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Abstract:

Atomistic Molecular Dynamics and Lagrangian Continuum Mechanics

can be very similarly adapted to massively-parallel computers. Millions of
degrees of freedom can be treated. The two complementary approaches,
microscopic and macroscopic, are being applied to increasingly realistic
flows of fluids and solids. The two approaches can also be combined in a

hybrid simulation scheme. Hybrids combine the ftmdamental constitutive
advantage of atomswith the size advantage of the continuum picture.

1. Introduction

The computer revolution is rapidly progressing from millions of
degrees of freedom to billions, and from gigaflops to teraflops. The impact
of this ever-faster ever-cheaper computational power on physics and
materials science is both exciting and unpredictable. Certainly we will
have access to more realism and understanding, and to more detail in
simulation. The consequences strain the imagination.

These gains are being achieved through parallelism in computation, the
subject of this Conference. Parallel computers do best with problems
which can be partitioned into weakly-interacting parts. Nodal
descriptions of these parts are then assigned to individual processors.
With more programming effort, the assignment of parts to processors can
be made dynamically, redistributing coordinates, velocities, and energies
as the nodes move. Again, with more effort, "Load Balancing" can be
achieved by transferring work from busy processors to their less-busy

neighbors. Even in the simplest case it is necessary to communicate at least
some positions and velocities between neighboring processors, so as to
calculate the accelerations. The time involved in such "Message-Passing"
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needs to be small compared to the simulation time steps. At the moment,
the hardware limits imposed on this parallel simulation approach are
changing much more rapidly than the software can follow. As a result, it is
a frustrating task to remain at the state of the art. It is much simpler to use
the best readily-available commercial equipment.

With the help of Tony De Groot, who is in the process of building yet
another massively-parallel machine, this one with 256 transputers, and my
wife, Carol Hoover, who has been working on the 512-node CM5
Connection Machine at Minnesota for a year, I am in the fortunate

position of seeing the best in both the home-built and commercial worlds of
computer hardware. Tim Pierce, a student in our Department, who is also
a fulltime programmer at the 1,Iational Energy Research Supercomputer
Center, has provided enthusiastic help and insight in implementing and
visualizing new approaches to physical problems. My talk represents the
recent efforts of ali these colleagues, and so it is typical, though on a small
scale, of the trend away from individual efforts and toward cooperating

research groups.
The headlong advances in hardware are a clich6. But caution is

desirable because more is not necessarily better. Atomisfic force models

proliferate and undergo ad hoc adjustment. Continuum "Failure Models"
for simulations of elastic-plastic flow and fracture are a small industry. It
is difficult, in both these typical cases, to have confidence in the predictive

ability of the models. They inspire confidence only when used as
interpolation clevices: Extrapolation to new problems is risky.

Computers need to be used wisely. Cost-effective projects are likely to
be neither so grandiose nor so predictable in their outcomes as are the so-

called "Grand Challenges ''m the genome, weather, and proton-mass

problems. Lorenz' "Butterfly-Effect" weather model, Feigenba_,_m's
logistic map studies, and Mandelbrot's complex-plane version of that
map, have all had impacts completely out of proportion to the small-scale
calculations leading to their discoveries. As computing machines evolve,
their enhanced capacity and speed can be used for a more comprehensive
treatment of flow and failure properties in which strengths are exploited
and weaknesses avoided.
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2. Equations of Motion
Dynamics means motion. Newton's Second Law of motion can be

applied equally well to individual atomistic masses or to the lumped
continuum mass densities associated with individual nodes. In either case,

the simplest way to generate approximate solutions of the equations of
motion is to iterate Stoermer's "leapfrog" recipe through a series of

timesteps separated by intervals of length dt:

{ [qt+dt- 2qt + qt-dt] = at(dt) 2 }.

