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Abstr~tct. Two new techniques have been developed to extract circles in computer 
images and this paper clarifies their implementation. One technique uses nonlinear 
least squares, the other an extended Kalman filter. Parameter estimation is based 
on analysing the residual gradient direction where the locus of an approximation 
to a circle intersects the target circle. This approach allows powerful estimation 
techniques to be used for feature extraction in computer vision. The least squares 
technique is based on adapting an earlier method developed for ellipse extraction 
which has been modified not only for circle estimation but also to reduce sensitivity 
in par~a~aeter estimation. The Kalman filter algorithm is an extended version 
arranged to estimate the circle's parameters. 
Simulation results show that both techniques can extract circles in application but 
the Kalman filter implementation took more iterations and a number of factors 
limit its use The least squares technique only is shown applied to grey level 
images. Both techniques serve to extract circles when an initial approximation 
to the circle is known and hence are most suited to tracking circles in computer 
images. The techniques are at present being extended to include data weighting 
accordfaag to edge magnitude and direction. 

1 Introduction 

Some techniques have already been developed to extract circles using least squares. One 
approach concerned iterative fitting of coordinate values to minimise the error between 
a set of given points and an estimated arc [1]. A non-iterative solution was formulated 
later by deriving a parameter set which minimises the difference between computed 
and predicted area using a modified mean square error function [2]. A recent survey of 
quadratic curve extraction [3] studied the accuracy of the parameters which describe 
quadratic curees and introduced a new error function to derive a measure of quality of 
the extracted parameters. 

Both new techniques have been developed for circle extraction and use gradient 
direction information in a new way. A least squares technique for ellipse extraction [4] 
has been extended to circle extraction. Gradient direction information has also been used 
before to reduce data in circle extraction [5,6] but these use measured edge direction 
alone. For circles, the edge direction can be arranged to point towards the centre of 
the circle and hence speed extraction of the centre coordinates. The new techniques are 
based not on using direction information alone, but on using the difference between 
the edge direction predicted from an approximation to a circle from the measured edge 
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direction. At points where the target circle intersects with the approximation, the gradient 
direction can be predicted for the perimeter of the approximation using the equation 
which describes it. The edge gradient direction on the perimeter of the circle in the 
image can be measured using an edge detection operator. The difference between these 
gradient directions is intimately related to the error in the values used for the parameters 
of the approximation. 

By combining the residual information at intersecting points, an iterative least 
squares algorithm has been developed to estimate parameter values. The Kalman filter 
algorithm also uses the discrepancy in edge direction information to correct parameter 
estimates and can produce estimates in a point by point iterative manner according to 
its basic formulation. It was included in this study to determine whether its formulation 
provided any benefits to circle extraction. These concern estimation in a direct itera- 
tive manner where the error covariance describes error associated with the estimation 
procedure. The error covariance is used to evaluate the Kalman gain which controls 
contribution of the residual gradient direction to the parameter estimates. A bias cor- 
rected extended Kalman filter for ellipse extraction [7] based on a linearisation of the 
maximum likelihood principle rather than coordinate data. This aimed to reduce bias to 
high curvature fits. Following iterative estimation of ellipse parameters the final error 
covariance was used to evaluate a confidence envelope for the fitted ellipse. Another 
approach [8], also based on coordinate data, extended arcs using a Mahalanobis dis- 
tance measure to select segments of edge data to update the estimates from the Kalman 
filter. Using residual gradient direction required an extended Kalman filter because the 
measurement is not linearly related to the parameters which describe a circle. The for- 
mulation is standard but arranged for this application. Both techniques are demonstrated 
to work in simulation to extract a light disk from a dark background. The least squares 
technique is also shown applied to real images and research progresses to capitalise 
on using weighting according to edge direction consistency and on appropriate point 
selection for the Kalman filter algorithm. 

2 Least squares technique for circle extraction 

Given a circle defined by 

( x  - x o )  + ( y  - y o )  2 = ( 1 )  

where xo, yo are the coordinates of the centre and r is the radius. The gradient 
direction is given by differentiation, expressed in terms of the x coordinate only as 

f ( x ,  w_) = (x  - xo) (2) 
- ( x  - 

where _w is a vector of the unknown parameters 

_w : {xo r}  

The values of these unknown parameters is to be estimated and the true values (the 
target) are __w and their estimates are ~.  The values of the starting set of estimates ~ ,  is 
corrected by increments 6__w to achieve a new set (or end set) of estimates ~ 
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i.e. ~ = ~ +_Sw (3) 

where _Sw is the vector of increments to the parameter estimates, formed from 8z0 
the increment to the z coordinate of the centre and 6r the increment to the radius. The 
increments are calculated by combining residual gradient direction at intersecting points 
on the locus of the approximation and of the target circle by the method of least squares. 
The difference between the measured and predicted gradient direction is 

f(x, w) = f(x, w) - f(x, Cv) (4) 

where the predicted gradient direction is f(z, ~) and f(z, w) is the measured 
gradient direction at the point of interest. By expanding the predicted gradient direction 
to first order by Taylor series and by substitution in eqn. 4 the sum of differences squared, 
D 2, over N matching points is 

D~ = ~ {f(x,w__)- f(z, fv~) cgf(~w~)5_w}~ 

We seek to minimise this sum by best choice of values for the elements of_Sw. By 
differentiation the result the solution is 

_~w = ~ - l f l  (5) 

where the elements of ~ and fl are computed according to 

N 

Owk (7) 

Calculation starts by choosing values for the first approximation, ~b~. At intersecting 
points between the two loci the edge gradient direction can be measured to provide 
values for f(z,__w), and can be predicted from Equation 2 to give values for f ( z ,~ ) .  
The predicted gradient direction is expressed as an angle, rather than as a fraction, to 
preserve isotropy and hence a balanced contribution of the residual gradient direction. 
The predicted gradient direction is then 

f (x ,~ )  -- -tan -1 \ x/r2 _ (x - x0) 2 (8) 

This provides edge direction as the angle between the z axis and the tangent to 
the locus. The edge detection operator is then arranged to provide the edge direction in 
angular form, langential to the edge. The difference in these angles is then used, together 
with the partial derivatives, to form the elements of the matrix fl, Equation 7. The partial 
derivatives themselves are used to calculate the matrix c~, Equation 6. After the set of 
matching points has been exhausted, the increments to the first approximation can be 
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evaluated, Equation 5. The new approximation ~ ,  can then be calculated according 
to Equation 3. This then forms a new approximation for subsequent estimation, and 
estimation proceeds in an iterative manner. 

The procedure has not involved calculation of a value for the y coordinate of the 
centre, y0. In the previous development the gradient direction was reformulated to 
exclude the coordinate x0, which for a circle would be in terms of yo and r only and 
with a parallel set of equations to estimate values for w' = {y0 r). However, choice 
of minimising an error measure expressed in terms of dy/dx only does not penalise 
situations where the yo coordinate is at some distance from its target value and where the 
other two parameters are correct, since in this situation the difference in gradient direction 
difference would contribute less to correct y0. The inverse, dx/dy, does however provide 
much greater information in this case, since the gradient difference depends directly on 
the error in the estimate of y0. Accordingly the algorithm has been modified to search 
for w ~ where the gradient direction difference and gradient direction are then 

= - (9) 

f2(y,_w') = -(Y - Yo) (10) 
- ( y  - x 0 )  

with suitable reformulation of Eqns 4-7. This gradient direction is again measured 
as an angle as in Eqn.8 and therefore also required modification of the edge detection 
operator to provide edge direction consistent with their prediction. Expressing the edge 
direction using angular measurements preserves isotropy in the residual. This is equal 
in both measurements since one angle is a reflection of the other. This modification has 
improved consistency in extraction of the y centre coordinate alone. The radius estimate 
is the mean of its two estimates. 

