Skip to main content

Notes on the PAC learning of geometric concepts with additional information

  • Technical Papers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 743))

Abstract

In the PAC learning model, the learner must output good approximate results with only the information that tells the learner whether the example is “positive” or “negative”. This restriction results in narrowing the area of the learnable concepts or in increasing the size of examples required for successful learning. However, if the learner receives some additional information about the example besides being positive or negative, e.g., real values corresponding to the degree of the positiveness (or negativeness), a larger class may become learnable or the number of necessary examples may be reduced.

In the case of learning geometric concepts, such additional information may be given, for instance, how close a given positive or negative example is to the boundary of a target geometric concept. Using this type of additional information for geometric concepts consisting of complex boundaries, the learner may identify the geometric concept more rigorously or with sampling the smaller number of examples for the required accuracy. In the case of neural networks of threshold functions, some of values of weighted sum of inputs at nodes, say a value at the output node, may be output instead of simply producing outputs of either 0 or 1 after comparing the values with the threshold values at nodes. Such values represent the closeness of an input to the threshold boundary.

This note investigates the effect of such additional information in computational learning theory. Two types of networks of threshold-like functions are considered, and it is demonstrated how some additional information is profitable to learn these networks more efficiently.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., “Queries and Concept Learning,” Machine Learning, Vol. 2, 1988, pp. 319–342.

    Google Scholar 

  2. Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and the Vapnik-Chervonenkis Dimension,” Journal of the ACM, Vol. 36, No. 4, 1989, pp. 929–965.

    Article  Google Scholar 

  3. Dobkin, D., H. Edelsbrunner, and C. K. Yap, “Probing Convex Polytopes,” Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986, p.424–432.

    Google Scholar 

  4. Edelsbrunner, H., “Algorithms in Combinatorial Geometry,” Springer-Verlag, Berlin, 1987.

    Google Scholar 

  5. Hasegawa, S., and K. Kakihara, “A Generalization of ε-Approximations for κ-Label Space and Its Application,” Manuscript, 1992.

    Google Scholar 

  6. Kakihara, K., “Effect of Additional Information in Computational Learning Theory” Graduation Thesis, Department of Information Science, University of Tokyo, March 1992.

    Google Scholar 

  7. Muroga, S., “Threshold Logic and Its Applications,” Wiley-Interscience, New York, 1971.

    Google Scholar 

  8. Lin, J.-H., and Vitter, J. S., “Complexity Issues in Learning by Neural Nets,” Proceedings of the 2nd Annual Workshop on Computational Learning Theory, 1989, pp.118–133.

    Google Scholar 

  9. Valiant, L. G., “A Theory of the Learnable,” Communications of the ACM, Vol. 27, No. 11, 1984, pp. 1134–1142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shuji Doshita Koichi Furukawa Klaus P. Jantke Toyaki Nishida

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kakihara, Ki., Imai, H. (1993). Notes on the PAC learning of geometric concepts with additional information. In: Doshita, S., Furukawa, K., Jantke, K.P., Nishida, T. (eds) Algorithmic Learning Theory. ALT 1992. Lecture Notes in Computer Science, vol 743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57369-0_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-57369-0_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57369-2

  • Online ISBN: 978-3-540-48093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics