ¥ = A and
each rule in P is of the form < a(o(x1,...,2m)) = o(ar(@1),. .., an(Tm));
Ly,..., L, > where ay,...,a, € A;

(b) a deterministic top-down tree transducer with C' look-ahead (dtt) if Ag is a singleton
set and L; N L} =) holds for some i, 1 <7 < m, whenever
<alo(xr,...,xm)) = 15 Lay ooy Ly > and < a(o(q, ... x0)) — rey Ly, .., L, >
are different rules in P;

(¢) a deterministic top-down tree automaton with C' look-ahead (dta®) if A is a ta® and
a dtt“.

Note that if A is deterministic, then A can apply at most one rule at any given node.
This is because for any two different rules in P with the same left-hand side there exists
a variable x; such that the two look-ahead sets corresponding to z; are disjoint. The tree
language recognized by a ta® A is L(A) = dom(74). The class of all tree transformations
defined by all tt9’s (respectively dtt“’s, ta®’s, and dta®’s) is denoted by TTY (respectively
DTTC, TAY, and DT AY).

Example 2.2 Let ¥ = ¥, U ¥, be a ranked alphabet, where ¥y = {1,0} and ¥y = {0 }.
For each m > 0, define the tree e,, € Tx(X,.41) as follows: eg = x; and, for m > 1,
€m = 0(21, €m1[22, ..., Tmi1]), 1.€., €n 18 the tree o(xy,...,0(¥m, Tmy1)...). We say that
a tree in Ty is even (odd) if it contains even (odd) number of 1’s. We denote by L. (L,)
the set of all even (odd) trees over ¥. Note that 0 € L. and 1 € L,. For each integer n > 0,
the tree language C,, C T is defined as follows:

(a) Co = {170}7
(b) for n > 1, C, is the smallest set satisfying
(i) 1,0 € C,, and
(ii) o(t,r) € C,, whenever t € C,,_1 and r € C,,.

The elements of (), are called n-nested combs. Note that C,, = {en(t1,...,tm,y) | m >
0,y € {1,0} and t1,...,t,, € Cpn_1}. Obviously, for i < j, we have C; C C;. We put
Ce=C,NL,and C2=C, N L,.

The following result was proved in [5].
Proposition 2.3 Let A be a tt®. Then dom(74) € R.

By Proposition 2.3, we can iterate the look-ahead tree languages, without leaving R, as
follows. Let DRy be DR and let, for n > 1, DR, be the class of tree languages recognizable
by deterministic top-down tree automata with DR,_; look-ahead. By Proposition 2.3,
DR, C R for every n > 0. Fiilop and Vagvolgyi [11] proved the following result.

Proposition 2.4 For eachn > 1, C¢ € DR, — DR,,_,. Moreover, for every n > 0, DR,, is
closed under intersection.

2.2 Thue Systems and String Rewriting Systems

Let ¥ be an alphabet. The empty string and the length of a string w € ¥* are denoted,
respectively, by A and |w]|. Recall that ¥* is the free monoid generated by ¥ under the
operation of concatenation with A as identity. A Thue system T over X is a finite subset
of ¥* x ¥* and each element (u,v) of T' is called a rewriting rule. The Thue congruence
generated by T' is the reflexive, transitive closure <% of the relation <7 defined as follows:
for any w, z € ¥*, w <>¢ z if and only if there exist ,y € ¥* and (u,v) € T such that either
w = zuy and z = xvy, or, w = zvy and z = zuy. It is well-known that <% is the least
congruence over ¥* containing 1. The reduction relation induced by T is denoted by —r
and defined as follows: for any w,z € ¥*, w —7 z if and only if w7z and |w| > |z|. A
word w € ¥* is irreducible for T' (or T -irreducible) if there is no z € ¥* such that w —7 z.
The set of all irreducible strings for T' is denoted by I RR(T'). We say that T is Church-
Rosserif for all w,z € ¥*, if w <% 2, then there exists an € ¥* such that w—% x and

A string rewriting system S (over ¥) is a “one-way” version of a Thue system in that
its finite set of rewriting rules can be used in one direction only. The relation —% is the
reflexive, transitive closure of the relation —g defined by: for w,z € ¥*, w—g z if there
exist x,y € ¥* and (u,v) € S such that w = 2zuy and z = 2vy. We say that z can be
derived from w in S, if w —% 2z holds. The symmetric, reflexive and transitive closure <%
of —g5 is a congruence over ¥*. It is called the Thue congruence generated by S. We say
that

(a) S is noetherian if there are no infinite chains of the form wy —gw; —s.. .,
(b) S is Church-Rosser if for every w, z € ¥*, w <% z implies that w =% 2 and z =%«
for some z € X*.

A word w is called irreducible with respect to S (or S -irreducible) if there is no z such
that w —gz. The set of all S-irreducible words is denoted by I RR(S).

We now mention a sufficient condition for S to be noetherian. A weight function is
a mapping p : X — {1,2,...}, where for « € ¥, p(a) is the weight of a. It can be
extended to a mapping p: ¥* — {1,2,...} by letting p(A) = 0 and, inductively, defining
p(wa) = p(w) + p(a) for any w € £* and a € ¥. For example, if p(a) = 1 for each a € ¥,
then p(w) = |w|. We say that S is weight reducing with respect to p if, for each (u,v) € S,
p(u) > p(v) holds. S is weight reducing if there is a weight function with respect to which
S 1s weight reducing. It should be clear that each weight reducing string rewriting system
is noetherian. The following theorem gives a necessary and sufficient condition for the
Church-Rosser property.

Theorem 2.5 ([14], [2]) A Thue system T (noetherian string rewriting system S5) is
Church-Rosser if and only if each class of the congruence <% (%) contains exactly one
T-irreducible (S-irreducible) element.

