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Abstract

We introduce an algebraic model of computation which is especially useful for the
description of computations in analysis� On one level the model allows the representation
of algebraic computation and on an other level approximate computation is represented�
Furthermore programs are themselves algebraic expressions� Therefore it is possible to
algebraically manipulate programs of symbolic and numerical computation� thus provid�
ing symbolic computation with a �rm semantic foundation and giving a natural model
for mixed symbolic�numerical computation� We illustrate these facts with examples�

� Introduction

A substantial part of computer algebra deals with problems arising from analysis� see for
example �Buchberger et al�� ����� Davenport et al�� ������ This computational approach to
analysis makes use of algebraic representations of analytic structures� as for example di�eren	
tial 
elds �Kaplansky� ������ The objects used for these algebraic computations in analysis are
represented exactly� The computational approach to analysis which exploits the set	theoretic
properties of structures de
ned over the real numbers� leads to computational methods� which
are usually related to numerical computation� In this case usually approximative representa	
tions for objects are used�

Computational models for analysis which origin from recursion theory� like� e�g�� recursive
analysis �Pour	El 
 Richards� ����� or the theory of machines on the reals �Blum et al�� ������
are� as models of computation with real numbers� naturally closer to numerical computations�
However� in the theory of computation there exist models of computation which are given as
algebraic structures� e�g�� combinatory algebras� A popular model of combinatory algebras is
�	calculus �Barendregt� ������ In this work we consider other models of combinatory algebras�
namely graph models �Engeler� ����A� Engeler� ����B�� It was shown that any algebraic
structure can be embedded in a graph model �Engeler� ������ Hence graph models give rise
to an algebraic model of computation in algebraic structures� So it appears appropriate
to use them as models for symbolic computation� On the other hand� graph models have�
similarly as analytic structures� a second facet� They are also endowed with the structure of a
complete continuous lattice �Maeder� ������ an important structure in denotational semantics
to model approximate computations� This fact was used to model numerical computations in
graph models �Fehlmann� ������ Similar ideas for complete partial orders can also be found
in �Weihrauch� ������

We will introduce� based on graph models� combinatory models as computational models for
analysis� This allows to represent uniformly exact and approximate computations in analysis
in an algebraic structure� The main ideas leading to this model go back to �Engeler� ������

This model is relevant for symbolic computation for several reasons�
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� The description of symbolic programs of analysis� built up from algebraic and compu	
tational operations� including recursion� in an algebraic computational model allows to
view these programs themselves as algebraic expressions� This allows to state algebraic
relationships for such programs�

� The embedding allows to introduce new types of 
eld extensions which are de
ned by
programs� Classically in computer algebra� e�g�� di�erential 
elds are extended by new
transcendental functions� such as given by elementary extensions� This leads to a rich
theory culminating in the results of Risch �Risch� ������ When also the extension by
functions� which are de
ned by program� is possible� new powerful solution mechanisms
are introduced in algebraic computation�

� Computer algebra systems usually are equipped with a substantial set of numeri	
cal methods� mathematica is a good example for this �Wolfram� ������ Numerical
mathematics tends to make more use of symbolic methods� see� e�g�� �Kaucher� �����
Stetter� ������ The trend is leading to mixed symbolic	numeric computations� For such
computations combinatory models of analytic structures provide a clear semantics and
thus a well de
ned interface for smooth transitions between the two worlds� This will
also allow to deal with programs� which compute approximately� as algebraic objects�

� Many problems of analysis have symbolic as well as numerical solution methods� A com	
putational model that allows to describe both� helps to compare the di�erent methods�
e�g�� in order to analyze the complexity of analytic problems� Only a few approaches are
known that allow such a general investigation of analytic problems �Traub et al�� ������

� Last but not least a well de
ned semantics for computations in analysis� taking into
account the di�erent aspects arising from using algebraic� approximative and compu	
tational constructs� can give guidelines to build safer systems� especially for computer
algebra but also for mathematical computation in analytic structures in general�

In this paper we will be able to go closer into some of these aspects after introducing the
notion of combinatory models� The reader interested in the relations to graph models is
advised to refer to �Aberer� ����A� Aberer� ����B��

� Operations of Symbolic Computation

We distinguish the following three types of operations used in computer algebra� �

�� Algebraic operations� D�f�x�� f�g�

�� Computational operations� If�c���f�g�� While�a��� ���� �� Also composition of
programs is considered as a computational operation�

�We use in this paper Mathematica as one representative of a typical classical computer algebra system�
All notations for computer algebra programs are hence taken out of it� Other system� that would have served
as well� are Maple� Macsyma or Reduce� Axiom 
former Scratchpad� would have made some of the examples
given more di�cult to present due to its type�checking mechanism�
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�� Representation	related operations� Expand�f�� Series�f�fx�x��ng��

We consider programs of symbolic computations as algebraic expressions composed from these
operations� The following examples show how this viewpoint can lead to strange answers
of actual systems� if done �carelessly�� i�e�� if no account is taken of underlying structural
assumptions or features of the implementation�

Example � Assume we want to de
ne in the following examples speci
c real functions�

�� In this example we pick out a situation� that well can occur during a computation�

In������ f�x����x��

In�	���� f���

�

Power��infy� Infinite expression 
 encountered�

�

Out�	��� ComplexInfinity

In�	���� � � ComplexInfinity

Infinity��indt� Indeterminate expression � ComplexInfinity encountered�

Out�	��� Indeterminate

�� Here we make a reasonable attempt to de
ne the absolute value function�

In�	���� f�x����If�x
��x�
x�

In�		��� D�f�x��x�

������� �������

Out�		�� 
If �x 
 �� x� 
x� � If �x 
 �� x� 
x� �

����� �������


 Greater �x� �� If �x 
 �� x� 
x�

�� Now we make a less reasonable attempt to de
ne a function recursively�

In�	���� f�x����f�x��	

In�	���� f���

General��recursion� Recursion depth of 	�� exceeded�

Out�	���

�

Hold�
� Hold�f����
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The following is a more reasonable� but similarly successless� approach�

In����� g�x��n������	 g�x�n
��

In������ g�x�����x

In������ g�x���Limit�g�x�n��n

Infinity�

In��	��� g���

Out��	�� g���

In������ D�g�x��x�

General��recursion� Recursion depth of 	�� exceeded�

General��stop� Further output of General��recursion

will be suppressed during this calculation�

�C

�The calculation was interrupted��

Discussion of the examples�

�� The answer is almost satisfying� Open is the question about a mathematical interpre	
tation of ComplexInfinity and about the validity of the system�s assumption that the
result is over a complex number 
eld�

�� The systems response to a very natural attempt to de
ne the absolute value function
is completely inappropriate� In this case a mathematical model of how to deal with
piecewise de
ned functions is simply missing�

�� The third example illustrates that symbolic computation systems lack an algebraic
mechanism to deal with functions de
ned as limits of in
nite recursions� despite the
fact� that these functions play an important role in computations in analysis�

We have to remark that these phenomena are not particular for mathematica but similar
behavior occurs in many other systems�

The failures presented in the above examples are mainly due to the fact� that the program	
ming constructs cannot by safely composed to new expressions� or that basic programming
constructs like recursion are not provided� This again is due to the lack of an algebraic
structure which contains such constructs as elements� and provides them with a consistent
semantics�
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� Representation of Approximations

Now let us turn to approximative methods� We have to consider two aspects� First the results
of an approximative method are often computed as limits of recursive sequences of approxima	
tions� Typical examples are Newton�s method for 
nding zeros of a function or power	series
methods for solving di�erential equations� where especially the latter also play an important
role in symbolic computation� Therefore recursion should be provided as an algebraic con	
struct itself� Second approximative methods make� as the name says� use of approximations�
To be able to deal with approximations in an algebraic environment we need an algebraic
approach to the notion of approximation and algebraic properties of approximations�

We will use the notion of approximating an object in the sense of having partial knowledge of

all properties of the object�

A typical example of such partial knowledge arising from computer algebra� is found in the
representation of a real algebraic number� Two kinds of partial knowledge are combined to
represent a real algebraic number exactly� Let the symbol � denote the real algebraic number�
Then 
rst a polynomial p is given of which � is a zero� p��� � �� Second an interval �a� b�
is given which isolates �� a � � � b� So the set of formulas X � fp��� � �� a � � � bg
describes the real algebraic number completely�

