1992

M.L. Kersten, F. Kwakkel

Design and implementation of a DBMS performance assessment tool

Computer Science/Department of Algorithmics and Architecture Report CS-R9270 December

CWI1 is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum

CWi is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Design and Implementation of
a DBMS Performance Assessment Tool

M.L. Kersten F. Kwakkel
CWI, P.O. Box 4079 CWI, P.O. Bozx 4079
1009 AB Amsterdam 1009 AB Amsterdam

The Netherlands The Netherlands
{Martin.Kersten@cwi.nl} {Fred.Kwakkel@cwi.nl}
Abstract

The increasing number of advanced database management systems offered on the market
requires tools to quickly assess their performance and to assure their quality. Performance
measurement involves running a set of representative workloads, such as benchmarks, and
quality assurance, which involves extensive testing. The SOFTWARE TESTPILOT ! described
in this paper greatly simplifies both jobs by enabling a compact specification of the workload
search space, a flexible mechanism to interact with a system under study, and a fast algorithm
to expose the performance bottlenecks or software instabilities.

1991 CR Categories: Testing and debugging (D.2.5) diagnostics, Database systems
(H.2.4) performance assessment, Installation management (K.6.2) benchmarks.
Keywords and Phrases: Software testing, quality assurance, benchmarking.

1 Introduction

Database technology for single processor architectures has matured from file processing by a large
number of individual programs to sound data models and data manipulation schemes applicable
in many environments. The DBMSs are delivered as portable, single processor implementations
with many techniques to obtain good performance. However, new (prototype) systems often
exhibit low quality and low performance due to lack of extensive field tests in the application
areas they intend to support. Inclusion of new techniques into existing architectures also hamper
from unpredictable side-effects on system performance and stability. Yet, from an economic point
of view it is mandatory to predict their performance and stability long before the hardware and
software are installed.

The common approach to obtain performance characteristics of a DBMS is by offering it
a set of carefully chosen queries and to observe its behavior. Database benchmarks such as
Wisconsin[3, 2, 5] and AS3AP[8] primarily highlight the internal strengths and weakness of a
system implementation. The TPC-A and TPC-B benchmarks[9] have the advantage of being based
on a real application (a bank teller network), but have become divorced from the real applications
requirements. They can only be used to provide a simple comparative measure of a small part of
the system being tested. Current TPC work is directed towards providing benchmarks for more
complex traditional application domains (e.g. Order-Entry, Decision Support) with an emphasis
towards conventional systems.

The role of benchmarking to assess performance and as a means to improve software quality is
limited. The known benchmarks do not directly aid users to determine the DBMS effectiveness for
a particular domain. Domain-specific benchmarks are a response to this diversity of computer sys-
tem use. They specify a synthetic workload characterizing a typical application problem domain.

1The work reported here is funded by ESPRIT-III Pythagoras project (P7091)

Report CS-R9270

ISSN 0169-118X

CWI 1
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The OOL1 [1] benchmark is a step in this direction, which addresses the perceived performance
critical aspects of a Computer-Aided Design (CAD) application.

The benchmarks are complemented by test suites geared at exposure of weaknesses in the sys-
tem implementation. Together they provide the basis for technical quality assessment. Extension
with software quality assessment techniques, such as ISO9000, further improve the organization
of software production. Finally, the alpha- and beta- test sites form the final barrier for systems
to reach the market.

A major drawback of the benchmarks and test-suites, addressed in this paper, is that they
represent only a few points in the workload search space. Therefore, a DBMS engineer or user
with a workload characteristic slightly off those measured may face a badly performing system.
Moreover, system implementors may be inclined to provide good performance on the published
benchmarks. In particular, attaining good performance on the notorious complex operations
may ignore the workload characteristics of the application domain. Likewise, test-suites may be
biased by isolated implementation challenges, such as novel data structures or query optimization
techniques, and neglect possible side-effects.

The SOFTWARE TESTPILOT described in this paper is a tool to aid the DBMS engineer and
user to explore a large workload search space to find the slope, top, and knees of performance
figures quickly. The approach taken is based on specifying the abstract workload search space,
a small interface library with the target system, and a description of the expected behavior.
Thereafter, it is up to the SOFTWARE TESTPILOT to select the actual workload parameter values
and to execute the corresponding DBMS transactions, such that the performance characteristics
and quality weaknesses are determined with minimal cost (=time).