3 The Outline of the Method

In this section we define precisely the problem we propose to solve and outline an approach
to its solution. The remainder of the paper will, in essence, implement the methodology
outlined here. Let M be a finite set of tree transformation classes. We consider two monoids
defined in terms of M: the free monoid M* (with the operation of concatenation denoted
by “”) and [M], the monoid finitely generated by M (with the operation of composition
denoted by “o”). Strings over M represent transformation classes in [M] by means of a

homomorphism || || : M* — [M] defined by

1Yi- Yo ..oV, = YioY,0...0Y),

We denote by I € [M] the tree transformation class consisting of all identity tree transfor-
mations, i.e., [= ||Al|. Let 8 be the kernel of || ||, i.e., the congruence relation induced by
the homomorphism || || :

0 = ker(|| []) = {(v,w) € M™>x M™ | [[o]| = [|w][}

Let N be a set of representatives of the congruence classes of . The elements of N are
called normal forms with respect to 6. Fiillop and Vagvolgyi [12] posed the problem of
constructing an algorithm which, given Yi,...,Y,,. Z1,..., 72, € M, decides which one of
the following four mutually exclusive conditions holds:

(i)Yio...0Y,, = Zyo...07,, (i) Yio...0Y,, C Zjo...027,,
(iii) Z10...0Z, C Yyo...0Y, , (iv)Yio...oY,, X Zjo...0%, ,

where “M” stands for the incomparability relationship. In [12] they suggested a method-
ology, by which such an algorithm can be constructed provided M is not “too general”.
Specifically, they suggested the following approach.

(a) Give a set of representatives N for the congruence classes of §.

(b) Give the inclusion diagram of the set ||N|| = {||u|| | v € N }, i.e., of the set of tree
transformation classes represented by normal forms. Note that || V|| = [M]. Also
note that having this inclusion diagram, for any given u,v € N, we can read from
can read from the diagram, which one of the following conditions holds:

() [Jull < o]l) ol lull
(i) fful] = {lv]] (V') el [> o]

(c) Give a finite set T'C M* x M* of generators of # (i.e., a Thue system T" over M
such that <% = #) and give an algorithm that for any w € M*, by a suitable
sequence of substitutions induced by T', computes the normal form of w, i.e., the
unique u € N for which w <% u.

Now we prove that once tasks (a)-(c) are accomplished, we have an algorithm that
decides, given Yi,...,Y,, Z1,...,Z, € M, which one of the conditions (i)-(iv) holds.
First, by the algorithm in (c), compute the normal forms u,v € N such that

Vi Y, Suand Zy ..o Z S,
T T

Since, by (¢), we have <% = 6, we also have
Yio...oY, = ||u]| and Zi0...07, = |[|v]].

Thus, one of the conditions (i)-(iv) holds for Yio0...0Y,, and Zjo...0 7, if and
only if the corresponding condition of (i')-(iv’) holds for ||u|| and ||v||. Moreover, having
the inclusion diagram, by (b), we can read from the diagram which one of the conditions
(i")-(iv’) holds. Hence we obtained the following.

Theorem 3.1 ([12]) Suppose that the tasks (a)-(c) have been executed for M. Then, there
is an algorithm which decides, given any tree transformation classes Y7,....Y,,, Z1,..., 7, €

M, which one of the conditions (i)-(iv) holds.

When applying the above general method to concrete choices of M, it transpired that
it is useful to implement the tasks (a)-(c) by performing the following five steps.

(I) Give a finite relation 7' C M* x M* which is our candidate for the set of generators
of §. (Here we are advised to take into consideration known decomposition results
that hold among elements of M.)

(IT) Prove that for every (u,v) € T, ||u]| = ||v||. (Otherwise, T cannot be a set of gene-
rators of #. In this way elements of T' represent equalities over [M].) We note that
(IT) implies the inclusion <% C 6 because, by (II), 7' C § and <% is the smallest
congruence on M* containing 7.

(I11) Give a subset N of M* which is a candidate for a set of representatives for the
congruence classes of 6.

(IV) Give the inclusion diagram of the set ||N|| = {||u|| | v € N }, which is, in fact,
the set of tree transformation classes represented by the elements of N. By using
this inclusion diagram show that for any u,v € N, if u # v, then ||ul| # ||v]].

(V) Give an algorithm that for every w € M* computes a u € N such that w <% u.

Next we prove that once we have successfully implemented steps (I)-(V), we have also
accomplished the tasks (a)-(c).

Lemma 3.2 ([12]) Suppose that we have carried out the steps (I)-(V). Then the tasks
(a)-(c) have also been accomplished.

Proof. We first show that § = «%. By (I) and (II) we have <% C 6. For the other
direction let w,w’ € M* be such that wbw’. Then construct, by (V), the normal forms u

and v’ for which w <% u and v’ <% u'. Since <% C 0, we also have wfu and w'0u’ from
which ufu’ follows. Then, by (III), v = v’ and thus w5 u = v’ <% w'. Hence § C 7.
Consequently we obtain <% = 6, which together with (V) yields (c¢). Moreover, by (III)
and (V), it follows that N is indeed a set of representatives of 8, hence we have (a). Finally,
by (IV), we have (b).

O

Remark Theorem 3.1 and Lemma 3.2 were proved in [12]. Because the proofs are short
(and relevant) we have reproduced them for the sake of completeness.

Our aim is to apply the (I)-(V) method to the set
M ={DTA, DTT,DTTPE DTTH},

where DT A, DTT, DTTPE, DTT?! stand for the classes of all tree transformations defined
in Section 2.1. Our choice of M is motivated by the known composition and decomposition
results and by the interesting hierarchy results we obtain in Section 5. We shall follow the
approach of Fiilop and Vagvolgyi [12] and perform the the steps (1)-(V) for the monoid [M]
induced by M.