3 Kalman filter for circle extraction 

The Kalman filter is now well established in many applications. These include adaptive 
versions which are tailored not only to reduce the effect of noise on signals but also to 
determine the parameters which describe them. In this application we seek to estimate 
the parameters of a circle. The notation used is the same as for least squares, save that 
estimation is iterative. We seek to estimate ~n+l based on the current estimates ~n and 
the edge direction at point n. A basic Kalman filter algorithm cannot be used since the 
gradient direction nonlinear and is replaced in the Kalman filter algorithm by a Jacobean 
vector H,~ 

H,~ = l Ozo Or ] 
(11) 

The Kalman filter algorithm is then 
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K,~ = P,~H T (H,~P,~H T + R)  - i  (12) 

Co,+ i = ~ ,  + K,~(I(z,~ , w__) - I ( z , , ~ ) )  (13) 

P,~+i = P,~ - K.H,~P,~ (14) 

where f(x,  __w) denotes the true gradient information as earlier, Kn is the Kalman 
gain and P,~ is the error covariance. The equation to update the error covariance is omitted 
since parameters only are estimated and the state transition matrix is then unity and there 
is no process noise contaminating the parameters. The algorithm requires initial values 
for P0 and the: measurement noise covariance, R. These may be considered as tuning 
factors but effectively describe the expected error in the initial approximation, the initial 
values chosen for the parameters, ~0 and were chosen as 

5.0 1.0] (15) 
Po = 1.0 5.0 

R = [0.5] (16) 

The elements of P0 reflect an equal uncertainty in the values for the centre coordinate 
and the radius. Statistical cross-correlation between the uncertainty in each of these 
parameters is reflected in the off-diagonal elements. The measurement noise covariance 
appears suitab]Ie for the errors associated with the edge detection algorithm. Estimation 
proceeds in an iterative manner following choice of the initial approximation. At each 
point the difference between the expected and measured gradient direction is used to 
correct the parameter estimates. As in the least squares algorithm, a parallel algorithm 
is used to estinaate the y centre coordinate and radius, which is again based on d z / d y .  
The edge direction processes are then the same as for the least squares algorithm. 
The Kalman filter algorithm operates in a point-iterative manner around the locus of 
intersection. When all intersecting points have been analyzed, the new parameters are 
evaluated according to eqn. 3, and estimation continues along the intersection trajectory 
of the circle described by the new parameters. 

4 Results 

4.1 Simulation results 

Each technique was assessed in simulation by using a white circular disc on a dark back- 
ground as the target. In the simulation studies the edge direction data was provided by a 
least squares algorithm. Following specification of the initial approximation, estimation 
proceeded in an iterative manner where the parameter estimates after one iteration were 
used to prime the procedure for the following iteration. Both techniques finished either 
when the increments were sufficiently small (and parameters did not change between 
successive iterations) or when there were insufficient intersecting points. Example esti- 
mation runs are shown Fig. 1 where (a) is the least squares technique and (b) the Kalman 
filter, where both start from the same initial approximation. The perimeter of the target 
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circle was described by centre coordinates xo = 45 and yo = 62 and the radius r = 39. 
Fig. 1 shows the target disc together with (black) circles representing the result of each 
iteration of each technique. The parameters describing the initial approximation were 
~3o = 42, ~)o = 73 and ? = 29. This can be seen to intersect the target towards the 
right hand side. By least squares, the first iteration resulted in a new set of estimates 
~30 = 45, ~)0 = 65 and ? = 43. This resulted in a circle which is clearly much closer 
to the target. Estimation then proceeded in this iterative manner and the fourth iteration 
resulted in increments which were sufficiently small to warrant termination and the final 
values were ~o = 45, ~)o = 63 and ? = 40. Note that after the second iteration the 
estimated circle was larger than the target and the estimates were corrected to converge 
to the target circle. 

initial approximation 

(a) 
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Figure 1 Simulation Results (a) Least Squares (b) Kalman filter 

The sum of differences squared between the true value of each parameter and its 
estimate gives an error measure c 

= - + ( y o  - 9 o )  + - 

Fig. 2 shows the error measure reducing for a series of estimation runs, (a) is for least 
squares and CO) for the Kalman filter. These are actually two groups of four estimation 
runs where each group started for an approximation of the same radius, with initi~ centre 
coordinates given by reflection about the target centre in each of the f o ~  quadrants. For 
least squares, all eight runs can be seen to converge to close to the target with small 
error. The error measure does increase on three occasions but then decreases illustrating 
recovery. The divergence appears due to quality of the edge direction data. The Kalman 
filter algorithm has also been applied in simulation to extract the same circle from 
the same initial approximations used for the least squares technique. Again, successive 
improvement in the approximation delivered by the Kalman is illustrated in Fig. l(b) 



205 

which shows the Kalman filter algorithm successfully estimating both coordinates of 
the centre, together with the radius, aiming for the same target as in Fig. l(a) and using 
the same initial approximation. After the fifth iteration the error measure was reduced to 
1 pixel 2 where the y centre coordinate was 1 pixel in error and the other two parameters 
were correct. 