We now generalize this way of representing an object �approximately or exactly�� Assume
an analytic structure� e�g�� a totally ordered 
eld or di�erential 
eld� is de
ned by means
of a 
rst order theory T using a language L of 
rst order predicate calculus with equality�
not containing the special symbol �� The language L contains all the constant� operation
and predicate symbols necessary for the description of the speci
c analytic structure� For a
totally ordered 
eld it would at least include the constant symbols �� �� the operation symbols
���� ���� and the predicate symbol �� We denote the set of variable	free� quanti
er	free
formulas in � by A�� Then we represent �partial� knowledge of an object � of this structure
by a 
nite or in
nite set formulas X � which are satis
ed by this object�

X � f������ ������ � � �g � A��

The reason to choose quanti
er	free formulas is� intuitively spoken� that they are easy to
verify� In the computational model we develop we will compute with such formula	sets instead
of the elements of a structure� This will allow to model in an uniform way computations with
approximations� by computing with formulas	sets that do not determine an object uniquely�
and objects that are known exactly� e�g�� by an algebraic expression � � In this case the object
is described completely by the formulas	set f� � �g�

Note that this representation of knowledge gives naturally rise to a lattice structure on partial
knowledge� which is simply given by the lattice induced by subset	inclusion� We will say that
a formula	set X approximates another formula	set Y if

X � Y�

This lattice is complete since there exists a minimum� namely the empty set� and a maximum�
namely A��
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We have introduced three types of operations� algebraic� computational and representation	
related� For each of these we will give the corresponding operations on formula	sets�

� Algebraic operations

One can think of an algebraic operation� like f�g� as an operation� that is de
ned by an
algebraic expression containing free variables� In the example of addition the algebraic ex	
pression would be ��x� y� � x� y� Now let us have a look back on the representation of real
algebraic numbers� For the addition of two real algebraic numbers we have to be able to add
the corresponding intervals� Intuitively it is clear how to add two intervals�

fa � � � bg� fc � � � dg � fa� c � � � b� dg�

This can be described more formally as an operation on formula	sets as follows� If T is the
theory of totally ordered 
elds then we can prove

a � x � b� c � y � d �T a� c � x� y � b� d�

where X �T � means� that the formula � is in 
rst order logic provable from the set of
formulas X � using theorems from T � Hence an element� being the sum of two elements
satisfying fa � � � bg and fc � � � dg� has to satisfy fa� c � � � b� dg�

This leads to a de
nition generalizing an operation given by a term ��x�� � � � � xk�� k � �� to

an operation T ��x������xk� on formula	sets X�� � � � � Xk � A�� Xij
xi
� denotes the set of formulas

where in Xi every appearance of � is substituted by xi�

T
��x������xk��X�� � � � � Xk� �� f���� � X�j

x�
� � � � � � Xkj

xk
� �T ����x�� � � � � xk��g�

To simplify notation we will maintain the usual mathematical notations also for combinatory
operations� as far as no confusion is possible� e�g�� for T ��x�y��X� Y � we write simply X � Y

or for T � we write ��

The logical closure Cn�X� of a formula	set X is the formula	set� that contains all formulas
which are logical consequences of X under �T � Any object satisfying all formulas in X also
satis
es all formulas in Cn�X�� So it makes no sense to distinguish between formula	sets
with the same logical closure� We call such logically closed formula	sets combinators and we
assume that a formula	set from now on always denotes its logical closure� We denote the set
of combinators with EA�

� Note that an operation T ��x������xk� always maps combinators into
combinators� Hence we call such an operation combinatory operation�

The set of logically closed formula	set again forms a complete lattice� where the maximum
is� as for formula	sets� F � A�� while the minimum of this lattice is now E � Cn���� We
denote inclusion of combinators in this lattice by

X v Y�

The lattice operations of 
nding the in
mum and supremum of two logically closed formula	
sets X� Y are then given by

X u Y � X 	 Y�X t Y � Cn�X 
 Y ��
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� Computational operations

The simplest computational operation� namely composition� is realized by composing combi	
natory expressions� Let� e�g�� T ��X��T��X� be combinatory operations� then their compo	
sition is given by T ��T ��X���

A decision function� a so	called conditional� can be de
ned as follows�

C
��x��X�� X�� X�� �

���������
��������

X�� if ���� � X�� X� �� F

X�� if ����� � X�� X� �� F

X� uX�� otherwise� if X� �� F

X� tX�� otherwise�

where ���� is a formula in A� and represents the condition on which the decision is based�
The two 
rst cases are easy to understand� In the third case there is not enough information
to make the decision� so both alternatives may be returned� Hence the minimal knowledge
which holds for the both alternatives� namely X� uX�� is returned� In the last case� where a
contradiction occurs� both alternatives have to be returned at the same time� so one choses
the best possible answer X� t X�� This way to de
ne decisions allows a natural exception
handling by catching up computations that have failed by providing too little or too much
knowledge�

We now come to the task of representing in�nite recursion� This 
rst requires to introduce
a limit notion for in
nite sequences of combinators�

Assume that a sequence of combinators Xn� n � IN� is given� We de
ne the limit of such a
sequence as the union G

n�IN

Xn�

i�e�� as the union of the knowledge contained in all Xn�

Example � Let Xn be the nth Taylor approximation of exp��� which we express as combi	
nator by

Xn � �� �� � � ��
�n

n�
�Dn�

where � denotes the identity function� i�e�� �� � �� The combinator Dn � f���� � ������� �
�� � � � ���n���� � �g allows to substitute the notation o��n�� which is usually used to denote

the higher	order terms of a truncated power	series� Now �n��

�n���� is approximated by Dn �

f���� � ������� � �� � � � ���n���� � �g� Furthermore Dn vDn��� Hence

� � �� � � ��
�n

n�
�Dn v � � �� � � ��

�n

n�
�

�n��

�n� ���
�Dn���

This shows that Xn v Xn�� or in other words thatXn is a monotonically increasing sequence
of combinators�
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We consider in the following only limits of monotonically increasing sequences of combinators�
so called chains� This is no essential restriction even when considering nonmonotonic number
or function sequences as the following example shows�

Example � Assume the nonmonotonic sequence ai� i � �� of real numbers is given and
converges to a limit a such that ai � a for i odd and ai � a for i even� Then we can easily
construct out of this sequence a monotonic sequence of combinators� such that the limit of
combinators describes the same point a� by

Ai � fb � � � c � b � min
j�i

aj � c � max
j�i

ajg��

We de
ne a combinator� which we want to be the limit of an in
nite recursion� as the union of
a recursively computed� monotone increasing sequence of combinators Xn� Let combinatory
operations T �T �

� � � � �T
k and starting values X�� X

�
� � � � � � X

k
� be given� Then the recursion

for computing the Xn is de
ned as follows�

Xn�� �� T �Xn� X
�
n� � � � � X

k
n�tXn

X�
n�� �� T

��X�
n� � � � � X

k
n�

���

Xk
n�� �� T

k�X�
n� � � � � X

k
n��

The X�
n� � � � � X

k
n can be considered as auxiliary sequences� which have not necessarily to be

monotonic� while the monotonicity of Xn is ensured by the inclusion Xn v Xn��� which holds
for the main recursion� We denote the combinator

F
n�IN computed by the recursion by

M
T �T

�
�����T

k

�X�� X
�
� � � � � � X

k
� ��

SoMT �T
�
�����T

k

is a new combinatory operation in the arguments X�� X
�
� � � � � � X

k
� �

	 The
T �T

�
� � � � �T

k can be considered as parameters and to obtain better readability we will denote
this operation� using arguments X�X�� � � � � Xk� alternatively by

M �T �T �
� � � � �T

k �X�X�� � � � � Xk��

� Combinatory Models

We are now ready to introduce the notion of combinatory model� The combinatory model of
a theory T is the algebraic structure

EA�
�� EA�

�T ��x������xk��C
��x�

�M
T �T

�
�����T

k

� �

�We assume that min
�� 
 �� and max
�� 
�� An inequality of the form 	 �� is then equivalent to
a trivial formula� e�g� 	 � 	� ��

�In Axiom a similar construct is actually used for the representation of power�series�
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Depending on the underlying theory T we can de
ne di�erent combinatory models� If T is
the 
eld theory then we have a combinatory �eld� if T is the di�erential 
elds theory then we
have a combinatory di�erential �eld� In most cases it is useful to include in the equational
theories of 
elds and di�erential 
elds ordering predicates� hence considering� e�g�� totally
ordered 
elds or partial ordered function 
elds� This allows the use of approximations which
are described� e�g�� as intervals�

We consider programs in analytic strucutres as algebraic expressions of combinatory models
and program execution is performed by evaluating these expressions�

The following theorem is of central importance� It relates combinatory models to graph
models and justi
es that combinatory models are indeed algebraic structures�

Main Theorem� �Aberer� ����B�
The combinatory model

EA�
�� EA�

�T ��x������xk��C
��x�

�M
T �T

�
�����T

k

�

is an inner algebra of the graph model DA�
�

This theorem allows us to use methods of the theory of graph models to prove properties in
combinatory models� This leads to the following basic properties of combinatory operations�
Proofs for these can be found in �Aberer� ����B��

�� Continuity� Continuity is the most basic property of operations that transform informa	
tion� We 
rst de
ne continuity for the unary case� Let Xn be a monotone increasing chain
of combinators and let T be an unary combinatory operation� Then

T �
G
n�IN

Xn� �
G
n�IN

T �Xn��

In the general case� let X�
n� � � � � X

k
n be monotone increasing chains� and let T be a k	ary

combinatory operation� Then

T �
G
n�IN

X�
n� � � � �

G
n�IN

Xk
n� �

G
n�IN

T �X�
n� � � � � X

k
n��

A simple consequence of continuity is monotonicity�

X� v X� 
 T �X�� v T �X���

�� Fixpoint properties of recursion� The main reason for restricting the de
nition of recursion
to the case where the main recursion sequence is monotonically increasing� is to be able
to prove� using continuity� algebraic relations for recursion combinators� namely 
xpoint
properties� In the unary case we have

M�T �X� � T �M�T �X���

This property can be generalized as follows� We use the shorthand notation

M �M�T �T �
� � � � �T

k�X�X�� � � � � Xk��
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Let G be an m	ary combinatory operation� If Xn�� �G�Xn� � � � � Xn�m� for n � m then

M �G�M � � � � �M��

�� Embedding theorem� The term structure as given by the underlying theory is isomor	
phically represented in the term structure of combinatory operations� This is due to the
following property� Let ��� � � � � �k be variable	free terms� Then

T
����������k� � T ��x������xk��T �� � � � � �T

�k��

When building up a variable	free term� one applies operations to simpler variable	free terms�
Informally this theorem says is that one can interchange embedding and composition�

�� Soundness� Assume that two operations ��� �� � Te�x�� � � � � xk� are given� Then

���x�� � � � � xk� � ���x�� � � � � xk�
 T
���x������xk� � T ���x������xk��

�� Completeness� The converse of soundness is not a general property of combinatory oper	
ations but it can be proved for certain term classes� An example of such a class are terms
of the theory of di�erential 
elds� which will be introduced later� containing free variables
and built up by using the constants �� � and the operations ���� ���� ��� Some completeness
results can be found in �Aberer� ����A��

	� Lifting and Weakening� Certain algebraic relationships involving terms with free variables
can be lifted into the combinatory model�

Let ��x�� �i�x� � Te�x�� i � �� � � � � k� and ��x�� � � � � xk� � Te�x�� � � � � xk� be given and
X�� � � � � Xk � EA�

� Then

T
��x��T ��x������xk��X�� � � � � Xk�� � T

����x������xk���X�� � � � � Xk��

T
��x������xk��T ���x��X��� � � � �T

�k�x��Xk�� � T
�����x��������k�xk���X�� � � � � Xk��

In general such liftings lead to a loss of information� so called weakenings� Let

���x�� � � � � xk� � ���x�� � � � � x�� � � � � xk� � � � � xk��

and X�� � � � � Xk � EA��
� Then

T
���x������x������xk�����xk��X�� � � � � X�� � � � � Xk� � � � � Xk� v T

���x������xk��X�� � � � � Xk��


� Diagonalization� Recursions can be diagonalized� if the underlying theory allows the
representation of natural numbers� For example all theories describing extensions of Q allow
such a representation�

�� Conditional operations� Laws for terms composed of conditional and algebraic operations
can be derived� Let T ��x� be an unary combinatory operation� Then