4 The Thue System T,

Consider the set of tree transformations M = { DT A, DTT, DTTPE, DTT®}. We first
define a finite Thue system Ty C M* x M* whose Thue congruence is equal to 8, the kernel
of the homomorphism || || : M* — [M] defined in Section 3. Ty consists of the following
13 rewriting rules.

(1) (DTA-DTTE, DTTE) (2) (DTTE.-DTA, DTTE)

(3) (DTT - DTTE, DTTE) (4) (DTTE.DTT,DTTE)

(5) (DTTPE.DTTE DTTR) (6) (DTTE.DTTPR DTTR)

(7) (DTTE®. DTTR, DTTR) (8) (DTA-DTTPR DTTPR)

(9) (DTTPE.DTA, DTTPR) (10) (DTT - DTTPE, DTTPR)
12) (

(11) (DTT - DTT,DTA- DTT) (

11) (DTT - DTA,DTT)
(13) (DTA-DTA,DTA)

Next we will argue that for every (o, 3) € T, ||a|| = ||5]], or equivalently, («, #) € 0. This
will establish parts (I) and (II) of our method. For each ¢ (1 < ¢ < 13), if the ¢-th rewriting
rule of Ty is («, #), then the corresponding claim ||a|| = ||| will be denoted by (¢'). We
thus have to prove that (¢’) holds for 1 < ¢ < 13. Almost all these claims are well-known
results which we summarize in the following lemma.

10

Lemma 4.1

(a) [5] DTTY o DTT® = DTTE. This establishes (7).
(b) DTAo DTTE = DTTRo DTA = DTT o DTTE = DTTY o DTT
= DTTPEo DTTE = DTTR o DTTPE = DTTE,

This follows from (a) and establishes (17), (2), (3'), (4'), (5), and (6').
(¢) DTAo DTTPE = DTTPR. This follows from (10') and establishes (8').
(d) DTTPEoDT A = DTTPE. This follows by an easy construction and establishes (9').
(e) [9] DTT o DTT = DT Ao DTT. This establishes (117).
(f) [12] DTT o DT A = DTT. This establishes (12').
(g) [Folklore] DT' Ao DT A= DT A. This establishes (13).

O

[t remains to prove (10'). We will need the following concept. Let A= (X, A, A, ag, P)
be a dttP" and p € Tx(X,). We introduce the relation 4, C =7%. Intuitively, the

notation a(p[p1,...,pal) —ayp rlai(py)s .-, am(ps,)] means that rlai(py), ..., an(pi,)] is
the tree resulting from the partial computation of A on p[py, ..., p,] starting in state a and
down to the leaves of p without entering any of the subtrees p;. More formally,

(i) if p = 21, then p[pr.....p.] = p1 and a(p1) = a, a(pr);
(ii) let p=o(t1,...,tm), 0 € X, m >0,
alo(ty, ... tw)p1y -y pal) = alqlan(tsy)s s an(ti)))P1s - -+ Pal
for some ¢ € Ta(Xy), k>0, and a;(t;,[p1, ..., ps)) a1y for 1< j <k, where
for each ;; € Tx(Xy,), t;»] € T(Xl]) is t;, with its variables reindexed so that their
.,xy;. Then
a(plprs -, pal) —ap (qlri, i DIprs - pal-

Lemma 4.2 Let B = (A, T, B, by, P) be a dtt”?" and ¢ > 0 an integer. Then for any
q € Ta(X,) and b € B, there exists an integer & > 0, and for each 1 < i < k, there exists

a tree 1) € Tr(B(X,)) and tree languages L(Z),. L() € DR (L() L() C Ta) such
that the following conditions hold.

successive occurrences form left-to right are zq, xo, ..

(a) For every 1 < < j <k, there exists 1 <[< g with L;i) N L;j) = .
(b) For all ¢1,...,q, € Ta and 1 <i <k, if ¢ € L{?,... ¢, € L{), then

blalar -+ q5) =50 T a1, qy)-
(c) Forall ¢1,...,q, € Ta, r € Tr(B(X,)), if

b(Q[Qh s 7Qg]) —B,q r[q17 s 7Qg]7
then there exists 1 < ¢ < k such that r = v, and ¢, € Lgi), ceaqy € ng’)‘

Proof. For b € B, ¢ € Ta(X,), r € Tr(B(X,)), and Ly,..., L, € DR, a construct

11

<blq)—=riLy,.... L, > (%)

is called an extended rule of B for b and g. While the “rule part” b(q) — r of (*) is intended
to represent the computation of B down to the leaves of ¢, the languages L4, ..., L, represent
the “cumulative look-ahead” conditions on the trees that can be substituted for zq,..., 2,
in order to enable B to reach the leaves labeled x;,..., 2, in ¢. For each node of ¢ we will
construct a set of extended rules of B so that conditions (a)-(c) hold. The proof proceeds
by induction on the structure of ¢ € Ta(X,).

If ¢ € X, then ¢ = 2, and we let k = 1, 7)) = b(q) = b(z;), and Lgl) = Ta. The
set of extended rules, in this case, has just the (trivial) rule : < b(z1) — b(x1); Ta >.
Condition (a) holds trivially and condition (c) follows from the definition of g, . Let
Gs---5qy € Ta. Then

b(qlqrs - - -5 q5]) = b(q1) =54 b(q1)
= b(qlqis-- -, q4])
= bla,-- g
7“(1)[%7 st Qg] 9

establishing (b). Now suppose ¢ € Ag. If B has no rule with left-hand side b(¢), then let
k=0 and (a)-(c) hold trivially. Otherwise, let < b(¢) — u; > be a rule in P (note that the
list of look-ahead languages is empty in this case). Since B is deterministic, it has no other
rules with b(q) as a left-hand side. Define £ = 1 and r") = u. The set of extended rules of
B for b and ¢ consists, in this case, of a single rule < b(¢) — u; >. Conditions (a)-(c) hold
trivially.