The novelty of our SOFTWARE TESTPILOT is its use of a behavioral model of the target sys-
tem to drive this process. The system uses the performance hypothesis and performance data
gathered to identify candidate workspace parameters with high probability to (dis-) proof the
hypothesis. Among the candidates it selects one of high value and low cost to reach. Moreover,
the SOFTWARE TESTPILOT adjusts the behavioral model when measurements disprove the mod-
els’ assumptions. Thus, the outcome of a session is both improved statistical knowledge on the
performance characteristics and a (possibly) modified behavioral model of the target system.

Although testing and benchmarking [7] have received considerable attention over the last
decade we are not aware of similar attempts to automate performance quality assessment at
this level.

Test environments mostly focus on test-data generation, path coverage testing, or they explore
the programming language properties to proof (type) assertions. The predominant pragmatic
approach is to use shell scripts to capture the repetitive nature of the test runs or to rely on a
small test space. The major drawback is that it often results in a brute force approach, running
the script over night to obtain a few points of the performance function without adjustment or
error recovery.

Performance monitors, built into the DBMS or operating system environment, are passive.
They merely provide measurement data, statistical analysis, and visualization tools. Instead,
the SOFTWARE TESTPILOT provides a mechanism to partially automate the interpretation of the
results to prepare for and to perform the next test run.

A recent paper on I/O benchmark performance analysis [6] has some aspects in common with
our approach. Like the SOFTWARE TESTPILOT , they attempt to identify the knee of a performance
function as quickly as possible. However, their approach is focussed on a particular problem area.
It has not been generalized into a general technique to support a larger application domain or to
exploit the knowledge gained from a hypothesis.

The remainder of this paper is organized as follows. Section 2 introduces the scope of the
problem, the approach taken by the SOFTWARE TESTPILOT , and the textual Test-suite Specifi-
cation Language. Section 3 introduces the architecture of the SOFTWARE TESTPILOT and its core
algorithms. We conclude with an outlook on future research issues.

2 A Test-suite Specification Language

In this Section we introduce the Test-suite Specification Language (TSL) for the SOFTWARE TEST-
PILOT . A TSL program, an object-based extension of the underlying implementation language
Prolog, consists of object descriptions and their refinements. Each object type has a small number
of attributes with system defined defaults. The program can be prepared with a text editor or
interactively as illustrated in Figure 9.

2.1 The performance assessment problem

To obtain a better appreciation of the role of a SOFTWARE TESTPILOT in performance assessment,
we use the Wisconsin Benchmark for relational DBMSs [5] as our running example. This bench-
mark has been designed in the early eighties to assess the performance of relational systems. It
has been gradually extended to become a standard benchmark for assessing new implementation
techniques [3] for relational systems.

The Wisconsin benchmark has a fixed set of 32 queries focused on single user query processing
performance. One aspect being measured is the response time to access part of a table. After
running many cases, two representatives were chosen. Namely, retrieval of 1% and 10% of a table
with 10K tuples. Since, these numbers have become less relevant for new DBMS implementations.
First, the table size has been increased to better reflect current database sizes and the hardware
platform [4]. Second, selection of 1% out of a 1.000.000 tuples is probably too optimistic and the
fraction may have to be scaled down as well.

This performance assessment problem can be summarized as the task to identify the shape of
the performance function @ : table_size X selection _size — response_time. The table size and
selection size are the input variables or experimental factors. The selection time is the output or
response variable. This performance function is obtained by careful selection of input parameters,
setting up the environment for the experiment, and to run the experiment until a statistical stable
response value has been obtained.

The SOFTWARE TESTPILOT is designed to automate a major portion of this manual task as
follows. The user reformulates the task as a performance test program in terms of factor and
response parameters and actions on the target system. The action list includes descriptions to
initialize the DBMS and to change its state incrementally. Given a test program, the task of
the SOFTWARE TESTPILOT is then to select and execute a sequence of actions, such that the
performance relationship(s) between the factors and their responses are determined with minimal
cost.

The novelty of the SOFTWARE TESTPILOT is its use of an anticipated behavioral model to drive
this process. That is, the user provides a hypothesis, i.e. a continuous function, that describes
the expected performance relationship as accurately as possible. It is used by the SOFTWARE
TESTPILOT to locate a point in the test space that is likely to disqualify the hypothesis given.

