
An X-Windows Toolkit for Knowledge

Acquisition and Representation Based on

Conceptual Structures

?

Michel Wermelinger

??

and Jos�e Gabriel Lopes

Centro de Inteligência Arti�cial/UNINOVA

Quinta da Torre, 2825 Monte da Caparica, PORTUGAL

fmw|gplg@fct.unl.pt

Abstract. This paper describes GET (Graph Editor and Tools), a tool

based on Sowa's conceptual structures, which can be used for generic

knowledge acquisition and representation. The system enabled the ac-

quisition of semantic information (restrictions) for a lexicon used by a

semantic interpreter for Portuguese sentences featuring some deduction

capabilities. GET also enables the graphical representation of conceptual

relations by incorporating an X-Windows based editor.

Keywords: conceptual structures, knowledge representation, graphical

interfaces, natural language processing.

1 Introduction

Conceptual structures [9] are an ambitious attempt to represent knowledge in

a natural and expressive way. An implementation of the necessary machinery

would enable us to test their practical suitability for semantic representation of

natural language sentences, for conceptual modeling of relational databases, etc.

So we decided to program a prototype in X-Prolog [1], a result of the ESPRIT

project \Advanced Logic Programming Environments". One of the main reasons

for this choice was the possibility to access the X-Windows functionalities in

order to display conceptual structures making use of their easy to read graphical

notation.

The resulting implementation, called Graph Editor and Tools (GET), is cur-

rently a generic tool for knowledge acquisition and representation based on con-

ceptual structures and consists of two distinct parts: the Conceptual Graph Tools

(CGT), a portable collection of Prolog predicates implementing the most impor-

tant operations on conceptual graphs, and the Conceptual Graph Editor (CGE)

working under X-Windows and using the primitives provided by CGT.

?

This work was partially supported by JNICT, under contracts PMC-

T/P/TIT/167/90 and PMCT/MIC/87439, by INIC, under project CALIPSO, by

FCT/UNL, and by Gabinete de Filoso�a do Conhecimento.

??

Owns a scholarship (PMCT/BIC/114/90) from Junta Nacional de Investiga�c~ao Cien-

t���ca e Tecnol�ogica.



This paper describes CGT, CGE, and a semantic interpreter for Portuguese

sentences, focussing on CGE. Finally, possible enhancements as well as some

insights gained with this work regarding the utilization of conceptual graphs for

Natural Language Processing are given. For a more detailed account see [12] and

[13].

2 The Conceptual Graph Tools

The Conceptual Graph Tools (CGT) are a portable collection of Prolog predi-

cates implementing the most important operations on conceptual graphs, a sim-

ple mark-&-sweep memory management system, and a linear notation parser

and generator using De�nite Clause Grammars [6]. CGT also provides facilities

to manipulate graph databases made up of:

{ a type hierarchy

{ a set of graphs, where each may have some descriptive text associated to it

{ for each concept type, a (possibly empty) set of schemata

{ for each type, the associated canonical graph and/or de�nition

A sample database comes with the toolkit; it contains all relations de�ned in

the Conceptual Catalog [9, Appendix B], and several basic concept types. CGT

enables the user to easily create new types with their associated de�nitions,

schemata, and canonical graphs in order to build several new databases on top

of the given one.

The linear notation of conceptual graphs as parsed and generated by CGT

is a bit di�erent from the one used by Sowa. The formal de�nition in [12] ex-

tends the one given in [9, Appendix A.6], especially in what concerns the type

and referent �elds, including nested contexts. The minor di�erences are due to

e�ciency concerns and implementation restrictions (like using `\' for `�' and

`V' for `8' to use just ASCII). Major changes or restrictions were motivated by

unclear aspects of the formalism, specially regarding coreference links. For ex-

ample, should one permit any two concepts to corefer? How can inconsistencies

be detected? Therefore, it was decided that coreferenced concepts must have

compatible types, i.e. one is a subtype of the other. Furthermore, contexts may

not corefer if their referents contain graphs because it would be di�cult to check

them for incompatibility.