For the inductive step suppose ¢ = o(t1,...,t,) € Ta(X,) for some o € A,,, m > 1.
Suppose that ¢; has ¢g; occurrences of variables; thus ¢ = g1 + g2 + ... + g,n. For each ¢;,
let ¢ € Ta(X,,) be t; with its variables reindexed so that their successive occurrences from
left to right are vy, 29,...,24. Let 1 < h < g. The variable 2, in ¢ is reindexed into ()
so that if x, occurs in #; then w, occurs in 5 and 1 < s(h) < g;. Let j(h) be the j such
that x;, occurs in ;.

Now, if B has no rule with left-hand side b(o (21, ..., 2,,)) then let k& = 0 and conditions
(a)-(c) are satisfied trivially. Otherwise, consider a rule of P:

< blo(xy, ... xm)) = ulby(ay), . bi(@)]; Lay ooy L > (k)

where u € Tr(X;), and by, ..., b € B. We now explain how to construct the set of extended
rules of B for b and ¢, that are associated with the rule (). Taking a union of all these
sets of extended rules, for various rules (x%) for b(g(x1,...,2.,)), gives the required set of
extended rules of B for b and ¢. The cardinality of this set is the required k. Let the dta
A, =< AJA AL al, Py, >, 1 < n < m, recognize the look-ahead language L, from (k).
Moreover, suppose that for 1 <n <m, and arbitrary trees py,...,p,, € I%,

12

ag(tlpr) 2 (Elad (@), - ag (2)Dlprs - ol

Now, by induction hypothesis, for each 1 < j <[, pick an extended rule of B for b; and t;»]:

M(j7ij) >

9o ey gi] 9

< bi(th) — ufy MU M)

and let u; be defined from u/; by restoring the original indexing of variables (i.e., replacing
index s(h) by h). Define a corresponding extended rule of B for b and ¢

< b(q) — u[ul,...,ul]; Nl,NQ,...,Ng >
where for 1 < h < g,

where An(ag(h)) (1 <n < m)is the dta A, with initial state ayip) instead of aj.

It is now easy to check that condition (a) holds by induction hypothesis and because
B is deterministic. Similarly, condition (c¢) holds by induction hypothesis and because we
consider all the rules (%) for b(o(x1,...,2,)). Itis also easy see thatif ¢ € Nq,...,¢, € N,
then

blglar, .- q5]) —Bq Tlars -5 g

where r = ufuy, ..., w]; thus condition (b) holds.

Lemma 4.3 D171 o DTTPE = DTTPR,

Proof. Let A = (X,A, A, a0, P,) be a dtt and B = (A, T, B, by, P2) be a dttPF. We
construct the dtt® ¢ = (X, T, A x B, (ao, bo), Ps) as follows. The rule

< (a,0)(o (1, wm)) = l(apay, 0) (o)), - - -5 (@ug), ba)(@o())l; 1oy S >
isin Py where p: {1,...,9} — {1,...,m} if the following conditions hold.

(a) a(o(z1, ... 2m)) = qlar(zeq)), - -5 an(Temy)] € P, where ¢ € Ta(X), n >0,
é:{1,....n} = {1,...,m}.

(b) < b(q) = r[bi(xya))s---sbg(xyg))]: L1, ..., Ly > is an extended rule of B for b
and ¢, where ¢ >0, r € Tr(X,), and ¢ : {1,...,9} = {1,...,n}.

(c) Foreach 1 < j <g, p(j) = o((j)).

(d) Foreach 1 < j <m, J; = N{dom(Ta@,y o ID(L;)) | ¢() = 5,1 < < n} if there
exists an 1 <@ < n, such that ¢(¢) = j, and J; = Ty, otherwise.

By part (f) of Lemma 4.1, for each 1 <@ < n, 743,y 0 ID(L;) € DI'T. Thus, by Theorem
3.11in [5], for each 1 <@ < n, 744, 0 ID(L;) € DR. As DR is closed under composition,

13

see (g) of Lemma 4.1, for each 1 < j < m, J; € DR. Hence C is a dtt?. In order to
show that ¢ = 74 073, it is enough to prove that for an arbitrary state (a, b) of C and trees
p €Ty, r € Ir, the equivalence

(a,b)(p) :Z> rif and only if (3¢ € Ta)(a(p) % q and b(q) :;> r).

holds. This can be done by induction on the structure of p.
O

We summarize the results of this section in the following theorem which is a simple conse-
quence of Lemma 4.1 and Lemma 4.3.

Theorem 4.4 For every («, 3) € T, ||| = ||3]], or equivalently, (a, 3) € 0.

5 The Inclusion Diagram

In this section we continue to implement the methodology outlined in Section 3, by executing
steps (III) and (IV). For (III) we have to give a subset N C M*, our candidate for the set
of representatives of the congruence classes of §. Here is our candidate:

N ={I,DTA,DTT,DI'A- DTT,DTTE} U
{(DTTPRy" | n >11} U
{(DTTPR)y* . DTT [n>1} .

According to (IV), we have to give an inclusion diagram for the set || N|| = { ||w]|| | w € N }.
Indeed we will show that the elements of ||N|| can be arranged into a proper hierarchy, all
inside DTT®. This hierarchy result is the main technical contribution of this paper. It is
displayed in Figure 1.