There are a number of aspects specific to the Kalman filter implementation. The spec- 
ification of initial error covariance is inherent to the Kalman filter algorithm, eqn. 15. 
These elements are chosen as a pessimistic expectation of the error in the initial approx- 
imation. The error covariance contributes to the Kalman gain and controls convergence 
of the parameter estimates. Too large values can cause over-reliance on measurement 
values whereas when the Kalman gain is small, the measurement contributes little to 
update the parameter estimates. To ensure that optimal estimation is achieved, it would 
then appear necessary to choose appropriate values for these parameters for each esti- 
mation run but this is impractical and so for the series of simulation tests fixed values 
were used. 
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Figure 2 Error Measure Reduction in Simulation (a) Least Squares (b) Kalman Filter 



206 

The effect on the performance error for a selection of estimation runs starting from 
the same eight points is shown in Fig. 2(b) where the vertical axis is the error measure, 
and the horizontal axis is the iteration no. However these results for the Kalman filter 
required 41 iterations in total for the eight initial approximations whereas application 
of the least squares technique with the same eight initial approximations required 27 
iterations. The average improvement (reduction) in the error measure for each iteration 
was 27 pixels 2 for the Kalman filter algorithm compared with 41 pixels 2 for the least 
squares technique (with standard deviation 51 and 83 pixels respectively). Comparison 
of Fig. l(a) with l(b) shows the least squares technique requiring only two iterations 
to converge to the target circle whereas the Kalman filter algorithm required five. This 
reflects the general observed performance of the two algorithms, namely that the Kalman 
filter algorithm required more iterations to converge to the target. 

(a) (b) 

Figure 3 Eye Image (a) and Iris Extraction (b) 

It is possible to control the convergence of the Kalman filter algorithm by different 
selection of the values for error covariance and noise covariance to prime estimation, but 
it proved impossible to choose values which consistently used less iterations than the 
least squares algorithm. Also, a main virtue of the least squares algorithm in comparison 
with the Kalman filter is that it needs none of these parameters to be specified. For these 
reasons the least squares algorithm appears the most practicable of the two techniques 
and hence only was tested on real images. 

4.2 Application to grey level images 

Illustrative applications with real images have demonstrated that the least squares tech- 
nique can operate in a real environment where there is occlusion and data segments 
are missing. In application to real images, the edge direction data was provided by a 
version of the Canny operator applied to process 128* 128 8-bit images. The edge data 
was then thresholded according to edge magnitude. Figure 3 shows a human eye with 
a sequence of iterations to estimate the position of the iris. In Fig. 3(b) a smaller circle 
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is used as the first approximation which then homes in on perimeter of the iris. Note 
that the convergence trajectory passes through (and ignores) the pupil which presents 
another, small, circle. The technique can bypass small circles due to the preponderance 
of edge points associated with the larger target circle in the region of intersection. The 
circle extracted by the technique closely matched the largest contiguous circle derived 
by applying a Hough transform. 

5 Conc lus ions  

Basing feature extraction on residual gradient direction allows estimation techniques to 
be developed to locate circles in images. A least squares technique has been based on an 
earlier method for ellipse extraction with particular modification to improve sensitivity 
in the estimation of one parameter. A Kalman filter formulation required extension to 
handle the measurement nonlinearity and can be used to estimate circle parameters in a 
point-iterative manner. 

Simulation studies emphasised difficulty in appropriate implementation of the Kal- 
man filter and in selection of parameters used to prime its operation. Though the Kalman 
filter algorithm can be arranged to determine circle parameters it usually required more 
iterations and so the least squares technique only was applied to real images and is 
demonstrated in use to locate the perimeter of the iris of a human eye. 
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