Here past, present, and future are the three times {t-dt,t,t+dt}. Future
coordinate sets {qt+dt} can be calculated from the present and past ones,
{qt-dt} and {qt},by using present accelerations {at}. It is straightforward to

generalize Stoermer's algorithm to include the velocity-dependent driving
and constraint forces required in nonequilibrium simulations.

Stoermer's algorithm has several nice features. It is patently time-
reversible. Yost-dda showed that there is a hidden and significant

Hamiltonian basis underlying this simple reversible algorithm. The finite-
difference solutions of Stoermer's equations, using forces from a
Hamiltonian H, trace out a sequence of phase points {q,p}. These same
phase points lie on the exact continuous trajectory generated by a slightly-

different perturbed Hamiltonian, H + AH, where AH is linear in the

timestep dt. This Hamiltonian basis for Stoermer's algorithm accounts for
its excellent stability properties.

In addition, for either atomistic or continuum simulations, the

Stoermer leapfrog algorithm minimizes storage requirements. In
continuum mechanics the largest possible timestep is typically used, so as
to minimize spurious numerical diffusion. In atomistic mechanics a
smaller, more conservative, choice is typical. If more thorough, or more
speculative, investigations require it, even higher accuracy can be obtained
from fourth-order integrators.

In the continuum case the degrees of freedom at locations {r}have
associated with them ali the variables considered by molecular dynamics:
density (or mass), velocity, and energy. But in addition the pressure tensor
and heat flux vector must be known in order to evaluate the time evolution

of a continuum system.
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3. Work, Heat, and Boundary Conditions
In the atomistic case the flows of momentum and energy are local

mechanical variables. By measuring these, relative to the local stream

velocity, the pressure tensor and heat flux vector can be identified. Thus,
the dynamical aspect of the First Law of Thermodynamics, usually written

dE -- dQ - dW, can be made more-explicit:

dE/dt = dQ({Sp})/dt- dW({_q})/dt.

As indicated here, the two types of power associated with (i) extracting
heat Q and (ii) doing work W involve momentum and coordinate changes,
respectively. About ten years ago the thermal part of thermodynamic
energy flows was introduced into the differential equations of
nonequilibrium molecular dynamics in a novel way. This thermostatted
molecular dynamics incorporated frictional constraint forces,

{FcoNSTRAINT ------ _p} ;

_AUSS-- --d_/dt/(2K) or _NOS_-HOOVER-------J[(K/Ko) - 1]dt/z2.

_({q}) and K({p}) are the potential and kinetic energies. The friction

coefficient(s) {_}obey one of the two feedback equations ("differential

control", based on Gauss' Principle of Least Constraint, or Nos6-Hoover

"integral control") and thereby control the temperature(s) of selected
degrees of freedom. Similar feedback ideas could be used to stabilize the
zero-point energies associated with individual molecular degrees of
freedom, so as better to describe quantum systems.

The external heat sources or sinks represented by either of these

reversible friction coefficients {_}undergo entropy changes, dSEXTERNAL/dt

= d(Q/T)/dt, where T is the temperature associated with a particular
source or sink, and the sum of these changes can be proved to satisfy the

Second Law of Thermodynamics. Through either the Gauss or the Nos6-
Hoover feedback equations of motion, the time-averaged values of the

friction coefficients {<_>} can also be directly related to the spectrum of

Lyapunov exponents {M. These relationships are:
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<dSExTERNAL/dt> = <Y'_> _ <--_,> >__0,

where the equals sign corresponds to the case where the net heat transfer
vanishes. Though the individual friction coefficients fluctuate, and can be

either positive or negative, the time-reversible microscopic equations of
motion containing them have stable long-time solutions only in the case
that the time-averaged friction coefficient sum is non-negative and the

Lyapunov-exponent sum is negative. This inequality is the mechanical
loan of the Second Law of Thermodynamics. In geometrical terms the

inequality states that, over time, phase-space volumes must shrink. Long-
term growth, in a stationary state, would mean illegal instability.

