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WITH BOUNDED MIND CHANGES 
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I<yushu University 39, I<asuga 816, Japan 

Abstract. In this paper, we deal wit11 inductive inference for a class of recursive 
languages with a bounded number of mind changes. We introduce an n-bounded finite 
tell-tale and a pair of n-bounded finite tell- tales of a language, and present a necessary 
and sufficient condition for a class to  be inferable with bounded mind changes, when 
the equivalence of any two languages in the class is effectively decidable. We also show 
that the inferability of a class from positive data strictly increases, when the allowed 
number of mind changes increases. In his previous paper, Mukouchi gave necessary 
and sufficient conditioils for a class of recursive languages to  be finitely identifiable, 
that is, to be inferable without any mind changes from positive or complete data. 
The results we present in this paper are natural extensions of the above results. 

1. Introduction 

Inductive inference is a process of hypothesizing a general rule from examples. As a correct 
inference criterion for inductive inference of formal languages and models of logic pro- 
gramming, we have mainly used Gold's identification in the limit[5]. In this criterion, an 
inference machine is allowed to change its guesses finitely many times, and the guesses are 
required to converge to a correct guess. Angluin[l], Wright[ll] and Sato&Umayahara[G] 
discussed conditions for a class of formal languages to be inferable from positive data. 
Shinohara[7, 81 also discussed inductive inferability from positive data in more general 
setting and exhibited that inductive inference from positive data is much more powerful 
than it has been believed. 

Considering ordinary learning process of human beings, the criterion of identification 
in the limit seems to be natural. However, we can not decide in general whether a 
sequence of guesses from an inference machine converges or not at a certain time, and the 
results of the inference necessarily involve some risks. In his previous paper[lO], Mukouchi 
ga4ve necessary and sufficient conditions for a cla,ss of recursive languages to be finitely 
identifiable, that is, to be inferable without any mind changes from positive or complete 
data. We use the phrase 'mind change' to mean that an inference machine changes its 
guess. 
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In this paper, we deal with inductive inference for a class of recursive languages with 
a bounded number of mind changes. The results we present in this paper are natural 
extensions of the above results concerning finite identification. 

Note that Case&Smith[3] discussed inductive inference of a class of recursive functions 
from view point of anomalies and mind changes, and showed that there is a natural 
hierarchy. Case&Lynes[4] also showed that an anomaly hierarchy exists even in case of a 
class of recursive languages. 

In Section 2, we prepare some necessary concepts for our discussions. We also recall the 
results on finite identification from positive and complete data. In Section 3, we discuss 
conditions for a class to be inferable with bounded mind changes from positive data. 
Angluin[l] introduced the notion of a finite tell-tale of a language to discuss inferability 
of formal languages from positive data, and showed that a class is inferable from positive 
data if and only if there is a recursive procedure to enumerate all elements in the finite 
tell-tale of any language of the class. In this paper, we introduce an n-bounded finite 
tell-tale of a language, and present a necessary and sufficient condition for a class to 
be inferable with bounded mind changes, when the equivalence of any two languages in 
the class is effectively decidable. We also exhibit a concrete class of recursive languages 
which is inferable with at most n mind changes but not inferable with at most n - 1 mind 
changes, and show that the inferability of a class strictly increases, when the allowed 
number of mind changes increases. Case&Smith[3] showed similar results for a class of 
recursive functions. In Section 4, we give a necessary and sufficient condition for a class 
to be inferable with bounded mind changes f rom complete data,  which is analogous to the 
above condition concerning positive data. 

2. Preliminaries 

Let U be a recursively enumerable set to which we refer as a universal  set.  Then we call 
L U a language. We do not consider the empty language in this paper. 

Defiilitioil 2.1. A cla,ss of languages r = L1, L2, . . is said to be an indexed family of  
recz~rsive languages if there exists a, computable function f : N x U --+ {o, 1) such that 

1, i f w ~ L ; ,  
f ( i ,  w) = 0, otherwise. 

From now 011, we assume a class of languages is an indexed family of recursive languages 
without any notice. 

Definition 2.2. A positive presentat ion of a language L is an infinite sequence wl, w2, . 
of elements of U such that {wl, ~ 2 , .  . -) = L. 

A complete presentat ion of a Ia*nguage L is an infinite sequence (wl,tl),(w2,t2),. . . of 
e lementso fUx{O,1)such tha t  {w; It; = 1 , i  2 1) = Land{wj I t j  = O ,  j > 1) = U - L .  

Positive or complete presentations are denoted by a, 6, the finite sequence which consists 
of first n 2 0 data in o by o[n] and the finite set by o(n). 

For a finite sequence o[n] and a sequence 6, the sequence which is obtained by concate- 
nating o[n] with 6 is denoted by o[n] . 6. 



Defiilition 2.3. A n  n-bounded inference machine (abbreviated t o  IMn; n 2 0 or n = *) 
is an effective procedure that requests inputs from time t o  time and produces outputs 
from time t o  time, where i f  n > 0, i t  produces ast most n + 1 outputs, and i f  n = *, it 
produces at most finitely many outputs. 

T h e  outputs produced by the machine are called guesses. 
For a finite sequence ~ [ m ]  = w l , w 2 , .  . .,w,, we denote b y  M(o[m]) the last guess 

produced by  an IMn M whicl~ is successively fed w l ,  wz, . . . , w, on i ts  input requests. 

The inference machines we are dealing with in this paper may not produce a guess after 
reading a datum until requesting a next datum. 

Definition 2.4. A class I' = L1, L 2 ,  . is said t o  be EXn identifiable from positive data 
(resp., complete data) i f  there exists an IMn M satisfying the following ( n  2 0 or n = *): 
For any language Li o f  r and for any positive presentation (resp., complete presentation) 
o o f  L;, the  last guess ic o f  M which is successively fed 0 ' s  data satisfies Lt = L;. 

A class r is said to  be finitely identifiable (resp., identifiable i n  the limit) i f  i t  is EXo 
identifiable (resp., EX, identifiable). 

A class r is also said t o  be E X - T X T ,  identifiable (resp., EX- INF,  identifiable) i f  it 
is EXn identifiable from positive data (resp., complete data). B y  the same notation 
EX-  T X T ,  (resp., EX-I=), we also denote the set o f  the classes that are EX-  T X T ,  
identifiable (resp., EX- INF,  identifiable). 

In this paper, a finite-set-valued function F is said to be computable if there exists an 
effective procedure that produces all elements in F ( x )  and then halts uniformly for any 
argument x. 

Mul~ouchi[lO] presented necessary and sufficient conditions for an indexed family of 
recursive languages to be finitely identifiable. 

Definition 2.5 (Mukouchi[lO]). A set S; is said to  be a dejnite finite tell-tale of Li 
i f  

( I )  S;  is a finite subset o f  Li, and 
(2)  Si c L j  implies L j  = L; for any index j .  

Theorem 2.1 (Mukouchi[lO]). A class r is finitely identifiable from positive data i f  
and only i f  a definite finite tell-tale o f  Li is uniformly computable for any index i ,  that 
is, there exists an effective procedure that on input i produces all elements o f  a definite 
finite tell-tale o f  L; and then halts. 

Definition 2.6 (Mukouchi[lO]) . A language L is said to  be consistent with a pair of 
sets ( T ,  F )  i f  T 2 L and F 5 U - L.  

A pair o f  sets (Ti, F;) is said to  be a pair of definite finite tell-tales of Li i f  
( I )  T, is a, finite subset o f  L;,  
(2)  F, is a finite subset o f  U - Li,  and 
(3)  i f  L j  is consistent with the pasir (Ti, F;) ,  then L j  = Li.  

Theorem 2.2 (Mukouchi[lO]). A class r is finitely identifiable from complete data 
i f  and only i f  a pair o f  definite finite tell- t aies o f  L; is uniformly computable for any index 
2 .  



The following corollary shows a necessary condition for a class to be finitely identifiable. 

Corollary 2.3. I f  a class I' is finitely identifiable from positive or complete data, then 
whether Li = Lj or not is effectively decidable for any indices i, j .  

Proof: Clearly, if I' is finitely identifiable from positive data, then I' is also finitely 
identifiable from complete data. Therefore, it suffices to show the case of complete data. 

Suppose r is finitely identifiable from complete data. Fix arbitrary indices i, j. To 
begin with, compute a pair of definite finite tell-tales of L;, and set it to (T;,Fi). We can 
effectively compute this pair by Theorem 2.2. Then check whether Lj is consistent with 
( F )  We can effectively check this, because T, and Fi are explicitly given finite sets. 
If L j  is not consistent with (Ti, I?;), then we conclude Li f Lj, because Li is consistent 
with (Ti, Fi). Otherwise, we conclude Li = Lj by Definition 2.6. 1 

3. Inductive Inference with Bounded Mind Changes 
from Positive Data 

First of all, we give a necessary condition for a class I' to be EX-TXT, identifiable. 

Proposit ion 3.1. For any 1 ,  2 1, i f  a class I' contains languages Lio , Lil , . . . , Li, such 
that Lio s Lil 5 . . 2 L;,, then I' is not EX-TXT,-l identifiable. 