The properness of inclusion for the initial levels of the hierarchy is trivial:
I CcDIACDIT (1)
and Rounds [15] and Fiilop and Vagvolgyi [9], [10], have shown
DTT C DIT o DTT = DTAo DTT C DTTPE . (2)
To establish the hierarchy result it suffices to prove the two proper inclusions in
(DTTPEY C (DTTPRY o DTT C (DTTPR)+! (3)
forall n > 1, and

Uy (DTTPRY ¢ DTTE (4)

14

DTTE

UnZo(DTTPR)"

(DTTPR)? o DTT
(DTTPR)?
DTTPE o DTT
DTTPR

DT Ao DTT
DTT

DTA

1

Fig. 1. The inclusion diagram of the monoid [M].

Note that the union on the left-hand side of (4) is not an element of || N||. The inclusions
in (3) and (4) are obvious so we will concentrate on the properness issue. We will use the
classes of tree languages DR,, n > 0, defined in Section 2.1, and the languages of n-nested
combs, see Example 2.2 and Proposition 2.4 of Section 2.1.

We first discuss and prove some results about the domains of deterministic top-down tree
transducers with DR,, look-ahead. An early result (without look-ahead) dom(DTT)= DR
is proved in [5]. This was extended in [10]: dom(DTTPR) C DR,. We generalize these
results in the following lemma.

Lemma 5.1 For every n > 0, dom(DTTP%)C DR,y .

Proof. We proceed by an induction on n. For n = 0 the result follows from [10]. Suppose
that the result holds for integers smaller than n. We apply the usual power set construction.

Let A =< %, A, A, ap, P > be a dttPP». Define the dtaPf» B =< 3,3, B, by, P’ > where
B = P(A), the power set of A, by = { ag }, and P’ is the set of all rules of the form

<blo(xy,....xm)) = o(bi(x1),. . bp(@m)); Ky oo oy Ky >

15

constructed in the following way:

(i) Let b€ P(A), m >0, and o € X, be such that for each a € b there exists at least
one rule with left-hand side a(o(xy,...,2,)) in P.

(ii) For each a € b choose a rule < a(o(xy,...,2,)) — 1% LY, ..., L% > from P. For
each 1 <¢ < m, define b, = {a’ € A | d'(x;) occurs in t* } and K; = N,ep L.

The following fact can be proved by induction on the structure of trees: for each t € T,
and b € B, b(t) =5t if and only if for each a € b there exists r € Th with a(t)=%r.
Therefore, 75 = { (¢,t) | t € dom(74) } and so dom(74) = dom(7g).

O

Next we look at the relationship between DTTP®n and the composition classes (DTTPE)",
The proof of the first lemma is straightforward and we omit it.

Lemma 5.2 For every n > 0, DTTP%» 0o DT A = DTTPFn,
Lemma 5.3 For everyn > 1, DTTPH»—1 o DTTPE C DTTPE»,

Proof. Let A = (3,A, A, ag, P,) be a dttPf»=1 and B = (A, T, B, by, P,) be a dtt”F. We
construct the dtt® ¢ = (X, T, A x B, (ao, bo), Ps) as follows. The rule

< (a,b)(o(x, ... 2m)) = r[(ar, b1)(2pm)), - - -, (ag, by) (@ o)) My, ..., My, >

withr € Ta(X,),g > 0,and p: {1,....9} — {1,...,m},isin Ps if the following conditions
hold.

(a) < alo(x1,...

Tm)) = qlar(zsq))s - an(Temy)) K1, ..., Ky > € Py, where
1

g € Ta(Xn), 02 {1,...on} — {1,....m}.

(b) < b(q) = r[bi(xya))s---sbg(2yg)]i L1, ..., Ly > is a generalized rule of B, where
LERETE -79}—>{17 ..,n}.

(c) Foreach j, 1 <j < g, p(j) = o(+(5)).

(d) Foreach 1 < j <m, M; = K; N (N{dom(7(,)o]D(N]e()=75,1<i<g})
if there exists an ¢, 1 <7 < g, such that ¢(:) = j, and M; = K; otherwise.

By Lemma 5.2, for each 1 < ¢ < g, 740, 0 ID(L;) € DTTPE»-1 and by Lemma 5.1,
the domain of a dtt”F»=1 is in DR,,. Moreover, DR,_1 C DR, and DR, is closed under
intersection. Hence M; € DR, for 1 < j <m. Thus Cis a dtP e,

In order to show that 7¢ = 74 o 73, it is enough to prove that for arbitrary state (a,b)
of C and trees p € Ty, r € 1, the equivalence

(a,b)(p) :Z> rif and only if (3¢ € Ta)(a(p) % q and b(q) :;> r).

holds. This can be done by induction on the structure of p.

16

Lemma 5.4 For every n > 1, (DTTPE)y» C DTTPHn—1,

Proof. By induction on n. For n = 1 the statement is trivial. Let us assume that n > 2,

and (DTTPE)y=t C DTTPRn—2. Then

(DTTPEY = (DTTPRy=1 o DTTPE
C DTTPEn—2 o DTTPE by induction hypothesis
C DTTPRn— by Lemma 5.3.

An immediate consequence of Lemma 5.1 and Lemma 5.4 is the following corollary.
Corollary 5.5 For every n > 0, dom((DTTPH)") C DR,

To set up the proper inclusion results we will need the following key lemma about Cf, the
language of n-nested combs with even number of 1’s.

Lemma 5.6 For every n > 1,C¢ € dom((DTTPH)").

Proof. Tt suffices to show that { (¢,0) | ¢ € C¢} € (DTTPE)". We prove this by induction
on n. Let n = 1. Recall that Cy = { e (t1,...,tm,y) | m >0, and t1,...,tm,y € {1,0} }.
Define the dtt?F A =< ¥, 3, A, a., P >, where

(a) E=3oUXy, Yo={1,0}, ¥ ={0},and A= {a.,a,}
(b) P consists of the following rules:

< ae(o(xy,12)) = ao(x2); {1}, T >, < ae(o(xy,22)) — ac(x2); {0}, T >,
< ao(o(xy,12)) = ac(x2); {1}, T >, < ay(o(xy,29)) — ay(x2); {0}, Ty >,
< a,(l) — 05 >, < a.(0) = 0; >.