The signatures of nonequilibrium states, either stationary or time-
periodic, are the multifractal strange attractors which they generate in
phase space. Figure I shows such objects for five small few-body systems.

Figure 1. Two-and Three-Dimensional Poincar6 sections of multifractal

strange attractors with <_> - <-_k> >__0. These time-reversible
distributions were all generated with time-reversible nonequilibrium
equations of motion. For detailed references, see "Nonequilibrium
Molecular Dynamics: the First 25 Years", Physica A 194, 450 (1993).
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It is still an unsolved problem how to describe the topological
"lumpiness" of these objects. For larger many-body systems a geometric
description of phase-space attractors is thoroughly hopeless. Instead, a
simpler time-averaged description of the local rates of dissipation can be
expressed in terms of the Lyapunov spectrum. The spectrum of Lyapunov
exponents quantifies the direction-dependent stability of the underlying
phase space flow. Each exponent describes the time-averaged rate of
growth, or decay, of one of the principal axes of a comoving and
corotating infinitestimal phase-space hypereUipsoid.

Because dissipation always corresponds to overall decay, the sum of
the Lyapunov exponents is necessarily negative. Thus a comoving phase-
space volume must shrink, and eventually vanish, as time goes on. On the
other hand, the steady-state or time-periodic strange attractor, to which
the motion is restricted once transients have decayed, must be stationary.

The apparent paradox of "stationary shrinkage" can be resolved by no_.ng
that the zero-volume attractor has a reduced dimension [the "information

dimension"]. Kaplan and Yorke suggested estima_.ng this attractor
dimension by finding the number of Lyapunov exponents in the spectnm_
required for their sum to vanish [corresponding to a topological object
which neither grows nor shrinks]. Information dimensions have been
estimated for nonequilibrium systems of up to a few hundred particles.

Today, just as in the early days of simulation foUowing the Second
World War, a 100-hour computer calculation represents a reasonable
upper limit on one's attention span. In such a calculation today we caw.
calculate only a few hundred Lyapunov exponents. A complete spectr_m_
of N exponents requires following N additional trajectories, each
described by N ordinary differential equations of motion. The work
involved typically varies (at least) as the cube of the number of phase-
space coordinates N. My work with Harald Posch on systems with up to a
few hundred degrees of freedom established that losses in dimension
(embedding dimension less information dimension) can be substantial. The
problem of characterizing this loss is one which will become much simpler
with the next generation of parallel computers.

In the continuum case the proper treatment of material boundaries is
less natural than in the atomistic case. Surface energy, essential to

understanding failure, is most often ignored in numerical continuum
treatments. The usual finite-element or finite-difference treatments rely
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on spatial grids, either "Eu!erian" grids, fixed in space, or comoving
"Lagrangian" grids, fixed in the material and following the flow.

To simplify intercomparisons between microscopic and macroscopic
simulations, and to facilitate hybrid simulations, we have chosen here to
concentrate on a "smoothed" or "smeared-out" free-Lagrange form of
continuum mechanics called "Smoothed-Particle Hydrodynamics". This

approach, invented by Lucy and Monaghan about 20 years ago, is nearly
isomorphic to molecular dynamics, and so provides a natural extension of

that microscopic approach. The equations of motion in smoothed-particle
hydrodynamics incorporate accelerations depending upon the particle
stress tensors {c_}and on the gradients of normalized weighting functions

{w(rij)}, which represent the mass distribution in the vicinity of each
particle. We will describe this approach in more detail in Section 5.

4. Molecular Dynamics

In atomistic simulations, the goal of realism, quantitative agreement
with experiment, remains elusive. After all, there is no practical approach
to a nonequilibrium quantum many-body problem. But the still-worthy
goal of understanding the mechanisms underlying classical nonequilibrium
processes is now firmly within our grasp. Simulations of flows in channels
with walls, of inelastic collisions between large bodies, of plastic flow with
rapid deformation, and of shock deformation are becoming commonplace.

