Combinatory Models and Symbolic Computation
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Abstract

We introduce an algebraic model of computation which is especially useful for the
description of computations in analysis. On one level the model allows the representation
of algebraic computation and on an other level approximate computation is represented.
Furthermore programs are themselves algebraic expressions. Therefore it is possible to
algebraically manipulate programs of symbolic and numerical computation, thus provid-
ing symbolic computation with a firm semantic foundation and giving a natural model
for mixed symbolic-numerical computation. We illustrate these facts with examples.

1 Introduction

A substantial part of computer algebra deals with problems arising from analysis, see for
example [Buchberger et al., 1983, Davenport et al., 1988]. This computational approach to
analysis makes use of algebraic representations of analytic structures, as for example differen-
tial fields [Kaplansky, 1957]. The objects used for these algebraic computations in analysis are
represented exactly. The computational approach to analysis which exploits the set-theoretic
properties of structures defined over the real numbers, leads to computational methods, which
are usually related to numerical computation. In this case usually approximative representa-
tions for objects are used.

Computational models for analysis which origin from recursion theory, like, e.g., recursive
analysis [Pour-El & Richards, 1989] or the theory of machines on the reals [Blum et al., 1989,
are, as models of computation with real numbers, naturally closer to numerical computations.
However, in the theory of computation there exist models of computation which are given as
algebraic structures, e.g., combinatory algebras. A popular model of combinatory algebras is
A-calculus [Barendregt, 1977]. In this work we consider other models of combinatory algebras,
namely graph models [Engeler, 1981A, Engeler, 1981B]. It was shown that any algebraic
structure can be embedded in a graph model [Engeler, 1988]. Hence graph models give rise
to an algebraic model of computation in algebraic structures. So it appears appropriate
to use them as models for symbolic computation. On the other hand, graph models have,
similarly as analytic structures, a second facet. They are also endowed with the structure of a
complete continuous lattice [Maeder, 1986], an important structure in denotational semantics
to model approximate computations. This fact was used to model numerical computations in
graph models [Fehlmann, 1981]. Similar ideas for complete partial orders can also be found

in [Weihrauch, 1980].

We will introduce, based on graph models, combinatory models as computational models for
analysis. This allows to represent uniformly exact and approximate computations in analysis
in an algebraic structure. The main ideas leading to this model go back to [Engeler, 1990].

This model is relevant for symbolic computation for several reasons.
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e The description of symbolic programs of analysis, built up from algebraic and compu-
tational operations, including recursion, in an algebraic computational model allows to
view these programs themselves as algebraic expressions. This allows to state algebraic
relationships for such programs.

e The embedding allows to introduce new types of field extensions which are defined by
programs. Classically in computer algebra, e.g., differential fields are extended by new
transcendental functions, such as given by elementary extensions. This leads to a rich
theory culminating in the results of Risch [Risch, 1969]. When also the extension by
functions, which are defined by program, is possible, new powerful solution mechanisms
are introduced in algebraic computation.

e Computer algebra systems usually are equipped with a substantial set of numeri-
cal methods, mathematica is a good example for this [Wolfram, 1988]. Numerical
mathematics tends to make more use of symbolic methods, see, e.g., [Kaucher, 1983,
Stetter, 1988]. The trend is leading to mixed symbolic-numeric computations. For such
computations combinatory models of analytic structures provide a clear semantics and
thus a well defined interface for smooth transitions between the two worlds. This will
also allow to deal with programs, which compute approximately, as algebraic objects.

e Many problems of analysis have symbolic as well as numerical solution methods. A com-
putational model that allows to describe both, helps to compare the different methods,
e.g., in order to analyze the complexity of analytic problems. Only a few approaches are
known that allow such a general investigation of analytic problems [Traub et al., 1988].

e Last but not least a well defined semantics for computations in analysis, taking into
account the different aspects arising from using algebraic, approximative and compu-
tational constructs, can give guidelines to build safer systems, especially for computer
algebra but also for mathematical computation in analytic structures in general.

In this paper we will be able to go closer into some of these aspects after introducing the
notion of combinatory models. The reader interested in the relations to graph models is
advised to refer to [Aberer, 1991A, Aberer, 1991B].