T
��x��C��x��X� Y� Z�� � C��x��X�T

��x��Y ��T ��x��Z���

��



� Symbolic programs in combinatory models

We give now interpretations of the programs discussed in the examples of Section �� Division

by � is represented by the combinatory term T
�

� � Now� all that can be proved about �
� in a


eld theory are trivial properties that are true for all elements� So the correct interpretation
is

T
�

� � E�

This seems also to be the intended interpretation of Indeterminate in mathematica� If an
object related to the concept of in
nity is needed� this can be provided in a combinatory
model by using recursion� e�g�� by

M�T ��x� f�� � � � �g��

The absolute value function is given as

A�X� � Cx���X�T
x�X��T�x�X���

Its derivative can be computed in a combinatory model as follows

A
��X� � T x�

�A�X�� � Cx���X�T
x�

�X��T�x�

�X���

Thus� e�g�� A��� � � and A���� � ��� In this way we can algebraically manipulate general
piecewise de
ned functions�

In
nite recursion can be represented now in closed form� One has only to take care of the
initial value� such that the sequence of approximations is monotone increasing� 
 A recursion
approximating � is� e�g�� given by the recursion operation

M �T
x

� � f� � � � �g��

� Representation�related operations

We have omitted this class of operations so far� Operations that change the representation of
an object are very useful in symbolic computation� There exist operations that preserve the
complete knowledge about an object� like Expand�x�� and operations that lead to a loss of
information� like Series�y�fx�x��ng�� The second type of representation	related operations
are often used for transitions to numerical computation� e�g�� using N�x� to get a �oating point
representation of a real number� One property all representation	related operations have in
common is that they are retractions� A retraction R is an operation that satis
es

R�R�X�� � R�X��

Now we show two basic possibilities to introduce such retractions in combinatory models�
The 
rst operates on the level of formula	sets by restricting the formulas allowed in the
representation of the object to a subset Ar

� of A��

R�X� � f���� � ���� � X � ���� � Ar
�g�

�Note thatM 
T
x

� � �� 
 F �

��



These operations are elements of the combinatory model �Aberer� ����A��

Example � A typical example for this type of retractions would be rounding of real numbers
to �oating point or 
xed point numbers with 
nite precision� Then Ar

� would be the 
nite
set of formulas

Ar
� � f� � fi � fi �oating �
xed� point number� i � �� � � � � ng�

Another possibility is to de
ne the retractions as combinatory expressions� which means we
introduce the retraction in form of a program�

Example � We illustrate this by the computing the Taylor series as a monotone increas	
ing sequence of Taylor polynomials� This can be done by the following recursive program
Ps�X� ��

F
n�INP n�

P n�� �� yn �Dn

yn�� �� yn �
dyn���
n� � �n

dyn�� �� dy�n

�n� ��� �� n� � n

Dn�� �� � �Dn

P � � E

y� � X

dy� � X

�� � �

D� � f���� � �g

To show that P n is monotone increasing we use the following three facts� �

�� Dn vDn��� Follows by monotinicity fromD� v ��D�� which is shown by ���y����� �
����� � y��� � ���� � y���� � � � y��� � � � y�����

�� Dn v �n��� Follows by monotinicity fromD� v ��

�� Dn �Dn�Dn� It is clear thatD� �D��D�� Using the fact that for a combinator
T

� representing a term � we have T � � �X �X� � T � �X � T � �X � we conclude by
induction on n thatDn�Dn � ��Dn��� ��Dn�� � ���Dn���Dn��� � ��Dn�� �
Dn�

This allows us to conclude

P n � yn�� �Dn�� � yn�� �Dn�� �Dn�� v yn�� �
dyn���

n�
� �n �Dn � P n���

The recursive operation also de
nes a retraction� This is shown by using continuity�

Ps�
G
n�IN

P n� �
G
n�IN

Ps�P n��

and remarking that Ps�P n� � P n�

�Note that these are also properties of o
��n��

��



	 Symbolic Derivation of Approximate Algorithms

We want to give an illustration how the properties of combinatory operations can be used
to derive symbolically approximative algorithms� The goal is to compute approximative
solutions of linear di�erential equations� which can be represented in closed	form by using
recursion operators� Although the idea of power	series plays in the following a central role�
we have to point out� that the algorithm not only gives the correct solution up to a given
order� but also gives inclusions of the solution in form of function intervals� This means
the algorithm computes a substantial additional amount of information� which is especially
useful to obtain veri
ed bounds on the solution� Similar techniques play a role in numerical
computations� see e�g�� �Weissinger� ����� for inclusion methods for di�erential equations�

We consider the case of a regular� linear� homogenous di�erential equation over the real
numbers with polynomial coe�cients� which can be written in the form

L�y� � y�m� � am����� � y
�m��� � � � �� a���� � y

� � a���� � y � ��

It is a well known fact that the solution of such an equation is analytic in a neighborhood of
any point� Furthermore the coe�cients of the power	series expansion of the analytic function
are computable by a polynomial recursion� We will use this to construct a combinatory
solution of the di�erential equation� in the form of a monotone increasing and recursively
computed chain of approximations of the solution�

First we give the recursion for computing the power	series expansion in a way� that is espe	
cially suited for our purposes� Let Le�y� be L�y� written in expanded form� i�e�� the derivatives
y�i� are distributed over the polynomials ai���� � Then substitute every monomial of the form

c � �k � y�i� by c � �k � y
�i�
n��i�m��k �

where c is a constant coe�cient and yn� � � � are new variables� The yn will turn out to be the
power	series of the solution truncated at the n	th power� This substitution gives an operator

eL�yn� � � � � yn�t��
where

t � max
i
������m��

deg�ai�� �i�m��

We make the ansatz

yn�� � yn � un� un � bn � �
n� bn constant� ���

for the recursion and assume that

eL�yn� � � � � yn�t� � �� ���

Note that eL�y� � � � � y� � L�y� � Le�y� and

eL�y� � � � � y� � Le�y��

	This means that L
y� 
 Le
y� but L
y� �� Le
y�� where � denotes syntactic equivalence� This will be of
importance in the combinatory embedding later�

��



If we substitute in eL according to ��� and use the fact that eL is linear yi� the equation ��� is
satis
ed i� eL�un� � � � � un�t� � ��

This implies that the un satisfy a condition of the form

un �
t��X
i
�

pi�n� � �
i � un�i���

where pi�n� are polynomials in n� This gives the desired recursive computation of yn� The
starting values u�� � � � � ut�� have to be determined according to the initial values of the
di�erential equation�

Up to now we have only reformulated well known facts� The crucial step now is to make a
combinatory ansatz� We want to recursively compute an increasing chain of approximations
Xn of the form

Xn �� yn�t � V��n� � un�� � � � �� Vt�n� � un�t � yn�t �
tX

i
�

Vi�n� � un�i� ���

where Vi�n� are combinators with the property const��� � Vi�n�� We substitute this ansatz
into eL and then use the following combinatory laws which follow from the properties given
for internal combinators �C is a constant combinator� i�e�� const��� � C��

�X � Y �� � X � � Y �� �C �X�� � C �X �� C �X � C � Y v C � �X � Y ��

Using linearity in eL we get

eL�Xn� � � � � Xn�t� � eL�yn�t� � � � � yn��t� � eL�V��n� � un��� � � � � V��n� � un�t��� � � � �

�eL�Vt�n� � un�t� � � � � Vt�n� � un��t�
v V��n� � eL�un��� � � � � un�t� � � � � Vt�n� � eL�un�t��� � � � � un��t� � ��

If we assume that the Xn are a monotone increasing chain then we may conclude the following
by using continuity�

G
n�IN

eL�Xn� � � � � Xn�t� � eL� G
n�IN

Xn� � � � �
G
n�IN

Xn� � Le�
G
n�IN

Xn� v �� ���

Observe how we made use of the syntactical equivalence of eL�y� � � � � y� and Le�y�� such that
no weakening occurred in this step� Hence ��� implies that� if Le�

F
n�INXn� is convergent in

the sense that two elements satisfying all formulas contained in this combinator are arbitrarily
close� then

F
n�INXn is a unique solution�

Now we want to investigate under which circumstances the sequence Xn is a chain� This will
also make clear why the ansatz for Xn was chosen exactly as in ���� To do this we make the
assumption that we are only interested in the solution on a certain interval C � fa � � � bg�
where �� � a � b � �� This will allow us to use the inclusion C v �k � Then we get

��



Xn�� � yn�t�� �
t��X
i
�

Vi���n� � un�i

� yn�t � un�t �
t��X
i
�

Vi���n� � un�i

� yn�t � un�t � V��n� �
tX

i
�

pi�n� � un�i � �
i �

t��X
i
�

Vi���n� � un�i

� yn�t � un�t � �� � V��n� � pt�n� � �
t� �

t��X
i
�

un�i � �Vi���n� � V��n� � pi�n� � �
i�

w yn�t � un�t � �� � V��n� � pt�n� �C� �
t��X
i
�

un�i � �Vi���n� � V��n� � pi�n� �C�

The Xn form a chain if the last line is an approximation of

Xn � yn�t � V��n� � un�� � � � �� Vt�n� � un�t � yn�t �
tX

i
�

Vi�n� � un�i�

This is the case if the following system of inclusions is satis
ed�

Vt�n � �� v � � V��n� � pt�n� �C

Vi�n � �� v Vi���n� � V��n� � pi�n� �C� i � �� � � � � t� ��

These inclusions are satis
ed if the corresponding equations are satis
ed� The corresponding
system of equations looks like a linear system of equations� In fact if we assume that C is
a real number and the Vi are independent of n we have a linear system of t equations in t

unknowns� which �in general� � is nondegenerate� We leave it as an open question whether
the combinatory system is solvable in general for any linear di�erential equation� although
this seems to be very likely following the above arguments�

We illustrate the algorithm for a concrete example which was computed by usingmathematica�
Take the di�erential equation

y��� � y� � x � y � �� y��� � �� y���� � �� y����� � ��

The recursion is computed as

� 	 	

j u�
� � n� 	 j u�
	 � n� j n u�
	 � n�

u�n� 

 
�














� � 
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 � n � n 	 n 
 � n � n 	 n 
 � n � n

The equation to be satis
ed are


It is easy to compute in this case the determinant and to see that only for exceptional values ofC and n

the system degenerates�

��



�V�	� n� �� V��� 
� � n��

Int�
�� �� V��� n�


 

















 � V��� n� �� V�	� 
� � n�� V��� n� �� V��� 
� � n��

�
� � n� n

Int�
�� �� V��� n�


 � � 


















 �� V��� 
� � n��

�
	 � n� �
� � n� n

One solution of this system is

V���n����Int������

V�	�n����Int������

V���n����Int��
���n�	���n����n����

V���n����Int��
���n�����n
���n����

The 
rst few iterates are then as follows�

� � 	 � 	�

X��� � J Int�
�
�� �� � J Int��� �� � Int�
� �� � J Int�

� ��

� � 	�

� � � � 	� 	 ��

X��� � � � J Int�
�
�� �� � J Int�
�
�� �� � J Int�

� �� � J Int�

� ��

� � 	� ��

� � ��� � � � �

X��� � � � J � J Int�
�
�� 
�


�� � J Int�
�
�� �� � J Int�
�


�� �� �

� �	� � �	�

	 � � ��� � � 	��

X��� � � � J � J � J Int�
�
�� 
�


�� � J Int�
�
�� 
�



�� �

� �	� � ����

� � � �


 J Int�
�


�� �� � J Int�
�


�� ��

�	� 	��

�

	 J � � 	�� � � ��

X��� � � � J � J 
 

 � J Int�
�
�� 
�



�� � J Int�
�


�� 
�



�� �

� � ���� �	� ����

� � � �


 J Int�
�


�� �� � J Int��� 



�

	�� ����

Note that the iterates are monotone increasing combinators and how the sizes of the intervals
shrink�

��



�
 Conclusion

We have presented an algebraic approach to deal with approximate computation� This allows
us to use the qualitative properties of approximations in an algebraic computing environment�
Additionally this approach includes other important concepts for computing in analysis� like
conditional functions� in
nite recursion and mechanisms for exception handling� The quan�

titative properties of approximation� which lead to questions of convergence and complexity�
are part of ongoing work �Aberer 
 Codenotti� ������ and are important steps toward further
integration of concepts from numerical and symbolic computation�
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