With CRAYl-speed work stations, simulations involving 10,000 atoms
are routinely feasible. In the 40-hour length of what most people consider
a "long calculation" such a system can be followed through several sound
traversal times. By linking together 1000 fast processors there is no
difficulty in treating several million atoms, for a few specimen simulations.
The Los Alamos CM5 "Connection Machine" has recently been used to
provide timing tests for systems of as many as 108 individual atoms.

Figures 2 and 3 illustrate the simulated plastic deformation of solid
silicon. The workpiece was originally a perfect cube, containing 373,248
silicon atoms. It was deformed by pressing a tetrahedral indentor into the
workpiece. Though the microscopic details of the deformation are
complicated, the energy relationships for the deforming silicon turn out to

be relatively simple, justifying both the microscopic mechanistic approach
and the macroscopic thermodynamic description of the results.



Figure 2. Final configuration of 373,248 silicon atoms after indentation.
The temperature, maintained by a single Nos6-Hoover thermostat, is 15%
of melting. The indentation velocity is about 1/3 the sound velocity.

Figure 3. The initial positions of those atoms which interact with the
indentor in Figure 2 are st_own as a stere() pair. The images have been
reversed, so that they need t(_be viewed witl_ classed eyes.
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Figure 4. Variation of the work of indentation W with the tetrahedral
indentation volume V for crystals of 373,248 silicon atoms. The energy,
length, and mass units are 50 kilocalories/mole, 0.21 nanometers, and the
mass of a silicon atom, respectively. The intercept is proportional to
surface energy, while the slope is proportional to the plastic yield strength.
C = Cold and W = Warm correspond to temperatures of about 15% and
45% of the melting temperature. The smooth-indentor speeds, with unity
corresponding to 2.7 kilometers/second, are given.

In Figure 4 the macroscopic work of deformation W is displayed as a
function of indentation volume V, so as to separate the bulk and surface
contributions to the energy. For a tetrahedral indentor of height h, the
volume of indentation V is (31/2/8)h 3. We have separated the surface
contributions (= h2) from the bulk contributions (= h3) by plotting W/V2/3
as a function of Vl/3. The intercept then provides a surface energy
estimate while the slope provides the yield strength. Our work on a
variety of such systems sho:vs that slowing the simulated indentation rate,
to about one-tenth the sound speed, and increasing the workpiece size, to
10,000 atoms, provides very reasonable estimates of the quasistatic large-
crystal yield strength, without much further sensitivity to speed or size.

Reproducing the rate- and temperature-dependence of the shapes of
indentation pits is a challenging goal for continuum mechanics. To make
headway on this problem with conventional continuum mechanics requires
that a failure criterion be specified. The criterion allows computational
nodes to divide, introducing new free surfaces within the material.
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With the use of work stations it is possible to analyze such
nonequilibrium atomistic flows for information required for
complementary continuum simulations. Where do the new surfaces come
from in indentation? This question can be answered by coloring particles in
the indented crystal according to their depth, but at positions
corresponding to the undeforme_i crystal. Figure 3 shows those atoms
destined to become surface atoms avring the course of the indentation

process. Detailed knowledge of this ki_Ld is vital to constructing faitlfful
continuum, models for failure.

5. Smoothed Particle Hydrodynamics
Smoothed particle hydrodynamics converts the partial differential

equations of continuum mechanics into _rdinary differential equations for
particles. The resulting particle motion equations have nearly the same
form as the molecular equations. The "particles" or nodes, each with mass
m, can be imagined to be d,'_tributed ("smoothed") over space, with a
weighting function w. The smoothed-particle equation of motion for the
ith particle is a sum of pair interactions with nearby particles {j}:

{ (rt+dt- 2ft + rt-dt)i - m(dt)2_Viwij'[(o/p2)i + (c/p2)j ] },

where o and p are local values of the stress tensor and mass density,

and where the pairwise-additive weighting function w(rij) is
normalized and short-ranged. A simple choice for w, a caricature of
a Gaussian weighting function, but with two vanishing derivatives
at a maximum cutoff radius (here 1, for simplicity) is Lucy's:

w(r) o_(1 + 3r)(1 - r)3, for r < 1 .