Proof: Suppose that r contains languages L;,, Li l , .  . . , Lin such that Li0 s Li, 2 . . . 2 Lin 
and that I' is EX-TXT, identifiable by an IM, M.  For simplicity, put Lj = Lij (0 5 j 5 
n). We show that A4 needs to change its guesses more tlia~n n times to identify LL from 
a certain positive presentation of L', . Let aj be an arbitrary positive presentation of L; . 
We recursively define cj and 6, as follows: 
Stage 0: 

Let co := O and So := oo. Goto Stage 1. 

Stage rn(1 5 rn 5 n): 
Let 

c, :=min{c> c,-, / 3 k  s.t. A4(6m-l[c]) = k A  Lk-, = Lk) and 
6, := 6m-l[~m] . a,. 

Such an integer c, exists, because is a positive presentation of L',-, and I' is 
EX- TXT, identifiable by M.  Note that the above 6, becomes a positive presentation 
of L',, because LA-, 5 LA. 
Goto Stage rn + 1. 

Stage n + 1: 
Let 

c,+~ := min{c > c, I 3 k  s.t. M(S,[c]) = k  Lk = Lk}. 

When we feed a positive presentation 6, of Lk successively to M ,  it should output guesses 
after reading cl-th, c2-tli, . . . , ~ , + ~ - t l i  datum, and so it can not identify LL within n mind 
changes. 1 

Before proceeding to the next corollary, we briefly recall a pattern and a pattern lan- 
guage. (For more details, see Angluin[2] or Mukouchi [S]. ) 



Fix a finite alphabet with at least two constant symbols. A pattern is a nonnull finite 
string of constant and variable symbols. The pattern language L ( T )  generated by a 
pattern T is the set of all strings obtained by substituting nonnull strings of constant 
syinbols for the variables of x.  Since two patterns that are identical except for renaming 
of variables generate the same pattern language, we do not distinguish one from the other. 
We can enumerate all patterns recursively and whether w E L(T)  or not for any w and 
T is effectively decidable. Therefore, we can consider the class of pattern languages as 
an indexed family of recursive languages, where the pattern itself is considered to be an 
index. 

Corollary 3.2. For any n 2 0, the class of pattern languages is not EX-TXT, identi- 
fiable. 

P r o o f :  By Proposition 3.1, it suffices to show that there exist patterns xO, T I , .  . . , T ,  such 
that L(ro)  5 L ( x l )  2 - .  . 2 L(x,) for any rn 2 1. 

In fact, let xo = x l x ~ - ~ ~ ~ , , + ~ , x ~  = x lx2 . . . x  ,,,. . . , T ,  = XI. Then L(T;)  is the set of 
all constant strings of length more than 772 - i, and clearly 

Angluin[l] showed that the class of pattern languages is inferable from positive data in 
the limit, that is, it is EX-TXT, idei~tifia~ble. 

Definition 3.1. Let I' = L1, L2,  . . .. A set Si is said to be a 0-bounded  f ini te  tell-tale 
(abbreviated to FTo) in r of Li if Si is a definite finite tell-t ale of Li, that is, 

(I) Si is a finite subset of L;, and 
(2) Si s Lj  implies Lj = L; for any index j. 

A set Si is said to be an n -bounded  finite tell-tale (abbreviated to FT, ; n 2 1) in I' of 
Li if 

(I) Si is a finite subset of Li, and 
(2) if Lj f Li and Si C Lj, then there exist an FTn-l in I' of Lj. 

Intuitively, an FT, in I' of Li is a tell-tale which validates producing the guess i ,  when 
the inference machine is allowed to produce another n - 1 guesses. 

We can easily prove by induction on n that if a certain finite set S is an FT, in I' of 
Li, then S is also an FTn+1 in r of L; ( n  > 0 ) .  

Definition 3.2. An FTo in r of Li is said to be recurrent ly  computable  if a certain 
FTo Si in I' of Li is computable. 

An FT, in I' of Li is said to be recurrently co~nputable ( n  > 1) if 
(I) a certain FTn Si in I' of Li is computable, and 
(2) for any index j ,  if Lj  # Li and Si L j ,  then an FTn-I in r of Lj  is recurrently 

computable. 

An FT, of r is said to be recurrent ly  construct ible  if an FT, in I' of Li is recurrently 
computable for any index i ( n  2 0 ) .  



Lemma 3.3. Suppose whether Li = Lj or not is effectively decidable for any indices 
. . 

2,3.  
For any n 2 0, if a class I' is EX- TX Tn identifiable, then an FT, of I' is recurrently 

constructible. 