2 Operations of Symbolic Computation

We distinguish the following three types of operations used in computer algebra. 2

1. Algebraic operations: D[f,x], f/g.

2. Computational operations: If[c>0,f,g], While[a>0, .... 1. Also composition of
programs is considered as a computational operation.

2We use in this paper Mathematica as one representative of a typical classical computer algebra system.
All notations for computer algebra programs are hence taken out of it. Other system, that would have served
as well, are Maple, Macsyma or Reduce. Aziom (former Scratchpad) would have made some of the examples
given more difficult to present due to its type-checking mechanism.



3. Representation-related operations: Expand[f], Series[f,{x,x0,n}].

We consider programs of symbolic computations as algebraic expressions composed from these
operations. The following examples show how this viewpoint can lead to strange answers
of actual systems, if done “carelessly”, i.e., if no account is taken of underlying structural
assumptions or features of the implementation.

Example 1 Assume we want to define in the following examples specific real functions.

1. In this example we pick out a situation, that well can occur during a computation.
In[19]:= £[x_]:=x/0
In[20]:= £[1]
1
Power::infy: Infinite expression - encountered.
0
Out[20]= ComplexInfinity
In[21]:= 0 * ComplexInfinity
Infinity::indt: Indeterminate expression 0 ComplexInfinity encountered.

Out[21]= Indeterminate

2. Here we make a reasonable attempt to define the absolute value function.

In[21]:= f[x_]:=If[x>0,x,-x]

In[22]:= D[f[x],x]
(0,0,1) (0,1,0)

Out[22]= -If [x >0, x, —x] + If [x >0, x, —x] +
(1,0) (1,0,0)

> Greater [x, 0] If [x >0, x, —x]

3. Now we make a less reasonable attempt to define a function recursively.

In[23]:= f[x_]:=f[x]1/2

In[24]:= £[1]
General::recursion: Recursion depth of 256 exceeded.
Out [24]=

1
Hold[-] Hold[f[1]]

904625697166532776746648320380374280103671755200316906558262375061821325312



The following is a more reasonable, but similarly successless, approach.

In[9]:= glx_,n_1:=1/2 glx,n-1]

In[10]:= glx,0]:=x

In[11]:= glx]:=Limit[glx,n],n->Infinity]
In[12]:= gl[1]

Out[12]1= g[1]

In[15]:= DIglx],x]

General::recursion: Recursion depth of 256 exceeded.

General::stop: Further output of General::recursion
will be suppressed during this calculation.
~C

(The calculation was interrupted.)

Discussion of the examples:

1. The answer is almost satisfying. Open is the question about a mathematical interpre-
tation of ComplexInfinity and about the validity of the system’s assumption that the
result is over a complex number field.

2. The systems response to a very natural attempt to define the absolute value function
is completely inappropriate. In this case a mathematical model of how to deal with
piecewise defined functions is simply missing.

3. The third example illustrates that symbolic computation systems lack an algebraic
mechanism to deal with functions defined as limits of infinite recursions, despite the
fact, that these functions play an important role in computations in analysis.

We have to remark that these phenomena are not particular for mathematica but similar
behavior occurs in many other systems.

The failures presented in the above examples are mainly due to the fact, that the program-
ming constructs cannot by safely composed to new expressions, or that basic programming
constructs like recursion are not provided. This again is due to the lack of an algebraic
structure which contains such constructs as elements, and provides them with a consistent
semantics.



3 Representation of Approximations

Now let us turn to approximative methods. We have to consider two aspects. First the results
of an approximative method are often computed as limits of recursive sequences of approxima-
tions. Typical examples are Newton’s method for finding zeros of a function or power-series
methods for solving differential equations, where especially the latter also play an important
role in symbolic computation. Therefore recursion should be provided as an algebraic con-
struct itself. Second approximative methods make, as the name says, use of approximations.
To be able to deal with approximations in an algebraic environment we need an algebraic
approach to the notion of approximation and algebraic properties of approximations.

We will use the notion of approzimating an object in the sense of having partial knowledge of
all properties of the object.