Currently CGT has the following implementational restriction: once a con-

cept or relation type is de�ned it isn't possible to change neither its de�nition

nor its associated canonical graph. The reason is simple: if the canonical graph

associated to a type X changes, all graphs with a concept or relation of type X

must probably change, too. And if a type Y is de�ned in terms of X, the graphs

involving concepts or relations of type Y would have to change too, and so on.

This weakness can be repaired by adding a speci�c maintenance tool.

CGT features a SAFE

3

linear notation parser: it doesn't perform any error

recovery, stopping with the �rst error found. It copes quite well with semantic

3

Stop At First Error



errors (e.g. unde�ned referent variables, unknown type labels) but it still needs to

be made more robust regarding syntax errors (e.g. a missing `]'). Furthermore, it

forces the graphs entered by the user to be meaningful by checking them against

the canonical graphs of the ocurring relation types.

As one should expect, some parts of Sowa's formalism have not yet been

implemented in this �rst version of the Graph Tools. The most notable omissions

are the �rst-order rules of inference and the � operator, which translates graphs

into �rst-order logic formulas. The latter could be modi�ed to assert graphs as

Prolog clauses in order to use Prolog's inference engine for deductions. Other

things still need to be improved, specially referents and coreference links. Both

will require theoretical work; the former, particularly, will need some reworking

while the latter must be carefully analysed with respect to their side-e�ects on

operations such as the canonical formation rules.

3 The Conceptual Graph Editor

CGE enables the user to create and manipulate conceptual structures in a graph-

ical way, using the primitives provided by the Tools. It can be considered to be

a kind of \syntax-oriented" editor, as most commands correspond to operations

provided by the formalism, thereby enforcing the resulting graph to be canon-

ical. The alternative would be to have a \visual" editor allowing to operate on

single nodes and arcs, but its implementation would be more di�cult because

incomplete and ill-formed graphs would have to be taken into account.

The Conceptual Graph Editor was coded in X-Prolog, a superset of Prolog

including the Widget

4

Description Language [1] which enables the programmer

to access the X Windows functionalities in a declarative way. Therefore, the

editor takes advantage of the underlying graphical interface, providing an easy

way to edit graphs using windows, dialog boxes, icons, buttons, selections, and

the combination of mouse and keyboard. Furthermore, the choice of the X-

Windows standard increases portability and decreases the learning time for users

already familiar with other graphical interfaces.

3.1 The Editor Window

A Conceptual Graph Editor is a window comprising �ve areas (see Fig. 1):

header This area consists of a single line of text displaying a description of

the shown graph. The text may be a user de�ned string (as in the �gure),

the usual description (e.g. `canonical graph for BUS(x) is', `relation

AGNT(x, y) is', etc.) or simply the word `graph'.

graphical display It is under the header and shows the edited graph(s).

linear display It shows the same graph as the graphical display but in linear

notation. It is a normal text widget, enabling the user to edit its contents

using normal Emacs commands [11] in order to create graphs which cannot

be obtained with the menu commands.

4

Window gadget|a graphical object in X-Windows terminology.



Fig. 1. A Conceptual Graph Editor

menus Under the two display areas, all possible commands to (visually) edit

graphs and their nodes are provided. Most operations are directly supported

by CGT.

buttons Located to the left of the graphical display, the two top buttons provide

access to two commands without keyboard shortcuts (`Restrict Type' and

`Restrict Referent') while the other buttons provide an easy control over

the way graphs are drawn in the graphical display.



The relative sizes of the graphical and linear displays may be changed by

dragging the small rectangle between them with the mouse. There is also a

`modified' label in the bottom left corner, appearing only when a graph has

been added to the database but the latter hasn't been saved on disk.

Several editor windows may be open at the same time. To make better usage

of the display area of the monitor, the editor windows may be iconi�ed. In order

to distinguish the various editors in an easy way, both the icons and the windows

are numbered.

3.2 The Graphical Display

The main area within an editor window is occupied by the graphical display of

graphs. In CGE, the visual appearance of graphs may be controlled by the user,

either semi-automatically or manually for full control.

To make the display of conceptual graphs easier, a generic widget to handle

the visualization of arbitrary graphs was used [8]. All graphs in the same context,

and only them, are displayed with the same Graph Widget. This gives a lot of

exibility, as graphs in di�erent contexts may be displayed in di�erent ways. The

relevant attributes of the Graph Widget for CGE users are:

layout mode It indicates if the display of the graph is to be done automatically

(by the widget) or manually (by the user, dragging the nodes with the mouse

to the desired position).

layout function This is the algorithm used in automatic mode to calculate the

positions of the graph's nodes.

layout style It may be one of the four available styles (left-right, right-left,

top-down, bottom-up) for automatic layout.

There are three pre-de�ned layout functions:

Hierarchy This function is mainly used for hierarchical graphs and it is the

one that provides the best results for conceptual graphs.

Tree This function can only be used for a single graph that is in fact a tree

(see Fig. 2. If used to display disconnected graphs, a mess will appear on the

screen.

Spring This is the only iterative function, i.e. the visual appearance of the

graph will depend on the original position of its nodes, whereas the other

functions always display the same graph in the same way.

To the left of the graphical display there's a layout control box consisting of

eight buttons. The top one controls the layout mode, the next three control the

layout function and the bottom four arrows control the layout style. The buttons

have a twofold purpose. By clicking on them with the mouse, the user may set

the corresponding attributes in the selected context(s). On the other hand, the

state of the buttons reects the attributes of the selected context(s).



Fig. 2. Tree display

3.3 The Editor Commands

The commands available in CGE may be issued from the keyboard, selecting

an entry of a menu, or clicking with the mouse on an icon. Often, there are

at least two ways to invoke the same command. Most of the commands use

dialog boxes (to interact with the user) and selections (to show the graphs or

nodes on which to operate). There are several types of the former (acknowledge

dialogs to display error messages, choice dialogs to present a set of options, etc.),

taking into account the various needs for user input. Also, two kinds of selections

are provided to enable some commands to distinguish their operands (e.g. the

insertion operation needs to know the graph to insert and the context in which

to insert it). All available commands, except those involving the way graphs are

displayed, appear in the following three menus:

Editor Menu The Editor Menu contains commands that don't belong to the

conceptual graph formalism, like loading and saving a graph, change the

current graph database, deleting an arbitrary graph, and quitting the editor.

Graph Menu The commands in this menu operate on whole graphs. They

include the canonical formation rules and the propositional rules of inference.

Furthermore, there are commands to compute the depth of a graph and to

check whether one graph is a generalization, a specialization, or a copy of

another graph.

Node Menu This menu groups all commands that operate only on relations

and concepts. They are divided into three groups: the restrict operation from



the canonical formation rules, type expansions, and referent expansions and

contractions.

There isn't an \undo" command, but most of the implemented ones have a

counterpart, like drawing vs. erasing a double negation, iteration vs. deiteration,

etc. To cancel the e�ect of any operation, the `Clear Graph' command is pro-

vided, but it should be used only in case of a mistake (e.g. the wrong graphs

were joined) as it is not a canonical or propositional rule.

3.4 Future Work

The Graph Widget needs some recoding before being of practical use for the

display of conceptual graphs: the algorithms must take the size of the nodes into

account, make better usage of space, and maybe a new one must be developped

for nested graphs. Because of these problems and other implementational details

the visualization of coreference links wasn't implemented. Some other possible

enhancements are:

{ Make a type lattice editor/viewer which would provide an easy way to create

new types or to select existing ones.

{ Show coreference links and enable the user to edit them in a simple way (e.g.

by pointing and dragging).

{ Enable the user to choose for each context whether it should be displayed in

normal or reduced size, thus improving the e�ective usage of the available

display area.

{ Enable the user to do some things (e.g. lambda abstraction in the type �eld)

in a more graphical way, instead of having to write the corresponding linear

notation for it.

4 A Semantic Interpreter

A small semantic interpreter for Portuguese sentences was built using concep-

tual graphs. The approach taken is similar to the one described in [10]: The

lexicon associates a canonical graph to each possible meaning of a word and the

interpreter proceeds in a bottom-up way when processing the syntactic tree. For

each subtree it obtains a graph and its so-called \head". At the next level, the

interpreter will try to join the graphs by matching directly the corresponding

heads. As one can see, the only operations the interpreter needs from CGT are

the canonical formation rules.

The sentences are parsed with a wide coverage Portuguese syntax description

[4] using the XG formalism [7]. In its actual state, the semantic interpreter only

covers a tiny subset of that description. On the other hand, it performs some

deduction on the database constructed from the input sentences. The interpreter

accepts three types of sentences (see the appendix for examples):



Declarative sentences. They denote assertions to be added to the database, s-

tating a simple negative or positive fact (e.g. \The cat doesn't eat.") or a rule of

the form \A if B", where A and B are simple facts (e.g. \The cat eats the mouse

if it is hungry."). The former are represented by negative or positive contexts,

respectively, and the latter uses the `IMP' relation [9, section 4.2].

It must be stressed that there is no anaphora resolution. As a consequence,

sentences like \The cat eats the mouse if it doesn't run away." must be rewritten

into \The cat eats the mouse if the mouse doesn't run away." and even in this case

no coreference link between the two `MOUSE' concepts will be drawn. Therefore,

whenever the individual is not speci�ed the interpreter makes the simplifying

assumption that the user is always referring to the same one. In the last section

of this paper we provide some ideas to work around this problem.

Deductions upon graphs are made according to the following four rules, where

G/X is a fact represented by a proposition of polarity X containing graph G, A

) B represents the rule \B if A", and � denotes specialization:

G1/pos and G2/pos ) G3/X implies G3/X if G1 � G2.

G1/neg and G2/neg ) G3/X implies G3/X if G2 � G1.

G1/pos and G2/X ) G3/neg implies G2/:X if G1 � G3.

G1/neg and G2/X ) G3/pos implies G2/:X if G3 � G1.

The �rst two rules are modus ponens, the other two implement modus tollens.

For example, the third rule states: if the database contains a positive fact A and

a rule stating \not C if B", then the fact \not B" will also be in the database if

C is a generalization of A.

Whenever a new fact or rule is entered by the user, the interpreter tries to

match it with the antecedent and consequent of every rule in order to determine

if modus ponens or modus tollens may be applied. This process is recursively

applied to every deduced fact. As soon as a fact (deduced or not) is about to be

added, the database is searched for a more general one stating the opposite. If

such a fact is found, the sentence must be incoherent with the previously stated

premisses, forcing the interpreter to issue a message and to retract all the facts

asserted during the deduction process.

Interrogative sentences. They may be simple questions (e.g. \What does the cat

eat?") or of the form \A if B" stating hypotheses (e.g. \Does the mouse die if the

cat eats?"). The graph representing the question will have the same form as for

a declarative sentence, whereby wh-pronouns are simply dropped or substituted

by generic concepts.

In the case of a simple question, looking for an answer consists in searching

the database for a specialization of the graph representing the question. In the

other case (\A if B"), the hypothesis B is temporarily put as a normal assertion

in the database (i.e. it is tested for coherence with the known facts and all

possible deductions are performed) and then A is treated like a simple question.

Imperative sentences. They are interpreted as instructions to the interpreter. In

its actual version, commands consist of a single verb in the imperative form, e.g.



\stop!". The graph representing the command must be known to the interpreter,

i.e. the program searches its internal command list for an exact copy of the graph.

Only three di�erent commands are known in this version: \mostra!" (show),

\apaga!" (erase), \para!" (stop). The �rst shows one by one on demand the cur-

rent facts in the database, the second clears the database, and the third is used

to quit the interpreter.

Some other aspects of the interpretation process are:

{ The backtracking facility of Prolog is used to �nd alternative syntactic and

semantic representations for the sentences and multiple answers for the ques-

tions.

{ Fillmore's order of preference (agent, instrument, object) is used to join the

verb and subject graphs.

{ Relative clauses are translated into abstractions of the type corresponding

to the noun they modify, like in [10] (an example is given in the appendix).

{ Verb arguments and modi�ers are distinguished in that the former restrict

the concepts of the verb graph while the latter join new graphs, namely those

of the modi�ers. This means that the graph for the verb must already make

provision for all possible arguments. Furthermore, the interpreter prevents

arguments and modi�ers from having the same semantic role.

Last, but not least, the interpreter can be used with or without CGE, the

di�erence being how user input and program output is handled. In the former

case, the CGE window is used to show the graphs, while dialog windows handle

the user's input sentences. In the latter case, the linear notation and Prolog's

basic I/O facilities are used.

The current state of the interpreter is not completely satisfactory as far as

speed and exibility are concerned. The coverage can also be much improved, but

that wasn't the purpose of this application. The lack of speed is mainly due to the

complexity of graph operations and to the constant copying of the intermediate

graphs during the process to make backtracking possible. To increase exibility

and semantic coverage the interpreter could use schemata and the supertypes'

canonical graphs.

5 Conclusions and Future Perspectives

As far as we know, GET is the �rst collection of tools to work easily with

conceptual graphs (CG) in a logic programming environment with a graphical

interface based on X-Windows. It is quite easy to build new types and relations

with their associated background knowledge, especially using the CG Editor. The

knowledge databases constructed in this manner could then be incorporated into

other programs which would call the predicates provided by the CG Tools.

There were several advantages in using Prolog, in particular X-Prolog: an easy

access to the X Toolkit C functions was possible, thus enabling the existence

of a graphical editor; a linear notation parser and generator could be quickly



built with a partially bidirectional DCG; and �nally, the existing Portuguese

extraposition grammar could be directly used for a toy semantic interpreter.

Unfortunately, X-Prolog is no longer supported. As such, we intend to port

the Editor to APPEAL, an X-Windows based programming environment for

SICStus Prolog. APPEAL also integrates the Widget Description Language and

has the advantage of being supported by a company.

The main disadvantage of using Prolog is poor e�ciency. The operations on

conceptual graphs are extremely complex, mainly because of contexts (enabling

the nesting of graphs) and coreference links (connecting nodes over arbitrary

contexts), and the used data structures must be quite dynamic.

As far as it concerns the formalism itself, our overall feeling is that the

conceptual structures' main source of expressiveness is also their main source of

problems and fuzziness, namely the referents and coreference links. Therefore,

some options had to be taken concerning some less clear points, others were

deliberately postponed until the CG researching community agrees on them.

Nevertheless, the semantic interpreter showed that the mapping between nat-

ural language sentences and conceptual graphs is relatively straightforward. But

there are problems such as anaphora resolution that require theoretically back-

grounded treatment that we cannot �nd within the conceptual structures theory.

Discourse Representation Theory [2] is the formalism we have chosen at the AI

Centre (CRIA) of UNINOVA for handling some of those problems raised by text

understanding or intentional participation in conversations by computers [3]. To

concile the best of two worlds we envisage a Discourse Representation Structures

(DRS) processor, as it already exists at CRIA, with anaphora resolution [5], etc.,

whereby the graphical visualization can be achieved using conceptual structures

which are undoubtebly superior for expressing DRS conditions. The DRS|CG

mapping could turn out to be easier than expected, as both formalisms have

notions for contexts and referents.

Acknowledgements

We would like to thank Irene Rodrigues for many fruitful discussions, Salvador

Abreu for providing X-Prolog and Paulo Quaresma for providing his Graph

Widget, both of which made CGE possible, and Claudia Ventura and Sabine

Gr�uninger for reviewing this document.

Appendix: An Example Session

The following is an excerpt of an actual session with the semantic interpreter

without using CGE as the visual graph notation would take too much space.

The examples illustrate mainly deduction and question answering. User input

begins with `|:' and `~' stands for `(NEG)->'.

|: o gato joao come o rato se o rato nao fugir.

(If the mouse doesn't run away, John the cat will eat it.)



Syntactic analysis done! Semantic analysis done!

[PROPOSITION:

[ESCAPE] -

(AGNT) -> [MOUSE: #]

(SRCE) -> [ENTITY]

] -

(IMP) -> [PROPOSITION:

[EAT] -

(AGNT) -> [CAT] -> (NAME) -> ["Jo~ao"]

(OBJ) -> [MOUSE: #]

]

(NEG).

Another interpretation? (y/n) |: n

|: um rato nao foge se o rato come queijo.

(If a mouse is eating cheese, it won't run away.)

Syntactic analysis done! Semantic analysis done!