Proof: Suppose I' is EX-TXT, identifiable by an IM,  M .  In what follows, for a finite 
sequence y, we denote the corresponding finite set by $. 

We consider the following partial recursive procedure which produces a finite sequence 
of U: 

Procedure Ft(rn, i); 
begin 

for each finite sequence $ of U do 
/* Note that all finite sequences of U are recursively enumerable */ 

if 12 C Li do begin 
Initialize M ;  
Feed successively + to M on its input requests; 
if M produces any guess then begin 

Let k be the number of guesses (1 5 k 5 n + 1) and 
g be the last guess produced by M; 

if ( k  > n - m) /\ (L, = L;) then output li, and stop; 

end; 
end; 

end. 

(1) Clearly, if Ft(m, i )  is defined, then Ft(m, i )  is a finite subset of L;. 

(2) If Ft (0, i)  is defined, then Ft (0, i) is an FTo of Li. In fact, suppose that Ft (0, i) is 
defined and that Ft(0, i) is not an FTo of Li. Then, there exists an index j such that 
Lj # Li and Pt(0, i) L .  Let o j  be an arbitrary positive presentation of Lj. Since 
Ft(0, i)  . cj is a positive presentation of Lj, it follows that M can not identify Lj  from 
Ft(0, i) o;- with at most n mind changes, which contradicts the assumption. 

(3) For any rn (0 < m 5 12) and any index i, if Ft(rn, i) is defined and there exists 
an index j such that Lj  f Li and Ft(m, i) C Lj, then Ft (m - 1, j) is defined. In fact, 
suppose Ft(n2 - 1, j )  is not defined. Let o j  be an arbitrary positive presentation of Lj and 
6 = Ft (m, i) . crj. Then there exists a k > jFt (m, i)  1 such that M(S[k]) = g and L, = Lj 
for some g. Since 6[k] is a finite sequence of U ,  it should appear in the for loop above. 
Furthermore, when M is successively fed 6[k] on its input requests, it should produce 
more than n - m + 1 guesses. Hence the procedure will produce an output. This is a 
contradiction. 

By (I), (2) and (3), for any rn (0 < m < n) and any index i, if Ft(m, i)  is defined, then 
it is an FT,, in I' of L;. 

Moreover, for any index i, Ft(n, i) is defined, since I' is identifiable by M .  Therefore, 
an FT, of I' is recurrently constructible. I 



Lemma 3.4. Suppose whether Li = Lj or not is effectively decidable for any indices 

For any n 2 0, if an FTn of a class I' is recurrently constructible, then I' is EX- TXT, 
identifiable. 

Proof: Suppose an FTn of I' is recurrently constructible. We denote by FT,(i) the result 
of computation of an FTm in I' of L; ( m  > 0). We consider the following procedure: 

Procedure M; 
begin 

rn := n; k := 0; 
S : = $ ;  T : = $ ;  
for j := 1 to oo do begin 

read a next datum and add it to T; /* Note that //T = j */ 
for i := 1 to j do 

if ( k  = 0) V (Lk # Li A S c L;) then 
if FT,(i)  c T then begin 

output i; 
if rn = 0 then stop; 
S := FTm(i); k := i; 
rn := ~n - 1; 

end; 
end; 

end. 

Clearly, this procedure produces at most n + 1 outputs. Suppose we are going to feed a 
positive presentation 5 successively to the procedure 011 its input requests. 

(1) This procedure produces at least one guess. In fact, suppose this procedure never 
produces a guess. When it reaches the case 

j = max{h,min{l I FTn(h) C a(l)}} and i = h, 

this procedure should produce the guess h,  which contradicts the assumption. 

(2) Suppose the last guess, say g, produced by this procedure is not correct. 

(i) In case of rn = 0, when the procedure produced the last guess. It contradicts the 
definition of an F G .  

(ii) Otherwise, note that S c T and L, # Lh. When it reaches the case 

j > ma.x{h, miii{l I FT,(12) 2 o(l)}} and i = h, 

this procedure should produce the next guess 12, which contradicts the assumption. I 
We obtain the following Theorem 3.5 by Lemma 3.3 and Lemma 3.4. 

Theorem 3.5. Suppose whether L; = Lj or not is effectively decidable for any indices 
4.i. 

For any n 2 0, a class I' is EX- TXT, identifiable if and only if an FTn of I' is recurrently 
constructible. 