Intuitively, the transducer A comes down the “spine” of the input tree (which should be
a comb) and checks, with its look-ahead, the left child of the current node. Moreover, A
memorizes in its state the parity of the number of 1’s encountered so far. A is in state
a. (respectively, a,) if the number of the already read 1’s is even (odd). Finally, when A
arrives at the nullary symbol occurring at the end of the spine, A finds the parity of the
total number of occurrences of 1 in the input tree. If there are even number of 1’s in the
input tree, then A outputs 0, otherwise A halts without output. It is easy to see that
ra={(1,0) 1€ CF).

Suppose that n > 2, and that the claim holds for n—1. Recall that C,, = { e, (1, ..., tn,y) |
m>0,y€{1,0} and t1,...,t, € C,_1 }. Define the dtt’F A=< X ¥ A, a;, P >, where

(a) E=3gUXy, Yo={1,0}, 8 ={0},and A= {ay,a2,...,an-1,0ac,a,},

(b) P consists of the following rules: for each 1 <¢ <n — 2,
< Cli(O'(l’l, $2)) - U(ai—l—l(xl)v az(xQ))a TEv TE >,

17

< an-1(0(21,22)) = o(ac(wr), ana(w2)); Tx, T >,

<ai(l)y—=1; >, <a;(0) = 0; > <apa(l)—=1; > <a,—1(0) = 0; >,
< ae(o(xy,12)) = ao(x2); {1}, T >, < ae(o(xy,22)) — ae(x2);{0},Tx >,

< ao(o(xy,12)) = ac(x2); {1}, T >, < ao(o(xy,22)) = an(x2); {0}, Ty >,

< a,(l) — 05 >, < a,(0) = 15 >, <ac(l)—1; >, < a.(0) — 0; >.

Roughly, A trims the “outermost” 1-combs off an input tree t €), and replaces them with
a 0 or 1 depending on the parity of the number of 1’s. A does the trimming only to the
extent necessary to make the output tree an element of C,_y. Note that 74(,,) = {(¢,0) |
te Citu{(t,1) |t eCy}. It follows that for each tree t = e, (14,. .. ,tm,y) Wlth m >0,
ye{1,0}and t1,...,t, € Choq, ar1(t) =5 en(t], ..., 10 y) where for each ¢, 1 <i < m,

(i) th € Cpa, (if) th=t;if t, € Cpg, and (iii) ¢} is even if and only if ¢; is even.

Thus the tree e, (], ..., 1., y) € C,_1 and it is even if and only if ¢ is even. By the induction

hypothesis we are done
O

Lemma 5.7 For each n > 1, dom((DTTPE)") C dom((DTTPE)+1).

Proof. Obviously, dom((DTTPH)") C dom((DTTPH)"1). By Proposition 2.4, Ct, ; ¢
DR, and by Corollary 5.5, dom((DTTP%)*) C DR,,. Hence Cor dom((DTTDR)). On
the other hand, by Lemma 5.6, Cr | € dom((DTTPE)+1),

O
Lemma 5.8 For each n > 1, dom((DTTPE)" o DTT) = dom((DTTPH)").
Proof. For any two relations 7 and 72, dom(7y o 72) = dom(m o ID(dom(7z))). Since
dom(DTT) = dom(DTA) = DR and ID(dom(DTA)) = DT A, we have
dom((DTTPE)Y o DTT) = dom((DTTPE) o DT A)
= dom((DTTPE)=t o DTTPE o0 DT A)
= dom((DTTPE)~t o DTTPER) by Lemma 5.2
= dom((DTTPR))
O

The following theorem is an immediate consequence of Lemma 5.7 and Lemma 5.8. It
settles the second inclusion of (3).

Theorem 5.9 For each n > 1, (DTTPE) o DTT C (DTTPR)+L,

(
To prove the first inclusion of (3): (DTTPE) C (DTTPE)* o DT'T, we need some further
k)

preparation. For every pair (n, k) of nonnegative integers, we define the tree language C,, 4

as follows:

(a) Co = Cho={1,0}, for all k,n > 0.

18

(b) Cpp={olt,r) |t € Cphoqp—r and r € Cp 1 } for kyn > 1.

We observe that for each k and n, €, is a finite tree language and that C,; C Cp;
obviously, C,, is infinite if n > 1. Moreover, it can be easily shown that a tree ¢ in (),
belongs to), ; if and only if the following conditions hold for each root-to-leaf path of ¢.

(a) The length of the path is at most k.
(b) The path chooses the left child at most n times.
(c) If the path chooses the left son less than n times then its length is exactly k.

By the above characterization of (), ; we also observe that (Jjz,C,x C C,. We put
Cry=CuxNL.and C7) = C,p N L,. Obviously we have ﬂ(Cgk) = ﬂ(Cf;k) Fulép and
Végvolgyi [11] have proved the following helpful result.

Lemma 5.10 For every n > 1 and every tree language L € Ty, if L € DR,,_1, then

=0 .

o HENCOTL) — 4L N Cy)
k=00 8(Chk)

We are now ready to prove the first inclusion in (3)
Theorem 5.11 For each n > 1, (DTTPE)" C (DTTPE)" o DTT .

Proof. By contradiction. Let ¥ = ¥qU Yy, 89 ={1,0}, ¥y ={o}and A =Ag={5}.
By the proof of Lemma 5.6, it is easy to see that the relation {(o(p,q),c(0,0)) | p,q €
Cc} € (DTTPRY . Moreover, the tree transformation {(c(p,q),$) | p,¢ € Ts} is in
DTT. Hence the tree transformation p = {(o(p,q),%) | p,g € Cc} C Tx x T is in
(DTTPEY o DTT. Let us suppose that p € (DTTPE)". Then by Theorem 5.5, there is a
dttPPn—1 A =< 3 T, A, a, P > such that p = 74. Without loss of generality we may assume
that each rule of A with left-hand side a(o (21, 22)) can be applied in the first step of some
derivation a(o(p,q)) =% % of A. Hence each rule with left-hand side a(o(x1,x2)) may have
either one of the following three forms:

< al(o(xy,x2)) — b(x1); L1, Ly > where b € A,
< a(o(xy,xq9)) — b(aa); L1, Ly > where b € A, or
< alo(xy,x9)) — %5 L1, Ly > .

Consider all rules with left-hand side a(o (21, x2)) that delete the variable xy :

<alo(xy,xa)) — ar(xa); Ky, Ly >, ..., < alo(xy,x2)) — ai(xa); Ky, L >,
< G(U(Q?l,l‘z)) - $;](i+17[fi+1 >y, < G(U($17J;2)) - $7[(]7L] >,

where 0 < ¢ < 5 and K,,,L,, € DR,_1 for 1 < m < j. Suppose that there is an m,
1 < m <y, such that K,, € C¢ and let r € K,, — C:. By our assumption, there are
trees pn., ¢, such that the mth rule can be applied in the first step of some derivation

19

a(o(pm, qm)) =% % of A. Since z; is deleted and r € K,,, a(o(r,¢,)) =% $ holds as well.
This contradicts the definition of p. Thus, for each 1 <m <y, K,, C CF.
Hence, by Lemma 5.10, for each 1 < m < 7,

I; ﬂ([(m N Cﬁ,k)
m ———=
h—co §(Cp)

This being true for every 1 < m < j, it follows that U/ _, K,, C C¢. Pick a tree u €

Cﬁ—Uanle- In an analogous fashion consider all the rules with left-hand side (a(o (21, x3))
which delete the variable z4 :

=0.

< alo(xy,xa)) — ar(xr); My, Ny >, ..., < alo(xr,22)) — ag(ar); My, Ny, >,

< alo(xy,x2)) = 85 M1, Nep1 > 5 ..., < alo(xg,22)) — §; My, Ny >,
where 0 < k <l and M,,, N,, € DR,_; for 1 < m < [. Note that [= k+ j — ¢ and
Ky = Myvm, Livyy = Npyy for 1 < m < 5 — 2. By analogous arguments one can easily
show that there exists a tree v such that v € C¢ —U! _ | N,,. Consider the tree o(u,v). It
should be clear that the tree o(u,v) € dom(p) is not in dom(74). Contradiction.

O
We now show (4).
Lemma 5.12 [J°2,(DTTPE) ¢ DTTE.
Proof.
U, dom((DTTPRY) C |2, DR, by Corollary 5.5.
CR by Theorem 4.6 in [11]
= dom(DTTH) by results in [5].
O

We now summarize the results of this section in the following theorem.
Theorem 5.13 The diagram in Figure 1 is an inclusion diagram for { |[u|| |u € N }.

In the light of Theorem 5.13, the following result is obtained by direct inspection of the
inclusion diagram of Figure 1.

Consequence 5.14 For any u,v € N, ||u|| = ||v|| if and only if u = v.

Lemma 5.4 leaves open the question of equality of the classes (DTTPR)* and DTTPEx.
We conjecture that these classes are not equal. In fact we make the following stronger
conjecture.

Conjecture 5.15 DTTPFR —)2 (DTTPR)y™ £ .

20

6 The Rewriting System Sy,

In this section we implement step (V), the last step, of the (I)-(V) method suggested in
Section 3. That is, we have to give an algorithm which for every w € M* computes a
normal form of w, i.e. a string u € N such that w <% u, where Ty is the Thue system
constructed in Section 4. We will need the following theorem.

Theorem 6.1 ([1], [3]) For any Thue system T' (weight reducing string rewriting system
S) there is a linear time algorithm which for every word w computes a T-irreducible (S-
irreducible) element v such that w <% u (w <% u).

Note that if the system T' (5) in Theorem 6.1 is Church-Rosser, then, by Theorem 2.5, u
is the unique irreducible element in the congruence class containing w. However, our Thue
system Ty is not Church-Rosser because DT'A- DT'T and DTT - DTT are both irreducible
while being congruent with respect to Ty;. Fortunately, this is not a serious obstacle as we
are able to define a weight reducing (and hence noetherian) rewriting system Sys such that
Tar and Sy induce identical congruence classes (i.e., <7, ~and <% —are equal), each such
class contains a unique irreducible element with respect to Sy, and N = TRR(S)s). Once
such an Sy has been defined and shown to have the required properties, Theorem 6.1 gives
us the linear time algorithm needed to satisfy step (V) of our method.

Define the rewrite system Sy to consist of exactly the pairs of Th (of course Sy
uses those pairs “one-way” only, while Th; can use them in a “two-way” fashion), and
let the weight function p : M — {1,2,...} be defined by: p(DTA) =1 and p(DTT) =
p(DTTPR) = p(DTTH) = 2. Tt is easy to check that Sy is weight reducing with respect
to p, and that <%, isidentical to <73, .

Theorem 6.2 N = IRR(Swm).

Proof. It should be clear that N C IRR(Sa). Conversely, we show that TRR(Sy) C N,
that is, for each word w € TRR(Sx), w € N. We proceed by induction on the length of w.
If |w| <1, then

we {I,DTA,DTT, DTTPE DTTEY C N.