In general, multiple runs are required to obtain a reliable response function. If a large deviation
is observed then the hypothesis is discarded by the system. Thereafter, a new hypothesis is derived
from the points already measured. For example, failure to observe linear behavior may cause the
SOFTWARE TESTPILOT to attempt a logarithmic distribution instead. Furthermore, a session is
automatically terminated when a sufficient approximation of the hypothesis, in terms of cost and
deviation, has been established.

For example, assume that the SOFTWARE TESTPILOT has already obtained responses for @ as
shown in Figure 1. The straight line denotes the hypothesis for @ given by the user. To verify this
hypothesis, a new point must be chosen with maximal probability to dis-qualify the claim made.
A strategy is to take a point with the maximum distance from any two adjacent points already
measured. In this case, the next point to be tested would be a table size of 80K (= (100+60)/2).
Before this can be done 20K tuples must be inserted.

Thus, the test suite program should include actions to change the state of the database, i.e.
to support insertion and deletion of dummy tuples. These actions are used by the SOFTWARE

response time

table size (Ktuples)

Figure 1: Performance hypothesis and points measured

TESTPILOT to move the DBMS into the required state. Once the state is reached, the query can
be executed to (dis) proof the hypothesis.

2.2 Factor and response definition

The basic building blocks of a test suite specification are the factor and response variables.
They require a symbolic name for reference within the TSL program and a type name from the
collection (integer, symbolic, time, float, string, char, boalean). The type can be further constraint
by specifying a sorted list of value ranges (e.g. [0..10,990..1000]) or an enumeration of categories
and symbolic constants (e.g. [max,min,sum]).

The type values can also be described by a generator, i.e. a unary Prolog predicate activated
upon system restart to produce a finite term list. For example, a generator can be used to produce
terms for the distinct n-way joins over a relational schema.

Object refinement can be used to simplify a large test space description. A refinement is
indicated by the attribute like bound to another variable. The attributes of the dependent variable
are taken as default until they are explicitly redefined.

The mechanism to select the next value for a factor is controlled with the attribute apply, which
is an element from the collection {cyclic, random, optimize}. These items can be overruled
with a Prolog clause in cases where more precise control is needed on the exploration of the test
space.

The partial specification shown in Figure 2 illustrates some definitions for the Wisconsin bench-
mark.

2.3 Focus definition

The test space spanned by the variables is often too large to be investigated with a single run.
Therefore, the user can identify a subset as the prime focus of attention. Each focus bears a name
for reference within the TSL programming environment and a listing of the factor and response
variables.

The variables outside the focus remain fixed at their initial value and performance relationships
outside the current focus are only inspected if they involve no additional cost. The relative impor-
tance of different foci is administered by a weight attribute (>0), which causes the SOFTWARE
TESTPILOT to balance the effort investigating the foci.

factor => [name: table_size,
type: integer,
apply: optimize,
range: [0 .. 1000k]
1.
factor => [name: selection_size,
type: integer,
range: [0 .. 1000k],
1.
response => [name: selection_time,
type: time,
1.
focus => [name: dbfocus,
factors: [table_size, selection_size],
responses: [selection_time:T],
pattern: [table_size, selection_size, selection_time],
check: (T < 1000)
1.
hypothesis => [factors: [table_size:X, selection_size:Y],
responses: [selection_time:Z],
guess: Z = linear(X,Y,1)
1.

Figure 2: Sample TSL specification

The optional attribute check takes a predicate to limit the space considered for experimenta-
tion. Each experiment leads to a measurement vector that can be sent to a post-processing system
for further analysis. The content of the vector is described by the attribute pattern.

Figure 2 contains a single focus identifying interest in the (partial) performance functions over
the space table_sizex selection_size — selection_time. The constraint T<1000 indicates
that the SOFTWARE TESTPILOT must avoid actions that exceed 1000 time units.?

2.4 Hypothesis definition

The dependency of a response variable on its factors is described with a hypothesis introduced
by the user or deduced by the SOFTWARE TESTPILOT from earlier experiments. The current
implementation only supports the former, because induction of a hypothesis from data gathered
is a statistical problem initially best addressed using a (separate) statistical package.