Note that in case of n = 0 ,  the above theorem is equivalent to Theorem 2.1 by Corollary 

Example 3.1. Fix an arbitrary number n > 0.  W e  consider the following set: 

Fix an arbitrary computable bijection from 6, to  N ,  and we denote i t  by (( )) . W e  
consider the following class: 

r = L 1 , L 2 ; .  . . ,  

{ i ;q27-- - ;9n+1)  E ~ " + l  cn = ( q  

where 

q1, (12, . . . , qn+l are prime numbers with 

41 < q2 < ' ' '  < qn+l 

L ( ( q 1 , q 2  ,..., q n + l ) )  = (m E I rn is a multiple o f  qj  for some j (1 5 j 5 n + I ) ) .  

Clearly, this class I' is an indexed family o f  recursive langua,ges. This class is also finitely 
identifiable. In fact, there exists a, computable FTo o f  L ( ~ q l , , , , . . . 7 q n + l ) )  such as 

Note that i f  n 2 1, this class r does not have the property o f  so-called finite thickness[l, 
111, which is a sufficient condition t o  be inferaWe from positive data in the limit. 

Example 3.2. Fix an arbitrary number n > 0.  W e  consider the following set: 

Fix an arbitrary computable bijection from D, t o  N ,  and we denote i t  by [ 1. W e  
consider the following class: 

r ' = L 1 , L 2 , . . . ,  

(q l ,  q2, , qk) E ATk 

where 

l S k < n + l ,  
q1, q2, . . . , qk aJre prime numbers with 

41 < q2 < ' "  < qk 

- {m E N  I rn is a multiple o f  q j  for some j (1 < j 5 k ) }  (1 5 k < n + 1). ' ~ q l ~ q 2  , - . . ~ q k ]  - 

Clearly, this class is an indexed family o f  recursive languages. This class is also 
E X - T X T ,  identifiable. I11 fact, there exists a conzputaWe FT,  (n  - k + 1 5 m 5 n )  of 

L u q l  74, ,..., qkn such as 
FTn-k+l = ' ' = FTn = {ql ,  q27.. . 7 qk}, 

and i t  follows that an FTn o f  r' is recurrently constructible. 

On  the other hand, this class is shown to  be not EX-  TXTn-l  identifiable by  Proposition 
3.1 i f  n > 1. 

Note that this class r' does not have the property o f  finite thickness i f  n > 1. 

From Corollary 3.2, Example 3.2 and the fact that the class of pattern languages is 
E X - T X T ,  identifiable but not E X - T X T ,  identifiable for any n > 0 ,  we see that there 
exists a hierarchy such as 



4. Inductive Inference with Bounded Mind Changes 
from Complete Data 

In this section, we give the results concerning complete data, which are analogous to the 
results in Section 3 concerning positive data. 

The following Definition 4.1 and Theorem 4.1 form a remarkable contrast to Definition 
3.1 and Theorem 3.5 concerning positive data. 

Definition 4.1. Let I' = L1,L2, . . - .  A pair (T,,Fi) is said to be a pair  of 0-bounded  
f ini te  te l l - tales  (abbreviated to PFTo) in I' of Li if (Ti, Fi) is a pair of definite finite 
tell-tales of Li, that is, 

(I) T, is a finite subset of Li, 
(2) Fi is a finite subset of U - L;, and 
(3) for any index j, if Lj is consistent with the pair (Ti, F, ) ,  then Lj  = Lie 

A pair (Ti, Fi) is said to be a pair  o f  n - b o u n d e d  finite te l l - tales  (abbreviated to PFTn ; 
n >  1 ) i n I '  ofLi if 

(I) Ti is a finite subset of L;, 

(2) Fi is a finite subset of U - L;, and 
(3) for any index j, if Lj f Li and Lj  is consistent with (T,,Fi), then there exists a 

PFTn-l in r of Lj. 

We can easily prove by induction on n that if a certain pair of finite sets (T, F) is a 
PFT, in I' of Li, then (T, F) is also a PFT,+l in I' of Li (n 2 0). 

Similarly to Definition 3.2, we define the recurrent computability and the recurrent 
constructibility of a PFTn- 

We can also prove the following theorein in a similar way to the proofs of Lemma 3.3 
and Lemma 3.4. 

Theorem 4.1. Suppose whether L; = Lj or not is effectively decidable for any indices 
2 7 . 7 .  

For any n > 0, a class I' is EX- INF, identifiable if and only if a PFTn of I' is recurrently 
constructible. 

Note that in case of 7.2 = 0, the above theorem is equivalent to Theorem 2.2 by Corollary 
2.3. 

5 .  Concluding Remarks 

We have investigated some ~lia~ra~cteriza~tion theorems on langua4ge leaxning with a bounded 
number of mind changes, and exhibited necessities of mind changes. 

We have also recognized again the inlportance of paying attention to a characteristic 
subset of each language in the class, when we consider language learning. 
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