. In validating the smoothed-particle approach it is natural to begin by
checking that the linear hydrodynamic laws are satisfied. We have first to
establish that shear flow and heat flow are correctly treated by the model.
We did so by carrying out simple simulations of the types shown in Figure
5. The top and bottom boundaries are defined by constrained rows of

smoothed particles, with fixed temperature and velocity. If the density of
these particles is sufficiently high, the resulting barriers resemble Ashurst's
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"fluid wall" boundaries. The boundaries act as sources and sinks of

momentum and energy, while preventing an outflux of mass. To prevent
the occasional escape of bulk particles through the boundary, a Maxwell

Demon reflects the normal velocity of any particle reaching the boundary.
We built our confidence in the smoothed-particle method by verifying that
the viscous shear stress and linear heat flux expected between walls of
different temperatures and velocities were correctly reproduced, with
statistical uncertainties of no more than a few percent.

4 _ ,a •

A

• • '_ & _' • b. W • • 4

• • _- &

Figure 5 '• , _ _ _ _ _ _-_ _-_,_ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _
l

Reservoirs, with temperature and average velocity fixed, are modelled by
the constant-velocity constant-temperature smoothed particles.

Most applications of smoothed-particle hydrodynamics have been
astrophysical. These are hard to validate because no independent
trustworthy solutions are available. Because we wish to simulate
relatively simple laboratory flows of fluids and solids we have chosen to
investigate a simpler fluid flow problem, the Rayleigh-B6nard instability.
This problem is two-dimensional, which simplifies visualization, and has
previously been studied both with molecular dynamics and with

conventional continuum methods. The three-equation caricature of this

problem generates Lorenz' familiar "butterfly" attractor. Note that the
smoothed-particle equations of motion reduce exactly to those of
molecular dynamics [with pair potential w(r)] in the special case that the

stress tensor is replaced by a hydrostatic stress corresponding to a two-
dimensional isentropic ideal gas with _ _ _p2
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The nonlinear Rayleigh-B6nard problem combines all three kinds of
hydrodynamic flows: mass, momentum, and energy. In Rayleigh-B6nard
flow a compressible fluid, in a gravitational field, is simultaneously heated
from below and cooled from above. Two of the many earlier approaches

to this problem, one atomistic and the other continuum, are shown in
Figures 6 and 7. Snapshots from Rapaport's atomistic Rayleigh-B6nard
simulation are shown in Figure 6. The system, hot on the bottom and cold
on the top, transports heat with convective rolls. Rapaport's side walls
are insulating. Figure 7 is a typical snapshot from Goldhirsch, Pelz, and
Orszag's continuum simulation of Rayleigh-B6nard flow, based on a
different boundary condition, with the temperature of the side walls
varying linearly from the top to the bottom temperature.

In preparation for hybrid simulations combining the atomistic and
continuum approaches, we have simulated this unstable Rayleigh-B6nard
flow too, using a variety of boundary conditions. The constitutive model
illustrated here is an ideal gas (wi_h constant heat conductivity and shear
viscosity). See Figures 8 and 9 for some or our sample results, not far from
the 776-particle threshhold for convective transport. Our comparisons so
far suggest that our particle description of the flow is inherently more
chaotic than are the more-traditional Eulerian approaches.

In our first efforts to replicate Rayleigh- B6nard flow we used Lucy's
weight function, and noticed an unphysical tendency for the smoothed
particles to clump together. The model's bland acceptance of high-density

collapse occurs because the gradient of the weighting function, which
contributes to the repulsive force between the particles, vanishes (linearly)

as r approaches zero. This tendency toward collapse can be eliminated by
using an even simpler form for the weighting function (with a repulsive

cusp at the origin): w(r) _ (1 - r)3. The range of the weighting function is

important too. In two dimensions our results for simulations using several
hundred smoothed particles suggest that an interaction range covering
about a dozen particles is optimum.
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Figure 8. Smoothed-particle Hydrodynamic simulation of Rayleigh-
B_nard flow for an ideal gas at unit mean density. The dimensionless

analog of the Rayleigh number, gh3/(ric), where v and lcare the kinematic

viscosity and thermal diffusivity, is 25 x 106. 200 of the 776 smoothed
particles are fixed, to define the four boundaries. The smoothed velocities
{<v>} of the individual particles are shown as arrows.
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Figure 9. Smoothed-particle Hydrodynamic simulations of Rayleigh-

B_nard flow. See Figure 7. Here gh3/(v_:) is near the apparent convection

threshhold, 6 x 106. The snapshots are for three different simulations, with
weighting function ranges of 2.0(left), 2.5(center), and 3.0(right).
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6. Surfaces, Failure, and Hybrid Models
Failure, whether of a liquid or a solid, involves the energy cost of bond

breaking. New surfaces form through microscopic and chaotic irreversible
processes. Despite the chaos, a detailed atomistic description of such a
failure process is a straightforward application of Newton's motion
equations. No special boundary conditions or constitutive assumptions are
required. Figure 10 shows the breakup of a hot liquid drop.

Throughout any such failure process the forces on each atom follow

from the same continuous force law. In the solid-phase deformation
shown in Figures 2 and 3, our 373,248-atom crystal of indented silicon did
not crack, even though solid silicon is normally a brittle material. The
ductile behavior results because the strain energy, proportional to the
solid's volume, does not exceed the surface energy necessary to nucleate a
crack. Crack energy varies as area, so that large enough specimens do

crack. The ductile small-scale behavior makes it possible to machine

normally-brittle materials provided that sufficiently small tools (typically
microscale single-point diamonds) are nsed.

° .

t* = t _/"_m[o = 13.7. t." = .33"0. .
,

, • . _.,..,.
"

• • 100o .1:1

t* = 71.4 t* = 109.8
%_ "'.," ,¢ ..,,

• . . . : . . _,. r _,. "'.',.._'. "

:: . ",. ".,, " ;_ i : • . _ • .: ;: . .

. ...,. "j.:;... , .*" • _,_ _ .'..

.". . ' .

100o
t---q

Figure 10. Fragmentation of a (two-dimensional) liquid drop of 14,491
liquid atoms, as described by Lennard-Jones' potential. From Blink's 1984
Ph. D. thesis work at the University of California at Davis/Livermore.
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With a failure strain of order 1%, the elastic energy stored in a solid

workpiece volume V is approximately 0.0001BV, where B is the bulk
modulus. The modulus itself is an energy density, of order e/c3, where e

and c_describe the strength and range of a nearest-neighbor interaction.
When 0.0001Ve/o 3 exceeds the surface energy, (_/(52)V 2/3, brittle fracture
occurs. For fracture (V/c_3) must be of order 1012, a bit bigger than the

biggest feasible simulations. Thus a quantitative study of the limits of
ductile machining, including fracture, requires a supporting substrate for
the atomistic indented region in which to store the failure energy. The
continuum substrate needs to join smoothly to the atomistic region, and to

transmit phonons and heat, without excessive scattering at the boundary.
From the continuum perspective, failure is complicated by phase

discontinuities and by surface tension. There is no problem in treating
those parts of a solid remote from the indentor. For most of the workpiece
material Hooke's Law should do. But whenever fracture occurs, an

atomistic separation occurs, with a part of the stored energy of the solid
localized on a fresh surface, and with the recoil of the fracture surfaces

depending sensitively on unstable multiple-valued regions of the phase
diagram.. It is therefore logical to combine the accurate atomistic
description of failure, in the region of the indentor, with the more efficient
continuum model for the remote substrate. Such a description can be

facilitated by spmxning the junction with a "hybrid" model combining
atoms with Lagrangian zones. This is a promising research area.