A typical example of such partial knowledge arising from computer algebra, is found in the
representation of a real algebraic number. Two kinds of partial knowledge are combined to
represent a real algebraic number exactly. Let the symbol @ denote the real algebraic number.
Then first a polynomial p is given of which @ is a zero: p(@) = 0. Second an interval [a, b]
is given which isolates @: ¢ < @ < b. So the set of formulas X = {p(@) = 0,a < @ < b}
describes the real algebraic number completely.

We now generalize this way of representing an object (approximately or exactly). Assume
an analytic structure, e.g., a totally ordered field or differential field, is defined by means
of a first order theory T using a language L of first order predicate calculus with equality,
not containing the special symbol @. The language I contains all the constant, operation
and predicate symbols necessary for the description of the specific analytic structure. For a
totally ordered field it would at least include the constant symbols 0, 1, the operation symbols
+,—,*,7! and the predicate symbol <. We denote the set of variable-free, quantifier-free
formulas in @ by Aq. Then we represent (partial) knowledge of an object @ of this structure
by a finite or infinite set formulas X, which are satisfied by this object.

X = {¢1(@), $2(Q@),.. .} C Aq.

The reason to choose quantifier-free formulas is, intuitively spoken, that they are easy to
verify. In the computational model we develop we will compute with such formula-sets instead
of the elements of a structure. This will allow to model in an uniform way computations with
approximations, by computing with formulas-sets that do not determine an object uniquely,
and objects that are known exactly, e.g., by an algebraic expression 7. In this case the object
is described completely by the formulas-set {@ = 7}.

Note that this representation of knowledge gives naturally rise to a lattice structure on partial
knowledge, which is simply given by the lattice induced by subset-inclusion. We will say that
a formula-set X approximates another formula-set YV if

XCY.

This lattice is complete since there exists a minimum, namely the empty set, and a maximum,
namely Ag.



We have introduced three types of operations: algebraic, computational and representation-
related. For each of these we will give the corresponding operations on formula-sets.

4 Algebraic operations

One can think of an algebraic operation, like f+g, as an operation, that is defined by an
algebraic expression containing free variables. In the example of addition the algebraic ex-
pression would be 7(z,y) = @ + y. Now let us have a look back on the representation of real
algebraic numbers. For the addition of two real algebraic numbers we have to be able to add
the corresponding intervals. Intuitively it is clear how to add two intervals.

{a<@<bl+{c<@<d}={a+c<Q@<b+d}.

This can be described more formally as an operation on formula-sets as follows. If T is the
theory of totally ordered fields then we can prove

agx§b,c§y§d|—Ta—|—c§x—|—y§b—|—d.

where X F1' ¢ means, that the formula ¢ is in first order logic provable from the set of
formulas X, using theorems from 7. Hence an element, being the sum of two elements

satisfying {a < @ < b} and {¢ < @ < d}, has to satisfy {a + ¢ <@ < b+ d}.

This leads to a definition generalizing an operation given by a term 7(21,...,2%), kK > 0, to
an operation T7@0%8) o formula-sets Xi,..., Xk € Aa. X;|y denotes the set of formulas

where in X; every appearance of @ is substituted by z;.

T m) (X X)) = (@) s X8, XK FT b(r(2, . 3))

To simplify notation we will maintain the usual mathematical notations also for combinatory
operations, as far as no confusion is possible, e.g., for TT(QU’y)(X,Y) we write simply X +Y
or for T we write 0.

The logical closure Cn(X ) of a formula-set X is the formula-set, that contains all formulas
which are logical consequences of X under F7. Any object satisfying all formulas in X also
satisfies all formulas in Cn(X). So it makes no sense to distinguish between formula-sets
with the same logical closure. We call such logically closed formula-sets combinators and we
agssume that a formula-set from now on always denotes its logical closure. We denote the set
of combinators with £4,. Note that an operation T (1) always maps combinators into
combinators. Hence we call such an operation combinatory operation.

The set of logically closed formula-set again forms a complete lattice, where the maximum
is, as for formula-sets, F' = Aq, while the minimum of this lattice is now E = Cn(0)). We
denote inclusion of combinators in this lattice by

XCY.

The lattice operations of finding the infimum and supremum of two logically closed formula-
sets X, Y are then given by

XNY=XnY, Xuy=Cn(XUY).