~[PROPOSITION:

[ESCAPE] -

(AGNT) -> [MOUSE]

(SRCE) -> [ENTITY]

] <- (IMP) <- [PROPOSITION:

[EAT] -

(AGNT) -> [MOUSE: #]

(OBJ) -> [CHEESE]

].

Another interpretation? (y/n) |: n

|: quem come o rato se o rato comer queijo branco?

(Who eats the mouse if it eats white cheese?)

Syntactic analysis done! Semantic analysis done!

[PROPOSITION:

[EAT] -

(AGNT) -> [MOUSE: #]

(OBJ) -> [CHEESE] -> (ATTR) -> [WHITE]

] -> (IMP) -> [PROPOSITION:

[EAT] -

(AGNT) -> [ANIMATE]

(OBJ) -> [MOUSE: #]

].

Another interpretation? (y/n) |: n

[PROPOSITION:

[EAT] -

(AGNT) -> [CAT] -> (NAME) -> ["Jo~ao"]

(OBJ) -> [MOUSE: #]



].

Another answer? (y/n) |: y

I do not know.

|: os gatos que comem queijo nao comem ratos.

(Cats that eat cheese don't eat mice.)

Syntactic analysis done! Semantic analysis done!

~[PROPOSITION:

[EAT] -

(AGNT) -> [\a[CAT: *b = *a];

[PROPOSITION:

[EAT] -

(AGNT) -> [CAT: *b]

(OBJ) -> [CHEESE]

]]

(OBJ) -> [MOUSE]

].

Another interpretation? (y/n) |: y

Sorry...

|: para!

(Stop!)

Syntactic analysis done! Semantic analysis done!

[PROPOSITION:

[STOP] -> (AGNT) -> [ANIMATE]

].

Another interpretation? (y/n) |: n

Bye!

yes

|?-

References

1. Salvador Pinto Abreu. ALPES X-Prolog Programming Manual. Centro de In-

teligência Arti�cial, UNINOVA, 1989.

2. Hans Kamp and Uwe Reyle. From Discourse to Logic: An Introduction to Mod-

eltheoretic Semantics of Natural Language, Formal Logic and Discourse Represen-

tation Theory, volume I. Kluwer, Dordrecht, 1991.

3. Jos�e Gabriel Lopes. Architecture for intentional participation of natural language

interfaces in conversations. In C. Brown and G. Koch, editors, Natural Language

Understanding and Logic Programming III. Elsevier Science Publishers, 1991.

4. Jos�e Gabriel Lopes and Irene Pimenta Rodrigues. Descri�c~ao parcial da sintaxe do

Português. Technical report, CRIA/UNINOVA, June 1990.

5. Jos�e Gabriel Lopes and Irene Pimenta Rodrigues. Reasoning in resolution of tem-

poral anaphores. Technical Note NT-1/91-CIUNL, Centro de Inform�atica da UNL,

January 1991.



6. Fernando Pereira and Stuart Shieber. Prolog and Natural Language Analysis, vol-

ume 10 of CSLI Lecture Notes. Center for the Study of Language and Information,

1987.

7. Fernando C. N. Pereira. Extraposition grammars. American Journal of Compu-

tational Linguistics, 7(4):243{255, 1981.

8. Paulo Quaresma. Graph widget: A tool for automatic data visualization. Technical

Report RT-6/91-CIUNL, Centro de Inform�atica da UNL, April 1991.

9. John F. Sowa. Conceptual Structures: Information Processing in Mind and Ma-

chine. The System Programming Series. Addison-Wesley Publishing Company,

1984.

10. John F. Sowa and Eileen C. Way. Implementing a semantic interpreter using con-

ceptual graphs. IBM Journal Res. Develop., 30(1):57{69, January 1986.

11. Richard Stallman. GNU Emacs Manual. Free Software Foundation, 1985.

12. Michel Wermelinger. GET: Graph Editor and Tools|the incomplete reference.

Technical Report RT-3/91-CIUNL, Centro de Inform�atica da Universidade Nova

de Lisboa, January 1991.

13. Michel Wermelinger. GET|some notes on the implementation. Technical Report

RT-4/91-CIUNL, Centro de Inform�atica da Universidade Nova de Lisboa, January

1991.