We have already _tudied, in our 1992 Computers in Physics article, one

approach to a hybrid inodel, filling some Lagrangian zones with atoms
while treating others as continua. The impulses due to atomistic collisions
with a zone wall (treated by constructing image particles on the other side
of that wall) can then be summed up and used to accelerate those
continuum nodes contiguous to that wall.

An aesthetically appealing method for joining the atomistic and
continuum models is to use a particle description for them both. The
enhanced continuum fluctuations in this approach resemble the thermal
motion of an atomistic system. In the next Section we describe such an

approach, in which the atomistic and continuum descriptions [ 9th use
particles. It is to be expected that, in the absence of thermal motion, both
descriptions provide exactly the same adiabatic response to accelerations.
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7. Simple Hybrid Model
The simplest hybrid atomistic+smoothed-particle description has a

fixed weighting function w(r), varying neither in time nor in space.
Provided that the masses of the smoothed particles are the same as those
of the atoms we then have a variety of ad hoc recipes which could be used

. to accelerate the atomic masses and the continuum nodes. The weighting

function itself appears to be crucial to the success of the smoothed-particle
• approach. How should it be chosen? A choice based on reproducing the

pair distribution function is a natural one. Thus the fundamental
statistical mechanics of the correspondence between the atomistic and

smoothed-particle distribution functions is well worth pursuing.

Even with an appropriate weight function selected, the hybrid
dynamics is not entirely straightforward. In order to use the current
information {r,v,e} for the atoms and the nodes to calculate the time
derivatives {r,v,e }, stress, smoothed density and velocity, and the velocity

gradient need to be estimated. In the mixed case this means estimating
values for the tensors ((_/p2) and Vv for an atomistic particle. This can be

done adding the local contributions to the stress tensor and density in the
neighborhood of the particle using the weight function w. Once this
averaging has been completed, the pair contributions to the accelerations
can be based on a coupling parameter _,:

aij =-(_,/m)Vqbij + (1- _,)mViwij'[(r_/p2)i + ((_/92)j].

It is natural to choose the values {0,1/2,1} for the three possible types of ij
combinations. A successful hybridization of the two approaches must

reproduce not only mechanical and thermal equilibria; it must also describe
the linear transport of momentum and energy consistently.

• For the atomistic part of these simulations we chose a very simple pair
potential, with three vanishing derivatives at the cutoff, r = 1:

_(r) = 100(1 - r2)4 .

In the smoothed-particle part of the simulations we use the constitutive
model measured for this force law, including the transport coefficients 11

and K. For this purpose, a limited portion of the energy-density phase
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diagram was covered, using 100 particles. The specific heat and pressure-
volume-energy constitutive equations could then be expressed as low-
order polynomials in density and energy.

The smoothed particle idea has such flexibility that combinations of it
with other forms of mechanics suffer from excessive richness.

Nevertheless, the promise of hybrid simulations demands an exploration
of this uncharted but promising territory. At the time of this writing (June,
1993) we have not completed hybrid simulations of shear flows and heat
flows. I expect to describe such simulations in my talk in October.

Much still remains to be done in extending the range of applications for

smoothed particle hydrodynamics. One particularly promising application
of the smoothed-particle approach is the study of mesoscopic

hydrodynamic fluctuations. The method is ideal for treating fluctuations
on intermediate length and time scales.

8. Summa_
With massively-parallel teraflop computers on the near horizon the

transition from millions to billions of degrees of freedom is quite near.

This development suggests connecting the microscopic models with more
macroscopic approaches, so as to combine microscopic realism with
macroscopic size in dealing with real problems.
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