5 Computational operations

The simplest computational operation, namely composition, is realized by composing combi-
natory expressions. Let, e.g., T1(X),T2(X) be combinatory operations, then their compo-
sition is given by T1(T2(X)).

A decision function, a so-called conditional, can be defined as follows:
X, if p(@) € X4, X1 # F

Xs, if 7¢p(@) € Xy, X1 #F
XM X3, otherwise, if Xy # F

C? (X1, Xy, X3) =

X U X3, otherwise,

where ¢(@) is a formula in Aa and represents the condition on which the decision is based.
The two first cases are easy to understand. In the third case there is not enough information
to make the decision, so both alternatives may be returned. Hence the minimal knowledge
which holds for the both alternatives, namely X, M X3, is returned. In the last case, where a
contradiction occurs, both alternatives have to be returned at the same time, so one choses
the best possible answer X9 Ll X3. This way to define decisions allows a natural exception
handling by catching up computations that have failed by providing too little or too much
knowledge.

We now come to the task of representing infinite recursion. This first requires to introduce
a limit notion for infinite sequences of combinators.

Assume that a sequence of combinators X,,, n € IN, is given. We define the limit of such a
sequence as the union
| ] X.

nelN

i.e., as the union of the knowledge contained in all X,.

Example 2 Let X, be the n'* Taylor approximation of exp(¢) which we express as combi-
nator by

Ln
anl—I—L—I—...—I—E—I—Dn,

where ¢ denotes the identity function, i.e., ¢/ = 1. The combinator D, = {@(0) = 0,@'(0) =
0,...,@™(0) = 0} allows to substitute the notation o(¢"), which is usually used to denote

the higher-order terms of a truncated power-series. Now (TLTJT), is approximated by DD, =

{@(0)=0,@(0) = 0,...,@(0) = 0}. Furthermore D, C D, ;. Hence

L L Ln—l—l
1 ...+—4+D,C1 it —+——4+D, .
+ i+ +n!+ CLl+:+ +n!+(n—|—1)!+ +1
This shows that X,, C X, 41 orin other words that X, is a monotonically increasing sequence
of combinators. ]



We consider in the following only limits of monotonically increasing sequences of combinators,
so called chains. This is no essential restriction even when considering nonmonotonic number
or function sequences as the following example shows.

Example 3 Assume the nonmonotonic sequence a;,¢ > 0, of real numbers is given and
converges to a limit @ such that a; < a for i odd and a; > a for i even. Then we can easily
construct out of this sequence a monotonic sequence of combinators, such that the limit of
combinators describes the same point a, by

A;={b<@<c:b=minaj,c=maxa;}>
Y Y

We define a combinator, which we want to be the limit of an infinite recursion, as the union of
a recursively computed, monotone increasing sequence of combinators X,,. Let combinatory
operations T, T", .. .,Tk and starting values Xo, X},..., X} be given. Then the recursion
for computing the X, is defined as follows.

X = T(X,,XL....XhHux,
Xl o= TUXLLLXD)
Xk, o= THXL... XP).
e ye e ay can be considered as auxillary sequences, wilic ave not necessari y to be
The X!,...,X* can b idered ili hich h ily to b

monotonic, while the monotonicity of X, is ensured by the inclusion X,, C X, 41, which holds
for the main recursion. We denote the combinator | |, .y computed by the recursion by

TT . .T" k
M (X0, Xg,-o 0y XO).
TT . T, - o 1 ko4
So M is a new combinatory operation in the arguments Xg, Xg,..., X5. * The
T, Tl, ey T* can be considered as parameters and to obtain better readability we will denote
this operation, using arguments X, X', ..., X* alternatively by

M(T,T',.... T": X, X',..., X%).

6 Combinatory Models

We are now ready to introduce the notion of combinatory model. The combinatory model of
a theory T is the algebraic structure

1 k
EA@ :< EA@ ; Cqu—(ljv'ka)7 (:’(b(l’)7 MT,T 7...:lj > .

*We assume that min(f) = —oo and max(®) = co. An inequality of the form @ < oo is then equivalent to
a trivial formula, e.g. @ < @ + 1.
*In Aziom a similar construct is actually used for the representation of power-series.