The envisioned performance function is described by the attribute guess, which contains a
linear, logarithmic, or exponential equation. The applicable sub-domain is described with a con-
dition in attribute check. How the hypothesis can be used to select points for exploration is
described in Chapter 3.2. In Figure 2 we expect dbselect to be linear dependent on table_size
and selection_size.

2.5 Action definition

An action describes an experiment on the target system or a way to change the state of the target
system to prepare for the next experiment. An action is characterized by its name, factor and
response variable(s). Although all factors in the TSL program determine the response value, only

2An attribute can be tagged with a variable name, i.e. an identifier starting with an uppercase, to denote its
value in other expressions within the same object.

action => [name: dbselect,

factors: [selection_size:S],
responses: [selection_time:T],
body: sql_select(S,T)

1.

action => [name: dbinsert,
factors: [table_size:X],
step: [table_size:1],
body: sql_insert (X)

1.

action => [name: dbdelete,
factors: [table_size:X],
step: [table_size:N1,
cost:),
body: sql_delete(X, N)

1.

Figure 3: Action objects

those used as action parameters or those changed as a side-effect in an action should be explicitly
mentioned.

For example, consider the action dbselect in Figure 3. Its body contains a call to a param-
eterized SQL query. This SQL command does not critically depend on the table_size, which is
considered a constant factor taken from the focus setting.

A possible side-effect of an action is a modification of the factors to reflect the new state of
the target system. These side-effects are described with the attribute step, which contains factors
tagged with an arithmetic expression to derive the destination point in the test space. They are
crucial for the SOFTWARE TESTPILOT to infer the state of the target system and, thereby, to
determine the course of actions taken.

The variable and focus constraints can be refined with the attribute check to allow for actions
covering different cases. For example, the TSL program may contain two actions to insert tuples
in the relation. One could generate a single tuple and another generates a batch of 100 tuples.

The body describes the interaction details with the target system. To support a wide range of
target systems and experimentation techniques its value is a Prolog term. Interfacing the target
system then depends on the foreign language facilities of the underlying Prolog implementation of
the SOFTWARE TESTPILOT . A small library can be used to capture the interface requirements
for a class of target systems, such as the SQL-server library currently in use.

In some cases, such as during system restart and error recovery, the SOFTWARE TESTPILOT
should enquire the target system on its status. Enquiry actions are recognized by omission of step
and response properties. They can be applied unconditionally at any position in the test space.

Actions come with an estimated cost defined by the user or inferred by the system from
previous experiments. They are used to plan the course of actions.

Figure 3 illustrates the framework of several actions. The action dbselect represent our prime
performance interest; the others are used by the SOFTWARE TESTPILOT to change the state of
the DBMS. The details on how the actions interact with the SQL server are not shown.

2.6 Monitoring and control

The SOFTWARE TESTPILOT comes with a graphical user interface to develop TSL programs and
to monitor progress of an experimental session (See Figure 9). In particular, a monitor can be
opened to inspect the performance relationship for any variable combination being measured. A
form-based interface supports browsing of the TSL objects and their on the fly modification. A

monitor => [factors: [table_size, selection_size],

response: selection_time,
display : true,
rate: 1
1.
controls => [speed: 1,
buffer: 30,
plans: 30,
startup: [table_size:0],
selftest: true,
simulate: false,
distort: 0.2
1.

Figure 4: Monitor and session controls.

TSL program developed interactively and the performance functions displayed can be reproduced
in textual form for inclusion in other documents.

A SOFTWARE TESTPILOT session can be stopped and re-started at any time. Upon restart the
system automatically attempts to obtain the actual state of the target system when selftest:true.
Variables whose initial value can not be determined this way take a default value described in
position.

The behavior of the SOFTWARE TESTPILOT can be further controlled by redefinition of system
properties as illustrated in Figure 4. They are explained in more detail in the remaining sections.

3 Design of the Software Testpilot

The SOFTWARE TESTPILOT is designed around four processes that communicate through data
pools. A system overview and design rationale is given in Section 3.1. Then, the algorithm to
select candidate points from the test space (Section 3.2) and the algorithm to construct a flight
plan (Section 3.3) are described in greater detail. The Chapter concludes with the selection and
execution of the best plan.