Now suppose that [w| = n > 1 and our statement holds for all words v with |v| < n—1.
Then w = v - U, where U € M, v is irreducible with respect to Sy, and 1 < |v| =n — 1.
It follows that U/ ¢ { DTT® DT A}, because for each V€ M and U € { DTTE DT A},
V.U is a left-hand side of some rule in Sy;. Thus either U = DTT or U = DTTPE,

First, consider the case where U = DTT. For each V. € {DTT,DTT®}, V- DTT
1s a left-hand side of some rule of Sj;. Hence the last letter V of v is either DT A or
DTTPE, By the induction hypothesis, v € N; hence, if V = DT A then v = DT A, and if
V = DTTPE then v = (DTTPE)* for some k > 1. Thus, either w = DT Ao DTT € N or
w= (DTTPR)Y* o DTT € N.

Now suppose that U = DTTPE, Foreach V € { DTA, DTT,DTTR}, Vo DTTP is a

21

left-hand side of some rule of Sy;. Hence the last letter V of v is DTTPE. By the induction

hypothesis, v € N, and hence v = (DTTPE)* for some k > 1. Thus w = (DTTPR)k+L € N,
O

It follows from Theorem 6.2 that in every congruence class of <% = (and hence in ev-
ery congruence class of <7) there is exactly one Sys-irreducible element which is also
Tar-irreducible . (Incidentally, by Theorem 2.5, this implies that Sys is Church-Rosser.)
Moreover, the algorithm in Theorem 6.1 computes, for every word w € M*, the unique
normal form v € N of w (because N = [RR(Sy)). By Theorems 6.1 and 6.2 we have

obtained the following result.

Theorem 6.3 There is a linear time algorithm that for every word w computes an Sy;-
irreducible element v € N such that w <% u.

7 Summary

In this section we summarize our results. We have carried out the implementation of steps
(I)-(V), of the methodology described in Section 3, that is to say,

(I) We gave a finite relation Thy € M* x M* which is our candidate for the set of

generators of 6.

(IT) We proved that for every (u,v) € T, ||u]| = ||v]].

(I11) We gave a subset N C M* which is a candidate for a set of representatives of 4.

(IV) We gave the inclusion diagram of the set ||N|| = {||u|| | v € N }, which is the set
of tree transformation classes represented by the elements of N. By using this
inclusion diagram we verified that for any u,v € N, ||u|| = ||v]| if and only if u = .

(V) We have shown that the linear time algorithm of [3] can be applied such that
for every w € M* the algorithm computes the unique v € N such that w <% w.

By Lemma 3.2, this implies the following result.
Theorem 7.1

(a) NV, the set of normal forms, is a set of representatives for the congruence classes of
0.

(b) The diagram of Figure 1 is the inclusion diagram of the set ||N|| = {||u]| | v € N},
i.e., of the set of tree transformation classes represented by normal forms.

(¢) Ty € M* x M* is a finite set of generators of 6 (i.e., a Thue system over M such
that <% = 0) and we have shown the applicability of an algorithm which for every
w € M*, by a suitable sequence of substitutions induced by Tys, computes the
normal form of w, i.e., the unique v € N for which w <% u.

22

Therefore, by Theorem 3.1, we obtain the following theorem which answers the question
posed in Section 3.

Theorem 7.2 There is a linear time algorithm which for any tree transformation classes
Yi....,. Y, Z1,....Z, € M decides which one of the following four mutually exclusive
conditions holds.

(i)Yio...0Y,, = Zyo...07,, (i) Yio...0Y,, C Zjo...027,,
(iii) Z10...0Z, C Yyo...0Y, , (iv)Yio...oY,, X Zjo...0Z, .
References

[1] R. V. Book, Confluent and other types of Thue systems, J. Assoc. Comput. Mach. 29
(1982) 171-182.

[2] R. V. Book, Thue systems and the Church-Rosser property: replacement systems,
specification of formal languages and presentations of monoids, in Progress in Com-
binatorics on Words, (L. Cummings ed.) Academic Press, 1983, New York, pp. 1-38.

[3] V. Book and P. O’Dunlaing, Testing for the Church-Rosser property, Theoret. Comput.
Sei. 16 (1981) 223-229.

[4] J. Engelfriet, Bottom-up and top-down tree transformations — a comparison, Mathe-

matical Systems Theory 9 (1975) 198-231.

[5] J. Engelfriet, Top-down tree transducers with regular look-ahead, Mathematical Sys-
tems Theory, 10 (1976/1977) 289-303.

[6] J. Engelfriet and H. Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1985)
71-146.

[7] J. Engelfriet and H. Vogler, Pushdown machines for the macro tree transducer, Theoret.

Comput. Sci. 42 (1986) 251-368.

[8] J. Engelfriet and H. Vogler, High level tree transducers and iterated pushdown trans-
ducers, Acta Inform. 26 (1988) 131-192.

[9] Z. Filép and S. Vagvolgyi, Top-down tree transducers with determinstic top-down
look-ahead, Inform. Process. Lett. 33 (1989/90) 3-5.

[10] Z. Fulép and S. VAgvolgyi, Variants of top-down tree transducers with look-ahead,
Mathematical Systems Theory 21 (1989) 125-145.

23

[11] Z. Filép and S. Vagvolgyi, Iterated deterministic top-down look-ahead, in Proc.
FCT’89, Lecture Notes in Computer Science, Vol. 380, Springer-Verlag, 1989, Berlin,
pp- 175-184.

[12] Z. Fulop and S. Vagvolgyi, Decidability of the inclusion in monoids generated by tree
transformation classes, in Tree Automata and Languages, (M. Nivat and A. Podelski

eds.) Elsevier Science Publishers B.V. 1992, Amsterdam, pp. 381-408.
[13] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadé, Budapest, 1984.
[14] M. Jantzen, Confluent String Rewriting, Springer-Verlag, Berlin, 1988.

[15] W. C. Rounds, Mappings and grammars on trees, Math. Systems Theory 4 (1970)
257-287.

24

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR 93-10a
Submission Date: April 13, 1993