Depending on the underlying theory T  we can define different combinatory models. If T is
the field theory then we have a combinatory field, if T is the differential fields theory then we
have a combinatory differential field. In most cases it is useful to include in the equational
theories of fields and differential fields ordering predicates, hence considering, e.g., totally
ordered fields or partial ordered function fields. This allows the use of approximations which
are described, e.g., as intervals.

We consider programs in analytic strucutres as algebraic expressions of combinatory models
and program execution is performed by evaluating these expressions.

The following theorem is of central importance. It relates combinatory models to graph
models and justifies that combinatory models are indeed algebraic structures.

Main Theorem: [Aberer, 1991B]
The combinatory model

1 k
EA@ :< EA@ ; Cqu—(ljv'ka)7 (:’(b(l’)7 MT,T 7...:lj >
is an inner algebra of the graph model D 4, .

This theorem allows us to use methods of the theory of graph models to prove properties in
combinatory models. This leads to the following basic properties of combinatory operations.
Proofs for these can be found in [Aberer, 1991B].

1. Continuity: Continuity is the most basic property of operations that transform informa-
tion. We first define continuity for the unary case. Let X, be a monotone increasing chain
of combinators and let T' be an unary combinatory operation. Then

T(| | X.)= || T(X,).

nelN nelN

In the general case, let X!,.... X be monotone increasing chains, and let T be a k-ary
combinatory operation. Then

T(| | XL xh=|] T(x}....xF.
nelN neN nelN

A simple consequence of continuity is monotonicity.

X1 C Xy — T(X,) C T(X).

2. Fizpoint properties of recursion: The main reason for restricting the definition of recursion
to the case where the main recursion sequence is monotonically increasing, is to be able
to prove, using continuity, algebraic relations for recursion combinators, namely fixpoint
properties. In the unary case we have

M(T; X)=T(M(T; X)).
This property can be generalized as follows. We use the shorthand notation

M =MT,T,..., T X, X', ... X",



Let G' be an m-ary combinatory operation. If X, 11 = G(X,,..., X,_,) for n > m then

M=G(M,...,M).

3. Embedding theorem: The term structure as given by the underlying theory is isomor-
phically represented in the term structure of combinatory operations. This is due to the
following property. Let 71,..., 7 be variable-free terms. Then

TT(T1,...,Tk) — TT(l’l""’xk)(TTla sy TTk)

When building up a variable-free term, one applies operations to simpler variable-free terms.
Informally this theorem says is that one can interchange embedding and composition.

4. Soundness: Assume that two operations 7,73 € Te(21,...,2x) are given. Then

T2t r) = o, ap) — T = Er2neme)

5. Completeness: The converse of soundness is not a general property of combinatory oper-
ations but it can be proved for certain term classes. An example of such a class are terms
of the theory of differential fields, which will be introduced later, containing free variables
and built up by using the constants 0,1 and the operations 4, —, *,7%,/. Some completeness
results can be found in [Aberer, 1991A].

6. Lifting and Weakening: Certain algebraic relationships involving terms with free variables
can be lifted into the combinatory model.

Let 7(2),m(2) € Te(x),i = 1,...,k, and o(zy,...,25) € Te(xy,...,2;) be given and
Xi,..., X, € EA@. Then

Clﬂ'(av)(crcr(am,...,ab’k)()(17 e Xk)) _ TT(U(xl""’xk))(Xl, e Xk)7
Clvcr(am,...,GL’k)(177'1(96’)()(1)7 e TTk(l’)(Xk)) — TCT(Tl (wl),...,Tk(ack))(Xh o Xk)

In general such liftings lead to a loss of information, so called weakenings. Let
(1, ey @) = T2 @1, e oy Ty e e ey Ty e ey Th),

and Xq,..., X € EA@l. Then

T72(1’1,...71’1,...,l’k,...,l’k)(Xl7 e )(17 - ka ey Xk) E 2177—1(7317~~'7xk)()(17 RN Xk)

7. Diagonalization: Recursions can be diagonalized, if the underlying theory allows the
representation of natural numbers. For example all theories describing extensions of @ allow
such a representation.

8. Conditional operations: Laws for terms composed of conditional and algebraic operations
can be derived. Let T7) be an unary combinatory operation. Then

T"(C* (XY, 2)) = C*U) (X, T)(v), T"W(2)).

10



7 Symbolic programs in combinatory models

We give now interpretations of the programs discussed in the examples of Section 2. Division

1
by 0 is represented by the combinatory term T0. Now, all that can be proved about % in a
field theory are trivial properties that are true for all elements. So the correct interpretation
is .
To = F.
This seems also to be the intended interpretation of Indeterminate in mathematica. If an

object related to the concept of infinity is needed, this can be provided in a combinatory
model by using recursion, e.g., by

M(T*";{-1<@<1}).

The absolute value function is given as
A(X)=C"%X, T*(X), T (X)).
Its derivative can be computed in a combinatory model as follows
A(X)=T"(A(X)) = C™%X, T (X), T~ (X)).

Thus, e.g., A(0) = 0 and A'(0) = —1. In this way we can algebraically manipulate general
piecewise defined functions.

Infinite recursion can be represented now in closed form. One has only to take care of the
initial value, such that the sequence of approximations is monotone increasing. ®> A recursion
approximating 0 is, e.g., given by the recursion operation

M(T>;{0< @< 1}).

8 Representation-related operations

We have omitted this class of operations so far. Operations that change the representation of
an object are very useful in symbolic computation. There exist operations that preserve the
complete knowledge about an object, like Expand[x], and operations that lead to a loss of
information, like Series[y,{x,x0,n}]. The second type of representation-related operations
are often used for transitions to numerical computation, e.g., using N[x] to get a floating point
representation of a real number. One property all representation-related operations have in
common is that they are retractions. A retraction R is an operation that satisfies

R(R(X))= R(X).

Now we show two basic possibilities to introduce such retractions in combinatory models.
The first operates on the level of formula-sets by restricting the formulas allowed in the
representation of the object to a subset Af of Aq.

R(X) ={¢(Q@): ¢(@) € X A p(Q) € AG}.
®Note that M(T%, 1) = F.

11



These operations are elements of the combinatory model [Aberer, 1991A].

Example 4 A typical example for this type of retractions would be rounding of real numbers
to floating point or fixed point numbers with finite precision. Then Aj would be the finite
set of formulas

@ =1{Q = f;: f; floating (fixed) point number,i =1,...,n}.

Another possibility is to define the retractions as combinatory expressions, which means we
introduce the retraction in form of a program.

Example 5 We illustrate this by the computing the Taylor series as a monotone increas-
ing sequence of Taylor polynomials. This can be done by the following recursive program

Ps(X) = U,en P

P, = Y+ D, P, = FE

Yn+1 = Yot MZIQ * 0" v = X

dYnr1 = dy;, dyo = X

(n+ 1) = nlxn o0 =1

D,.. = %D, D, = {@(0)=0}

To show that P,, is monotone increasing we use the following three facts. ©

1. D, C D, ;: Follows by monotinicity from Do C ¢+ Dy, which is shown by (vxy)'(0) =
/(0) * y(0) 4+ ¢(0) + y'(0) = 1+ y(0) + 0+ y'(0).

2. D, T /"t Follows by monotinicity from Dy C «.

3. D, =D, + D,: It is clear that Dy = Dg+ Dg. Using the fact that for a combinator
T7 representing a term 7 we have T" « (X + X) =T « X + T7 x X, we conclude by
induction on n that D, + D, =« D, 14+ txD, 1 =1x(D,_1+D,_1)=1xD,_1 =
D,.

This allows us to conclude

dyn(0)
Pn:yn—l‘l'Dn—l :yn—1‘|’Dn—1+Dn—1 Eyn—l‘l' yng )*L ‘|’Dn:Pn—1-

The recursive operation also defines a retraction. This is shown by using continuity:

Ps(| | P.)= || Ps(P.),

nelN nelN

and remarking that Ps(P,) = P,,. I

®Note that these are also properties of o(x:™).

12



9 Symbolic Derivation of Approximate Algorithms

We want to give an illustration how the properties of combinatory operations can be used
to derive symbolically approximative algorithms. The goal is to compute approximative
solutions of linear differential equations, which can be represented in closed-form by using
recursion operators. Although the idea of power-series plays in the following a central role,
we have to point out, that the algorithm not only gives the correct solution up to a given
order, but also gives inclusions of the solution in form of function intervals. This means
the algorithm computes a substantial additional amount of information, which is especially
useful to obtain verified bounds on the solution. Similar techniques play a role in numerical
computations, see e.g., [Weissinger, 1988] for inclusion methods for differential equations.

We consider the case of a regular, linear, homogenous differential equation over the real
numbers with polynomial coefficients, which can be written in the form

L) = 9™ + apor () g™ D 4 b an(0) x Y + aole) %y = 0.

It is a well known fact that the solution of such an equation is analytic in a neighborhood of
any point. Furthermore the coefficients of the power-series expansion of the analytic function
are computable by a polynomial recursion. We will use this to construct a combinatory
solution of the differential equation, in the form of a monotone increasing and recursively
computed chain of approximations of the solution.

First we give the recursion for computing the power-series expansion in a way, that is espe-
cially suited for our purposes. Let L°(y) be L(y) written in expanded form, i.e., the derivatives
y() are distributed over the polynomials a;(¢). T Then substitute every monomial of the form

cx Py by e yg_l)_(i_m)_k,

where ¢ is a constant coefficient and ¥, ... are new variables. The y, will turn out to be the
power-series of the solution truncated at the n-th power. This substitution gives an operator

L(ynv .. '73/7%—15)7
where
t=_ max deg(a;)— (1 —m).
1=1,...,m—1
We make the ansatz
Ynt1l = Yn + Un, U, = by 0", b, constant, (1)

for the recursion and assume that

L(Yns- oy Yn—t) = 0. (2)

Note that z(y, ..oy) = L(y) = L(y) and

L(y,...,y) = L(y).

"This means that L(y) = L*(y) but L(y) # L*(y), where = denotes syntactic equivalence. This will be of
importance in the combinatory embedding later.

13



If we substitute in L according to (1) and use the fact that L is linear ;, the equation (2) is
satisfied iff

E(un, ey Up—y) = 0.

This implies that the u, satisfy a condition of the form
i—1 '
Up = sz(n) * 0"k Uy,
=0

where p;(n) are polynomials in n. This gives the desired recursive computation of y,. The
starting values wg,...,u;—1 have to be determined according to the initial values of the
differential equation.

Up to now we have only reformulated well known facts. The crucial step now is to make a
combinatory ansatz. We want to recursively compute an increasing chain of approximations
X, of the form

t
X = Ynot +VI(R) * thpey 4+ oo+ Vi(0) * ey = Yt + Z Vi(n) * wpq, (3)

=1

where V;(n) are combinators with the property const(@) € V;(n). We substitute this ansatz
into L and then use the following combinatory laws which follow from the properties given
for internal combinators (C' is a constant combinator, i.e., const(@) € C'):

(X+Y)Y=X"4Y", (CxX)=C+x X', Cx X +C+xYLCCOx(X+Y).

Using linearity in L we get

L(Xpo oy Xpt) = L(Ynetseoos Yneot) + LOVI(R) % ey oo, Vi(0) 5 thp—gq ) + . .
+L(Vi(n) * gy ..oy Vi(n) * o)
C Vi(n)* L(up—1,-+stn—g) + ... Vi(n) * L(wp—g—1,. .., Un—2t) = 0.

If we assume that the X,, are a monotone increasing chain then we may conclude the following
by using continuity.

|| Z(Xno o Xom) = LO| | Xooooon | X)) = L°(| ] X0) 0. (4)

n€IN nelN nelN nelN

Observe how we made use of the syntactical equivalence of E(y, ...,y) and L¢(y), such that
no weakening occurred in this step. Hence (4) implies that, if L°(| ] oy X, ) is convergent in
the sense that two elements satisfying all formulas contained in this combinator are arbitrarily
close, then | |, oy X» is a unique solution.

Now we want to investigate under which circumstances the sequence X, is a chain. This will
also make clear why the ansatz for X,, was chosen exactly as in (3). To do this we make the
assumption that we are only interested in the solution on a certain interval C' = {a < @ < b},
where —1 < a < b < 1. This will allow us to use the inclusion C C ¢*. Then we get
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t—1

Xot1 = Yn—t41 + Z Vigr(n) * wpy

1=0
t—1
= Yn—t T Up—¢ + Z Vigr(n) * wpy
1=0
) t—1
= Yn— t+ Up— t‘I’Vl sz *un—i*L2+Z%+l(n)*un—i
=1

= yn—t‘|’un—t*(1+vl( )*pt *L ‘|‘Zun 2* 2-|-1 )‘I'Vl(n)*pi(n)*ﬂ)

J Yot + tUn—y ¥ (1 + Vi(n) * pi(n Zun ik (Viga(n) + Vi(n) * pi(n) x C)
The X, form a chain if the last line is an approximation of
i
Xn = Ynot + Vi) xup1 + ..o+ Vi) * Uy = Yny + ZVZ(TL) * Up_j.
=1
This is the case if the following system of inclusions is satisfied.

Viln — 1)
Viln — 1)

14+ Vi(n)*p(n)«C

C
C Vipiin)+Vin)*pi(n)+xC, i=1,...,t— 1.

These inclusions are satisfied if the corresponding equations are satisfied. The corresponding
system of equations looks like a linear system of equations. In fact if we assume that C is
a real number and the V; are independent of n we have a linear system of ¢ equations in ¢
unknowns, which (in general) ® is nondegenerate. We leave it as an open question whether
the combinatory system is solvable in general for any linear differential equation, although
this seems to be very likely following the above arguments.

We illustrate the algorithm for a concrete example which was computed by using mathematica.
Take the differential equation

vy +ary=0,9(0) =1, y(0)=1, y'(0) = 2.
The recursion is computed as

4 2 2
j ul-4 + n] 2 j ul-2 + n] j n ul-2 + n]
uln] > -(———-———————— ) b e -
2 3 2 3 2 3
2n-3n +n 2n-3n +n 2n-3n +n

The equation to be satisfied are

81t is easy to compute in this case the determinant and to see that only for exceptional values of C and n
the system degenerates.
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{v[2, n] == V[1, -1 + n],

Int[-1, 0] V[1, nl
D + V[3, n] == V[2, -1 + n], V[4, n] == V[3, -1 + n],

> 1+ ———————— == V[4, -1 + nl}
(-2 +n) (-1 +n)n

One solution of this system is
V[1,n_]:=Int[0,1];
V[2,n_]:=Int[0,1];

VI3,n_]:=Int[1-1/(n+2)/(n+1)/n,1];
V[4,n_]:=Int[1-1/(n+1)/(n-1)/n,1];

The first few iterates are then as follows.

3 1 2 5 23
X[3] =J Int[-(-), 0] +J 1Int[0, 1] + Int[-, 11 + J Int[--, 1]
6 6 24
3 1 4 1 23 2 59
X4l =1+7J Int[-(-), 0] +J Int[-(-), 0] + J Int[--, 1] + J Int[--, 1]
6 8 24 60
3 1 119 4 1 5 1
X[(61] =1+J+J Intl-(-), -(-—-)1 + J 1Int[-(-), 01 + J Int[-(---), 0] +
6 720 8 120
2 3 1 119 4 1 209
X[61] =1+J+J +J Intl-(-), -(-—=)1 +J Intl-(-), -(----)] +
6 720 8 1680
5 1 6 1
> J Int[-(---), 0] +J 1Int[-(---), 0]
120 240
3
2 J 4 1 209 5 1 67
X[7] =1+J3J+J --—+7J Intl-(-), -(——=)1 + J Int[-(---), -(----)] +
6 8 1680 120 8064
6 1 7 1
> J Int[-(---), 0] + J 1Imntl[0, —-——-]
240 1008

Note that the iterates are monotone increasing combinators and how the sizes of the intervals

shrink.

16



10 Conclusion

We have presented an algebraic approach to deal with approximate computation. This allows
us to use the qualitative properties of approximations in an algebraic computing environment.
Additionally this approach includes other important concepts for computing in analysis, like
conditional functions, infinite recursion and mechanisms for exception handling. The quan-
titative properties of approximation, which lead to questions of convergence and complexity,
are part of ongoing work [Aberer & Codenotti, 1992], and are important steps toward further
integration of concepts from numerical and symbolic computation.
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