3.1 The Software Testpilot’s Processing Cycle

The processing cycle for the SOFTWARE TESTPILOT is a repetition of flight plans during which
information on the performance relationship(s) is gathered. This process stops when all interest-
ing points have been inspected, when a fatal-error occurs, or when the user terminates further
exploration of the test space.

A flight starts with selection of a target point in the test space where measurements should
be taken. From the large collection of possible points the SOFTWARE TESTPILOT identifies a few
candidate that provides the best information to (dis-) qualify the hypotheses applicable within
the focus of interest.

Before the measurements can be taken, the SOFTWARE TESTPILOT should move the DBMS
into the required state, that is, tuples must be inserted/deleted. The action(s) to reach this state
is (are) inferred from the factor and step attributes of action descriptions. Often, several feasible
plans exist and a choice should be made to avoid time consuming plans.

For instance, consider a TSL program to investigate tuple selection from table sizes between 0
and 100 tuples. To (dis-) qualify a linear hypothesis quickly it could investigate table sizes in the
order: 0, 100, 50, 25, 75, 13, 38 etc. That is, table sizes lie far away fram these already inspected.
However, the corresponding flight plans are also expensive. For, after the first twple selection

position — [selection size:10 , table size: 30].

pointDone — [selection size:10 , table_size: 100, selection_time: 1.67].
pointDone — [selection size: 90, table size: 100, selection_time: 1.45].
pointDone — [selection size: 25, table size: 50, selection_time: 0.46].

candidate — [selection size: 30, table size: 100, weight: 0.95].
candidate — [selection_size: 15, table_size: 50, weight: 0.65].
candidate — [selection size: 5, table size: 50, weight: 0.73].

flightPlan — [point : [selection size:20, table size:50],
actions : [dbdelete(100,50), dbselect(50,30)],
cost : (50+30)*0.95].

flightPlan — [point : [selection size:15, table_size:50],
actions : [dbdelete(100,50), dbselect(50,15)],
cost : (50+15)%0.65 |.

flightPlan — [point : [selection size:5, table_size:50 |,
actions : [dbdelete(100,50), dbselect(50,5)],
cost : (504+5)*0.73].

Figure 5: The data pools with state information

100 tuples are inserted. Then again one tuple is selected and 50 tuples are deleted to bring the
database to a state of 50 tuples, etc..

A way out of this dilemma is to consider several candidate points and to apply the cheapest
flight plan. For instance, if three candidate points are handled together then the execution order
becomes: 0, 50, 100 .. 75, 25, 13, etc. The first batch (0,100,50) is sorted on the cost (=unit steps)
to reach the point. Then the next three points are generated (25,75,13) and sorted. Now 75 is the
"cheapest’ point because its distance to 100 is the minimum of the three points. The execution
order becomes: 75,25,13 etc.

If we carry this idea further and allow the SOFTWARE TESTPILOT to generate all candidate
points at startup then the sequence becomes: 0, 1, 2, 3 etc.. This is something we do not
want either, because it provides only slow insight into the shape and validity of the performance
functions. Therefore, we use a buffer of candidates and give the user a choice between an emphasis
on the execution time, the ’cost’ of the flight plan to reach that point, and emphasis on selecting
interesting points, i.e. the 'weight’ of a point (See Section 3.4).

The internal architecture of the SOFTWARE TESTPILOT uses four data pools for interprocess
communication. Their roles is as follows:

e position, which describes the current position of the SOFTWARE TESTPILOT in the test space.

e pointDone, which contains the response values obtained and the setting of all TSL input
variables (Figure 5.top).

e candidate, which contains the buffered candidate points. Each point consists of the focus
input values and a weight of interest for this point.

e flightPlan, which contains a flight plan for each candidate point. A flight plan consists of
the target point, a sequence of actions, and the estimated cost.

The four processes involve selection of candidate points, generation of flight plans, selection of
a single flight plan, and its execution. They are described in more detail in subsequent sections.

points measured

T
N

0.6 interest

curve

0.2

S
N
S
w
]
g

8 fmmmme e

Table size

Figure 6: The interest curve for candidate points

3.2 Selection of candidate points

The first process deals with the selection of a reasonable number of candidates for inspection.
Considering too many candidate makes subsequent selection of the target point expensive. Con-
versely, considering only a few candidates may lead to time consuming experiments, because it
becomes less likely to inspect the more interesting point, as indicated in the previous section.

To solve this resource management problem, we limit the candidate pool to those with a
(normalized) weight exceeding a system defined threshold. This threshold is lowered when the
system runs out of good candidates. The result is a system behavior that gradually explores less-
and-less interesting points up to a user interrupt or reaching a predefined termination condition.
The mechanism to determine the weight is introduced by an example.

Assume that class pointDone contains the points depicted in Figure 6 on the first line. The
challenge is to find a metric that identifies the interesting points. This depend on how we intend to
use the SOFTWARE TESTPILOT . If we aim for identifying the shape of a performance function then
the candidates close to an already measured point are of less interest, due to expected measurement
errors. Conversely, if we are interested in robustness of the target system points then near the
minimum and maximum of the domain are of high interest. To support a wide range of application
domains, the user can specify their interest function.

In our example, we focus on identifying the shape of the continuous performance function. The
interest curve for the linear hypothesis is shown in Figure 6, which favors a candidate X; exactly
in between two points X;_; and X;; identified before. It is a weight proportional to the distance
of its neighbors, i.e. weight(X;) = D sin((X; — X;—1)7/2D) with D = X;.; — X;_;. This leads
to considering 20 and 60 tuples as candidates for inspection.

This idea has been generalized to deal with several hypotheses as follows. Let C denote the
set of old candidates and points investigated, let H denote the set of hypothesis defined, and
F the focus. Then, the algorithm in Figure 7 generates for each factor A; in a hypothesis a
candidate point between any two known points (pointDone and candidate). Factors that do not
appear in a hypothesis definition do not contribute to the collection of candidates. To make the
algorithm work, initial ’corners’ of the test space must be stored in the candidates pool upon

system initialization. The algorithm can be improved by adding points to the buffer pool after
each measurement.

3.3 Generation of flight plans

The second process generates a flight plan for each candidate in two phases. The first phase deals
with moving the target system into the test space position identified. The second phase extends
the flight plan with the actual measurement actions. At the same time the SOFTWARE TESTPILOT
determines the cost and expected response time of the plan. The cost is used to order the batch

for each hypothesis h: fi x .. x f, = r, do
Let c € C with ¢ = (a1..a;-1,;..G7, Q7 41..Gp)
where a;..a, are values for the hypothesis parameters f;..f,
and a;..a;—; and @,41..a, are values for the remaining factors.
for each f € {fi..f,} do
group C by f
def: G; = (a;..a;-1, @i, @i41..5) | @1..a;—1 and a;4;..a, are constant.
for each group Gy[k] do
sort G¢[k] with key f
for each subsequent pair do
generate a new candidate point using the interest curve.

Figure 7: Generation of candidates

process makeplan()
clear flight plan F'P and set cost C to zero
PHASE I:
Let Q(u;..u;) be current database state.
Let Q'(v;..v;) be the target database state.
S(si..sl) = Q(ui..ul)
repeat
Find an action A = A(s;..s;) that brings S closer to Q'
Determine the new state S’ using the step attribute.
FP := FP++ A(sj..sx)
cost := cost + estimate(A(s;..sx))
until S = Q'
PHASE II:
for each response r do
find an action A with A(f...fe) —
substitute the relevant focus values from Q'.
flightplan = flightplan++ A(v...ve)

Figure 8: Flight plan generation algorithm

of flight plans for subsequent execution. The response time is returned to an interactive user, who
can use it to intervene (or have lunch). A sketch of the algorithm is shown in Figure 8.

For example, the candidate selected in the previous section requests a selection experiment of
5 tuples from a table with 90 tuples. Assume that in the current position the table size contains
60 tuples.

Then, the first phase must insert 30 tuples to reach the desired point. The eligible action is
dbinsert, whose factors and step attributes permit table_size increments. Thus, the flight plan
can be initialized with the request dbinsert (30). The second phase identifies the actions whose
response variable is mentioned in the focus of interest. They are added to the flight plan. In
our example, we merely add the request dbselect(90,5), but in general several selections are
performed at once.

3.4 Selection of the best flight plan

The third process deals with selecting a flightplan for execution. This choice depends on two
factors: the weight of the measuring point and the flight plan cost. The user can balance these

10

factors using the speed property in the control object, which takes a value in the range 0.0 to 1.0.
A speed factor 0.0 causes the flightplan with the highest weight to be chosen; the cost to
execute the flight plan is ignored. The system tries to (dis) proof the hypothesis with a minimal
number of test runs. A speed of 1.0 leads to selecting the cheapest plan, but may delay insight in
the precise shape of the performance function.
Actually, let F; denote the plans under consideration then the plan taken into execution min-
imizes the formula:

‘value' = speed * a + (1 — speed) x #

where alpha and beta are normalized costs and weights, defined as

a = (cost(F;)/mazcost) and
B = (weight(F;)/mazweight).

3.5 Flightplan execution

The flight plan selected above is executed on the DBMS and the results are kept for inspection by
the SOFTWARE TESTPILOT . The interface between SOFTWARE TESTPILOT and target system
is kept as open as possible, because it permits non DBMS tools to be considered as well, e.g. a
event-queue simulation package. Moreover, we expect generic modules to defined that encapsulate
interaction with a particular target system.

To aid design and debugging of a TSL program, we have included a dummy target system.
This dummy uses the information within the SOFTWARE TESTPILOT to mimic the behavior of a
real system. In particular, it uses the hypothesis to predict the outcome of an action with some
distortion.

4 Summary

In this paper we have described a novel approach to assess the performance quality of database
management systems. The technique consists of specifying a potential large test space through
which the SOFTWARE TESTPILOT navigates using a behavioral model of the anticipated perfor-
mance characteristics. The system automatically selects the best actions to move the DBMS into
the proper experimental state by insertion/deletions. Thereafter, it performs the measurements.

The current implementation of the SOFTWARE TESTPILOT is written in SWI-Prolog [10]. It
runs on Silicon Graphics workstations using the XPCE toolkit for monitoring the performance
functions.

The SOFTWARE TESTPILOT is currently used for assessing the performance gains to be ex-
pected for browsing session using new query optimization techniques. This requires particular
strength in the generation of symbolic data. Moreover, a prototype implementation for parallel
execution of flight plans has been constructed. The SOFTWARE TESTPILOT is delivered with an
SQL server module and a dummy database generator.

Acknowledgments
The authors wish to thank the members of the Database Research Group of CWI and partners
in the Pythagoras project for advice on earlier versions of this systems. In particular, we thank
R. Ulenbelt for their contribution on the implementation of the prototypes.
References

[1] Cattell, R. "Engineering and Database Benchmark”, Technical Report, Database Engi-

neering Group, Sun Microsystem, April 90.

11

[2] D. Bitton, D.J. DeWitt, and C. Turbyfill, Benchmarking Database Systems: A Systematic
Approach, CS Report #526, Univ. of Wisconsin at Madison, Dec 1983.

[3] D. Bitton The Wisconsin Benchmark in Readings on Database Systems, Editor: M. Stone-
braker, Morgan-Kaufmann, 1988.

[4] R.J. DeWitt, S. Ghandeharizadeh, D. Schneider, R. Jauhari, M. Muralikrishna, A.
Sharma, A Single User Evaluation of the Gamma Database Machine, in Database Ma-
chines and Knowledge Base Machines, M. Kitsuregawa (ed.), Kluwer Academic Publ.
1988, pp. 370-386.

[5] D.J. DeWitt, The Wisconsin Benchmark, in The Benchmark Handbook for database and
transaction processing systems (by J. Gray), Morgan Kaufmann Publishers Inc., 1991.

[6] P.M. Chen and D.A. Patterson, 4 New Approach to I/O Benchmarks- Adaptive Evalua-
tion, Predicted Performance Proc. 5th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS V).

[7] Gray,J., ”The Benchmark Handbook”, Morgan Kaufmann Publishers Inc., 1991

[8] Terbyfill C., ASSAP - An ANSI SEQUEL Standard Scalable and Portable Benchmark for
Relational Database Systems, DB Software Corporation, 1989

[9] Transaction Processing Performance Council, "TPC Benchmark, A Standard”, Omeri
Serlin, ITOM International Corp. Nov. 89

[10] J. Wielemaker, SWI-Prolog Manual, University of Amsterdam, 1992.

12

the cockpit

Figure 9

13

