
Practical Transformation of Functional Programs for
Efficient Execution: A Case Study*

James M. Boyle 1 and Terence J. Harmer 2

1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439, USA

2 Department of Computer Science, The Queen's University of Belfast, Belfast, BT7 INN,
Northern Ireland

Abs t rac t

Functional programming languages have, traditionally, been thought ill-suited to the
specification of numerical mathematical algorithms. Conventional wisdom is that im-
plementations of functional languages cannot provide acceptable execution performance
for numerical mathematical algorithms, which are usually computationally intensive. We
show how program transformation can be used to derive highly efficient implementations
of a numerical mathematical algorithm specified by a functional program.

The example we discuss is a specification for a quasi-linear hyperbolic partial differ-
ential equation solver. We develop an initial specification for the one-dimensional version
of this problem and show how functional programming concepts facilitate the evolution
of the specification into a general, dimension-independent specification for the problem.
We also discuss some of the issues that arise in transforming such specifications into
programs that are efficient enough to outperform handwritten code.

1 Introduct ion

In this paper, we discuss an example of the use of automated program transformation to
derive efficient programs from functional specifications for numerical problems. At first
thought, functional programming seems not at all appropriate for numerical problems.
Long-established tradition dictates expressing such algorithms in procedural languages--
Fortran or perhaps C. In fact, the earliest procedural computer languages, Fortran and
Algol 60, were specifically designed for expressing numeric computations.

A stronger objection to the use of functional languages for numerical computations is
that they appear to be ill-suited to specifying computations that operate on data repre-
sented by arrays, a data representation that the vast majority of numerical computations
use. Programs written in functional languages appear to call for copying an entire ar-
ray each time the value of one of its elements changes. Such a requirement would make
functional programs prohibitively expensive for most numerical computations.

If one can set aside these preconceptions, however, one can see that functional lan-
guages do have advantages for numerical computations. The general advantages of func-

* This work was supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W*31-109-Eng-38.

Practical Transformation of Functional Programs 63

tional programming--naturalness of expression (in some problem areas), ease of proof,
and clarity--are well known [1, 12, 15, 9, 4]. When one actually applies functional pro-
gramming to numerical computations, one finds that the "essence" of many numerical
computations is more naturally expressed using recursion and map and reduce operations
than by using the iteration constructs provided by procedural languages. An obvious
match to recursive expression is those numerical computations expressed mathemati-
cally in terms of recursive equations. However, even computations not usually thought
of as recursive---for example, LU factorization in linear algebra--turn out to be elegant
in recursive form.

The simplicity and clarity of functional programming can be further enhanced by
using abstract data types to specify a numerical computation. Abstract data types can be
defined for the concepts and notations used in the problem domain. Such an approach to
specification enhances communication between the algorithm developer and the specifier
by suppressing implementation details. Communication between the two (even if they be
one and the same person!) can be at the same level and in the same or similar terms, both
because functional programs are declarative and because they suppress hardware-related
details. Indeed, the specifier of the functional program can be, and perhaps should be, the
designer of the problem solution. A programming methodology that permits the developer
of an algori thm--who understands the details of the algorithm but not of p rogramming- -
to specify a high-level, machine-independent representation of the algorithm is highly
desirable. (As we shall discuss, the methodology also makes tuning an implementation to
a particular machine largely problem-independent. Thus, the tuning can be carried out
by a person other than the algorithm developer, providing a neat separation of tasks and
permitting both algorithm specification and hardware tailoring to progress in parallel.)

Nevertheless, in order to take advantage of these desirable features of functional spec-
ifications, it must be possible to execute the specified computations efficiently. The very
problems and algorithms for which the advantages of functional specification are most
important are the ones that require prodigious amounts of computation and that cannot
tolerate even relatively minor inefficiencies.

Simply put, the two main problems that must be overcome in order to execute func-
tional programs efficiently are the (apparent) speed and storage overheads of the use
of higher-order functions and the inability to update individual elements of data struc-
tures (such as arrays) without copying the entire structure. Unless these problems can
be overcome, functional programming is unlikely to be used in the solution of numerical
problems.

We believe that functional programming will be taken seriously only when there
have been several successful demonstrations of parity between functional and procedural
programs. A demonstration of parity is an experiment that shows that using a functional
program for a significant scientific application can result in code that executes (at least)
as fast and uses (at least) as little storage on a high-performance computer as does a
typical handwritten procedural program for the same application on that hardware.

We discuss here a demonstration of parity between an automatically derived imple-
mentation of a functional program and a handwritten Fortran program for solving a
practical fluid-dynamics problem on the CRAY X-MP computer. This demonstration
shows that functional programming, together with automated program transformations
that derive an efficient program, is a practical tool that can be used to solve today 's

64 James M. Boyle and Terence J. Harmer

numerical problems simply, elegantly, and efficiently. We also discuss our approach to
developing the program transformations that produce efficient implementations from
functional specifications.

We have achieved parity for a numerical problem--the solution of hyperbolic par-
tial differential equations (PDEs)--by using automated program transformations to de-
rive an efficient, vectorizable Fortran program from a (higher-order) functional program,
which serves as a specification for the computation. To derive the program, we use a
sequence of basic, general-purpose transformations that implement functional specifica-
tions in Fortran, interspersed with a few transformations that perform either problem-
domain-oriented or hardware-oriented optimizations. Indeed, this is one of the important
advantages of using program transformations to perform the derivation: they make it
easy for one to incorporate problem-domain-dependent and hardware-dependent opti-
mizations to whatever extent is necessary to achieve the desired level of performance
in the implemented program. Since achieving parity for the functional specification of
the solution of hyperbolic PDEs, we have also achieved parity for an entirely different
algorithm (the solution of eigenvalues and eigenvectors of a symmetric matrix) on an
entirely different computer architecture (the AMT DAP SIMD array processor) [5].

Our first experiments with the functional specification for the hyperbolic PDE solver
involved only six days of effort to obtain a running program. Since those early experiments
we have concentrated on improving our original specification and the transformations that
implement it. The improvements are aimed at preparing a functional specification for the
hyperbolic PDE algorithm that is independent of the dimensionality of the problem--one
from which implementations for solving one-, two-, or even three-dimensional hyperbolic
PDEs can be derived. We describe the ways in which our original functional specification
fell short of dimension-independence, how we minimized these dependencies in the new
specification, how the new specification was transformed for execution on the CRAY X-
MP, and how we plan to transform the new specification for two- and three-dimensional
problems into an efficient implementation.

2 P u r e L i s p w i t h D a t a A b s t r a c t i o n a s a S p e c i f i c a t i o n L a n g u a g e

For our functional specification language we use pure Lisp (essentially a form of Church's
lambda calculus [10]), together with data abstraction. This specification language is sim-
ilar to the pure functional subset of Scheme, as described in the Little Lisper [13]. The
specifications that we express in this language are high level but still algorithmic. In fact,
they are executable, although in many cases they would execute very slowly.

Pure Lisp is simple, even minimalist. It relies on just four basic constructs: conditional
expressions, lambda abstraction (abstraction of an expression with respect to specified
variables), application of lambda abstractions to arguments, and naming of lambda ab-
stractions (to create reeursive functions). Of course, higher-order functions are included.
Using such a minimalist functional language has a great advantage: it is conceptually
easy to transform into an implementation, because only the small number of constructs
just discussed need be implemented.

We do not use the native data types of Lisp (except for Boolean and numeric types) in
the upper, problem-oriented levels of our specifications. Rather, we use data abstractions

Practical q~ansforrnation of Functional Progzams 65

appropriate to the problem being specified. Moreover, we treat these data abstractions as
if they were abstract data types, and we write our pure Lisp specifications to be strongly
typed, even though pure Lisp itself does not enforce strong typing.

3 T h e P r o b l e m

The solution of problems in fluid flow is the subject of the functional specification and
vectorizable code developed in this case study. Technically, the equations to be solved are
conservation laws, or, more generally, first-order, quasi-linear, hyperbolic partial differ-
ential equations. The solution of hyperbolic PDEs arises in many practical applications
that involve wave phenomena, including acoustics, elasticity, and electromagnetism.

In all problems involving hyperbolic PDEs, characteristics play an important role.
Characteristics are curves in space-time along which information propagates from the
initial data. In the case of nonlinear hyperbolic PDEs, characteristics may intersect. When
characteristics intersect, the hyperbolic problem no longer has a unique solution, and a
shock forms. The mathematical discontinuity at a shock, of course, creates difficulties
for the designer of algorithms for solving hyperbolic PDEs. A new algorithm that uses
a combined cellular-automaton and method-of-characteristics approach is the subject of
research by Garbey and Levine [14].

For a number of reasons, this algorithm is an interesting choice for an attempt to
achieve parity.

- The algorithm is numerically intensive. Such algorithms are generally regarded as
being outside the area of application of functional programming.

- The algorithm itself is still being refined and changed, and each refinement or change
requires the algorithm to be tested and its behavior analyzed. To permit easy evalu-
ation of these refinements and changes, we wish to minimize the cost of recoding the
executable program to incorporate these changes.

- The performance of the algorithm is being evaluated. Meaningful performance eval-
uation demands computing the solution of large data sets over many discrete time
steps, which in turn leads to long execution times. This circumstance rules out using
the functional specification as a rapid prototyping tool, because naive execution of
the specification would be excruciatingly slow. We lay great importance on retain-
ing the freedom to write functional specifications in the clearest possible form, in
order to make them as simple and understandable as possible. Thus, having to tailor
the functional specification itself to increase the economy of its direct execution is
unacceptable.

- The algorithm, although conceptually simple, requires some difficult coding and op-
timization. These difficulties are particularly knotty in the natural extensions of the
algorithm for two and three dimensions, in which the geometry of the grid (hexagonal
in the two-dimensional case) requires intricate calculations.

- The algorithm is a candidate not only for vector, but also for parallel--in particular,
data-parallel--implementations, because of the large grids it uses. Indeed, handwrit-
ten Fortran implementations of the algorithm were prepared both for the data-parallel
Connection Machine 2 and for the vector architectures of the Alliant FX/8 and CRAY
X-MP. Thus, multiple implementations of the same specification, each tailored to a

66 James M. Boyle and Terence J. Harmer

particular architecture, are ultimately required. Again, because this is an experi-
mental algorithm, the effort expended to produce these different versions must be
minimized to enable the algorithm to be evaluated on different hardware.

In short, we believe that this problem is difficult enough to represent a good test
of the applicability of functional programming and program transformation to scientific
computation and thus is a good example for our case study. Moreover, the requirements
of ease of modification, efficient execution, and multiple executable realizations of the
same specification provide opportunities for functional programming and program trans-
formation to aid the developers of the algorithm. Finally, the complexity of the algorithm
in the higher-dimensional cases should provide an opportunity to demonstrate the ability
of the modularity inherent in functional programs to factor out complexity. If functional
programming is to gain credibility, it should be demonstrably effective on this sort of
problem and in this type of situation.

4 C e l l u l a r A u t o m a t o n S o l u t i o n o f a H y p e r b o l i c P D E

The algorithm we are specifying uses a cellular automaton (CA) approach to compute the
characteristics of the solution to a hyperbolic PDE. Cellular automata have applications
ranging from modeling snowflakes to computing a solution (as in this case) of a partial
differential equation. In fluid dynamics computations, CA methods are typically used as a
direct approximation to the molecular dynamics of the problem, because the automaton
can model the behavior of a particle in the fluid, and the transition rules of the automaton
correspond to the possible results of collisions with other particles. (Wolfram discusses
many interesting applications of cellular automata [16].)

4.1 A One-Dimensional Functional Specification

A cellular automaton model consists of many identical cells, each having simple, locally
determined behavior. Nevertheless, the combined behavior of the cells can be complex.
The grid for a one-dimensional hyperbolic PDE is a cellular automaton consisting of a
line of cells, each of which holds information about the physical state of the problem.
Successively updating the state information of each cell through a sequence of discrete
time steps computes the characteristics of the solution to the hyperbolic PDE. At a given
time step, the state information of all cells is updated simultaneously according to the
same rule.

One may specify this behavior as the application of a function stept ime to an initial
grid for a specified type and size of problem, a set of boundary values (constant over
time), an initial time, and a number of time steps to be performed:

steptime (initgrid (problemtype, gridsize), by, I, maxsteps)

The initgrid function defines an initial grid representing suitable initial conditions for
the specified type of hyperbolic problem.

The specification for steptime follows immediately from the observations that (1) if
the preceding time step was the last one, the result of taking a time step is the argument
grid, and (2) otherwise, the result is that obtained by taking another time step on an
updated grid:

Practical Transformation of Functional Programs 67

steptime (grid, by, step, maxsteps) =
if step > maxsteps then

grid
else

steptime (updategrid (grid, by), by, step+l, maxsteps)

In a similar vein, the specification for npdategrid follows from the observation tha t
the grid is updated by applying a local update rule to all of its cells:

updategrid (grid, by) =
mapgrid (lambda grid, loc . updatecell (grid, loc, by), grid)

The mapgrid operation (which is, of course, analogous to the map operat ion for other
structures) applies a function (mapgrid 's first argument) to each cell in a grid (mapgrid's
second argument). For each cell in the grid, mapgr id applies the function to a pair of
a rguments - - the grid and the location of the cell in the grid.

Updat ing a cell happens in one of two ways, depending on whether the cell is a
boundary cell or an interior cell:

updatecell (grid, loc, by) =
if isonboundary (loc, grid) then

updateboundarycell (cellar (loc, grid),
whichboundary (loc, grid), bv)

else
npdateinteriorcell (cellar (loc, grid),

neighborsat (loc, grid))

This separation is convenient because the rules for updating boundary ceils are signif-
icantly different from those for updating interior cells. The function for updat ing a
boundary cell uses the boundary values provided as part of the initial input to inject
addi t ional characteristics into the model when required.

Note how the modular i ty inherent in functional programming can be used (by means
of the function n e i g h b o r s a t) to ensure that the updat ing of a cell depends only on
the characteristic values of that cell and its neighbors, not on the exact location of the
cell in the grid. Note also that at this level of abstraction we have not yet commit ted
to implementing a cellular automaton algorithm. The preceding functions can be used
jus t as well in the specification for a t radit ional 3-point (or, in two dimensions, 5-point)
difference method.

At the next level of the specification, we begin to specialize it to hyperbolic problems.
In such problems, the state information of each cell in the grid contains a dependent
variable that represents some aspect of the physical state of the system (velocity, density,
etc.). Characteristics move across the grid at a specified speed and in a specified direction.
To model the hyperbolic PDE, each cell holds four pieces of information:

- a u value, which is the value of the dependent variable in the cell;
- an x value, which is the position of the moving characteristic within the cell;
- a s t a t e , which denotes whether a shock has occurred in the cell (as discussed in the

following paragraph); and

68 James M. Boyle and Terence J. Harmer

- a slope, which denotes the speed and direction of propagation of the characteristic.

In the specification for the one-dimensional hyperbolic PDE problem, the directions are
west (left) and east (right). In the current specification, the direction of the slope is
kept in a separate component of the cell, called the sign, thereby simplifying certain
computations.

The CA algorithm employs a further discretization in addit ion to tha t obtained by
using a grid of cells. Each cell contains a discrete number of internal points at which
the characteristic can be located, as denoted by its x value. In our specification, each
cell contains 100 such points. At each time step, the x value is upda ted by adding or
subtract ing (depending on sign) the value of slope to obtain a new posit ion (t ime steps
are normalized to 1). The number of points in the a grid cell must be chosen large enough
so that after normalization all slopes are less than the number of points in a grid cell.
This choice guarantees that when a characteristic moves out of a cell, it moves into an
adjacent one without skipping a cell.

Of course, the interesting behavior of this simple CA model concerns what happens
when the updated z value lies outside the current cell, possibly causing the characteristics
in different cells to intersect and produce a shock. A characteristic leaves a cell when its z
value exceeds the maximum number of internal points in the cell. For the one-dimensional
problem, three specific cases are associated with a characteristic leaving a cell, two of
which lead to the formation of a shock:

C h a r a c t e r i s t i c M o v e s to A n o t h e r Ce l l
A cell that does not have a characteristic may obtain one if a characteristic moves
into the cell from a neighboring cell (Figure 1).

t + l \j,\ i,
L~ - I Lr Lo t§

Fig. 1. A characteristic entering an empty cell at loc from its east neighbor

S h o c k
A shock occurs when, at some t ime step, one cell contains more than one characteris-
tic. This situation obviously arises under two conditions: when a characteristic enters
a cell that already contains a characteristic (and that characteristic is not leaving on
the same t ime step) or when two characteristics enter the same cell at the same t ime
step (Figures 2 and 3). In the CA algorithm, when shock occurs in a cell, the cell is
marked "shocked" and the characteristics are removed, leaving an empty cell.

C r o s s i n g Shock
A shock (crossing shock) also occurs when two characteristics cross one another on
a cell boundary at some t ime step (Figure 4). This condition is special because at

Practical Transformation of Functional Programs 69

/ \ ' \

t a e - 1 Lee L o e §

Fig. 2. Shock resulting from a characteristic entering an occupied cell at loc

/ \ , / \
t_ee. 1 t ~ t ~ l

Fig. 3. Shock resulting from two characteristics entering an empty cell at loc

no time do the two characteristics actually occupy the same cell. Nevertheless, this
condition is a shock because more than one characteristic would have occupied a cell
if the cell boundaries of the grid had been differently positioned.

S i m p l e M o v e m e n t w i t h i n a Cell
In addition to these cases, the update rule for cells also has a case for no shock--the
simple movement of the characteristic within a given cell (Figure 5).

This computation of the movement of the characteristic corresponds to that of the ordi-
nary (non-CA) method of characteristics.

From these observations follows the specification u p d a t e i n t e r i o r c e l l :

u p d a t e i n t e r i o r c e l l (c e l l , neighbors) =
i f isshocked (c e l l , neighbors) then

emptymarkedcell (shock ())
else if iscrossingshocked (cell, neighbors) then

emptymarkedcell (crossingshock ())

/ yz,
! \ [,

Loc - 1 t oe Lr162 § 1

Fig. 4. Crossing shock resulting from two characteristics crossing on the east boundary of a cell
at loc

70 James M. Boyle and Terence J. Harmer

// / / \ \
Lot-1 Loe Lor

Fig. 5. Characteristic moving within a cell at loc

else if isenteringfrom (neighbors) then
neighborenteredcell (neighbors)

else

timest epedcell (cell)

If a shock or a crossing shock occurs, the result is an empty cell marked appropriately. If
no shock occurs and a characteristic is entering the empty cell from one of its neighbors,
then (since the cell was empty) the result is a cell whose state reflects tha t it contains a
single characteristic. Otherwise, the result is a cell whose state is computed according to
the method of characteristics.

Note that thus far the dimensionality of the grid has played no role in the specifications
of the functions. Thus, none of the preceding functions need be altered in going to a
specification for a higher-dimensional problem.

The dimensionality of the grid does enter, however, in the specification of the functions
isenteringfrom and neighborenteredcell. For a one-dimensional grid, each cell has
two neighbors, west (left) and east (right). A characteristic is entering a cell from one
of its neighbors (in the one-dimensional case) if the characteristic is leaving the west
neighbor going east or leaving the east neighbor going west:

isenteringfrom (neighbors) =
isexitingeast (.est (neighbors))

isexitingwest (east (neighbors))

If the characteristic is leaving the west neighbor of a cell, that characteristic is the
basis for the updated state of the cell; otherwise, the characteristic from the east neighbor
is the basis:

neighborenteredcell (neighbors) =
if isexitingeast (west (neighbors)) then

movedintocell (west (neighbors))
else

movedintocell (east (neighbors))

A shock occurs in a cell

- if the cell will have a characteristic on the next i terat ion (the cell's characteristic is
not moving to a neighboring cell) and if the characteristic of one (or both) of the
cell's neighbors is entering the cell; or

Practical Transformation of Functional Programs 71

- if (the cell may not have a characteristic on the next iteration, but) the characteristics
of both of the cell's neighbors are entering it:

isshocked (cell, neighbors) =

(hasstat enext it eration (cell)
(isexitingeast (.est (neighbors))
] isexiting.est (east (neighbors))))

] (isexitingeast (.est (neighbors))
isexiting.est (east (neighbors)))

A crossing shock occurs in a cell if the characteristic of the cell is entering one of its
neighbors at the same t ime as the characteristic of that neighbor is entering the cell:

iscrossingshocked (cell, neighbors) =
(isexiting.est (cell)~ isexitingeast (.est (neighbors)))
] (isexitingeast (cell) ~ isexiting.est (east (neighbors)))

Note that , with regard to the top level of the specification that we discuss in this section,
the grid itself is still an abstract object; no implementation decisions have been made
about it.

At the next level of detail of this specification, however, we do make an implemen-
tat ion decision to use an array to represent the grid. As one consequence, we define the
mapgr id function in terms of a primitive function m a p a r r a y w i t h i n d e x that acts on ar-
rays. The m a p a r r a y w i t h i n d e x function is transformed to an implementat ion tailored for
the hardware in use, in this case the CRAY X-MP.

Specification of the remainder of the cellular automaton hyperbolic PDE solver pro-
ceeds in a similar manner until all functions (not only computat ional functions but also
those implementing da ta abstractions) have been specified. (See [7] for a complete spec-
ification.)

We claim that this specification is a simple and natural one for this problem; indeed,
we believe that this specification is transparently clear. Moreover, we claim that we have
not knowingly biased the specification in the direction of an efficient final implementat ion;
indeed, we have tried always to choose naturalness and clarity over efficiency.

5 Critique of the Original (One-Dimensional) Functional
Specification: An n-Dimensional Specification

Solution of one-dimensional hyperbolic PDE problems is of moderate interest. However,
the really interesting problems are two- and three-dimensional. Therefore, once we had
shown that we could design transformations to construct an implementat ion for the one-
dimensional problem [7], we decided to examine our functional specification to see how
easily it generalized to higher dimensions.

As pointed out in the preceding section, we did succeed in keeping the dimensionali ty
from entering the upper level of the original specification. We achieved this indepen-
dence in part by using da ta abstractions that hide the dimensionality of the grid, cells,

72 James M. Boyle and Terence J. Harmer

and boundary values. In the original specification, it is possible to keep the dimension-
ality of the problem from entering until the definition of the functions i s e n t e r i n g f r o m ,
n e i g h b o r e n t e r e d c e l l , i sshocked, and i s c ros s ingshocked .

However, as one can see by examining the definitions of neighborenteredcell and
i s shoeked given earlier, these definitions would have to be altered substantially for the
two-dimensional case, and again for the three-dimensional one. For example, in the two-
dimensional case, the second disjunct of the definition of i s shocked must be expanded
to account for the fact that characteristics may enter from any combination of two (or
more) neighbors.

One way to develop a functional specification for higher-dimensional problems would
be to systematically modify the original specification. Indeed, we might consider mod-
ifying it by applying program (really, specification) transformations [11]. However, the
result of applying these transformations would still be very complicated definitions; and
we believe that, because such transformations would not literally preserve correctness,
validating them would be a problem.

Examination of the definitions in our original specification led us to conclude that
the difficulty is not that the dimensionality of the problem enters the specification at
too high a level, but rather that when dimensionality does enter, it is not handled in a
manner that enables easy generalization to higher dimensionality. 3 The key to making
dimensionality easy to generalize is to parameterize it in terms of a set o/neighbors. The
functions that would depend on dimensionality can then be specified as iterations over
the set of neighbors. These functions then become dimension-independent, leaving only
the (lowest-level) definitions of the neighbor sets themselves dimension-dependent.

This approach to handling dimensionality also has the advantage of catering to cor-
rectness. To the extent that one can write a functional specification that is independent
of dimension, any formal proofs of correctness or testing performed validate the specifi-
cation for problems of any dimensionality. Thus, if one has validated the one-dimensional
implementation, in moving to higher dimensionality one need only concentrate on the
new implementations required for the data abstractions.

Using these ideas, a natural formulation is to consider an updated grid to be the result
of a prediction followed by a correction. (We defer briefly the exact definition of the overall
grid-update function). The function advaneedgr id naively predicts (generates) the new
positions of the characteristics.

advancedgrid (grid) =
mapgrid (lambda grid, loc

grid)
�9 advancedcell (cellat (lot, grid)),

Its value is a grid with the position of each characteristic advanced by one time step.
Advancing the position of a characteristic may cause it to move out of the cell it previously
occupied. The prediction generated by advancedgr id is naive in the sense that the
positions still refer to the coordinate system of the characteristic's original cell and are
still stored in the original cell.

3 We are indebted to Brian Smith of the University of New Mexico for this observation.

Practical Transformation of Functional Programs 73

The function adjustedgrid corrects the advanced grid by determining which ceils the
characteristics now occupy, moving the characteristics to these cells, and then determining
whether any of these movements has caused a shock.

adjustedgrid (grid) =
mapgrid

(lambda grid, loc .

adjustedcell (cellar (loc, grid),
neighborsol (lot, grid)),

advancedgrid (grid))

Finally, we wish to add a feature unrelated to dimensionality to this second version of
the specification for the CA algorithm. We wish to permit interpolation to be performed
on the adjusted grid. During execution of the CA algorithm, cells become empty because
shock occurs or because the cell's characteristic moves into another cell. If these char-
acteristics are not replaced, the accuracy of the solution may be affected. To overcome
this difficulty, one may wish to have a version of the algori thm that uses the mathe-
mat ica l technique of interpolation to reinsert characteristics into emptied cells. Similarly,
the injection of new characteristics based on the boundary values is natural ly a par t
of interpolation. While we do not give a specification for interpolation here (its exact
mathemat ica l formulation for the two-dimensional case is still being investigated), we do
apply a function p o s t p r o c e s s e d c e l l , in which interpolation could be specified, to the
adjusted grid.

updatedgrid (grid, boundary) =
mapgrid (lambda adjustedgrid, loc .

postprocessedcell (loc, adjustedgrid,
boundary, grid),

adjustedgrid (grid))

(Postprocessing may depend on the value of the grid from the preceding t ime step as well
as on the adjusted grid; therefore, both must be arguments to the p o s t p r o c e s s e d c e l l
function.)

The specification for advancing cells is conceptually simpler if we consider a cell with-
out s tate to have a phantom characteristic whose velocity is zero and whose posit ion is
the center of the cell. Then the characteristics in all cells can be advanced without testing
whether a cell has state, because the phantom characteristics will not move and hence
will not leave their cells and influence their neighbors. Although one might complain
that the use of phantom characteristics is an implementat ion trick, we believe it leads
to simpler, more easily understood specification. If one does not use phantom character-
istics, then it is necessary to use a conditional expression testing h a s s t a g e (c e l l) in
advancedcell. Using phantom characteristics, the value of an advanced cell is s imply a
new cell with the old values of state, velocity, and the dependent variable, but with an
upda ted position:

advancedcell (cell) =
newcell (stateof (cell), velocityof (cell), uof (cell),

nextposition (positionof (cell), velocityof (cell)))

74 James M. Boyle and Terence J. Harmer

After advancement, the da ta for a characteristic are still associated with tha t charac-
terist ic 's original cell, even though that characteristic's true position may now lie in an
adjacent cell.

The adjustment phase involves moving the da ta for characteristics to their new cells
(where required) and recognizing shock:

adjustedcell (cell, neighbors) =
if isshocked (cell, neighbors) then

emptiedcell (umarkfortypeofshock (cell, neighbors))
else if "haslocalcharacteristic (cell) then

if isenteringfromone (neighbors) then
enteredfromneighborcell (neighbors)

else
emptiedcell (nullu ())

else
cell

Postprocessing of the grid handles interpolation, if performed, and boundary value
injection; cells requiring neither are left unchanged:

postprocessedcell (loc, adjustedgrid, boundary, oldgrid) =
if isonboundary (loc, adjustedgrid) then

postprocessedboundarycell (loc, adjustedgrid, boundary)
else if needsinterpolation (cellar (loc, adjustedgrid)) then

postprocessedinteriorcell (loc, adjustedgrid, oldgrid)
else

cellar (lot, adjustedgrid)

We come now to the definitions for those functions that , in the original functional
version of the CA algorithm, were specific to the one-dimensional case. These are the
functions that relate to the neighbors of a cell. In our original specification, these functions
are part icular to the one-dimensional case; our aim in the second specification is to
develop a definition that is general for all dimensions.

An addit ional insight further simplifies specifying those predicates tha t will now be
expressed in terms of the set of neighbors discussed earlier. This insight is to count
the total number of characteristics in a cell to determine whether shock occurs, rather
than to analyze various combinations of conditions on the characteristics entering and
leaving the cell. This formulation of shock is simple in both concept and statement. After
updat ing the positions of all the characteristics and determining in which cells they fall,
the following possibilities exist:

- A cell contains no characteristic; hence the cell has no state and is empty.
- A cell contains one characteristic; hence the cell has state and is not shocked.
- A cell contains more than one characteristic; hence the cell has no state and is

shocked.

A cell is shocked if it is subject to ordinary shock or to crossing shock:

Practical Transformation of Functional Programs 75

isshocked (cell, neighbors) =
isordinaryshocked (cell, neighbors)
I iscrossingshocked (cell, neighbors)

Ordinary shock occurs if there is more than one characteristic in the cell:

isordinaryshocked (cell, neighbors) =
totalcount (cell, neighbors) > I

The number of characteristics in the cell after adjustment is the number remaining
after advancement plus the number entering from neighbors as the result of advancement:

totalcount (cell, neighbors) =
remainingcount (cell) + enteringcount (neighbors)

The number of characteristics remaining in a cell (after advancement) is zero or one:

remainingcount (cell) =

booltoint (haslocalcharacteristic (cell))

A cell retains its original characteristic (after advancement) if the cell has s ta te and
the characteristic does not leave the cell:

haslocalcharacteristic (cell) =
hasstate (cell) ~ exitdirection (cell) = none ()

(Note that the state component of a cell after advancement is the same as that of the
cell before advancement.)

A cell has state if its state value so indicates:

hasstate (cell) =

stateof (cell) = withstate ()

The number of characteristics entering a cell from its neighbors is the sum of the
number (which must be zero or one) entering from each neighbor (slope is constrained
so that , in a single time step, a characteristic cannot skip over a cell). The number of
characteristics entering a cell from a neighbor lying in some direction from that cell is the
number leaving that neighbor in the opposite direction (the direction toward the cell):

enteringcount (neighbors) =
reduce

(+, O,
map (lambda neighbor .

booltoint (exitdirection (cellof (neighbor))
= oppositedirection (directionof (neighbor))),

neighbors))

Exactly one characteristic is entering a cell from a neighbor if the (total) entering
count of the neighbors is one:

76 James M. Boyle and Terence J. Harmer

isenteringfromone (neighbors) ---
enteringcount (neighbors) = I

Suppose that the characteristic of a cell is leaving that cell in some direction, d. Then,
crossing shock occurs if the characteristic of the neighbor lying in direction d is leaving
that neighbor in the direction opposite d. For example, if the characteristic of a cell
is leaving to the east, then crossing shock occurs if the characteristic of the cell's east
neighbor is leaving to the west. (Note that in this specification, if a cell's characteristic
is not leaving, we give it the direction none; we require that the implementation chosen
for oppositedirection guarantee that oppositedirection (none) ~ none. In this
specification, we designate all to be the direction opposite none in order to fulfill this
requirement.)

iscrossingshocked (cell, neighbors) =
exitdirection (cellof (neighborindirection (exitdirection (cell),

neighbors)))
= oppositedirection (exitdirection (cell))

When the characteristic of one neighbor enters an empty cell, the result for the cell
is the value of entering the characteristic of that neighbor (that is, the advanced value
of that neighbor's characteristic, translated to the coordinate system of the cell). The
neighbor in question is that one among all the neighbors of the cell whose characteristic
is leaving in the direction opposite the direction in which that neighbor lies from the cell:

enteredfromneighborcell (neighbors) =
ent eredfromthisneighborcell

(elementofset
(filter

(lambda neighbor .
exitdirection (cellof (neighbor))
= oppositedirection (directionof (neighbor)),

neighbors)))

We restrict the use of the function enteredfromneighborcell to cases in which there is
exactly one such neighbor cell. A safer approach, but one that would require more general
simplification transformations, would be to re-express the condition that there be only one
such neighbor cell in this definition. Then, when this function is applied within a context
in which this condition is known to hold (as it is when isenteringfromone(neighbors)
holds), the simplifications would remove the redundant evaluation of the condition.

The value of entering the characteristic from a particular neighbor is the value of
translating the position of the characteristic from that neighbor to the cell:

enteredfromthisneighborcell (neighbor) =
movedintoce11 (cellof (neighbor), directionof (neighbor))

We have now completed the specification (except for the functions relating to hound-
ary values and for constructing the new values of cells, which we do not discuss) to the
level at which choice of data representation and dimensionality must inevitably be made

Practical Transformation of Functional Programs 77

explicit. By adding specifications that implement the data abstractions used in all of the
preceding functions, we can produce a program that can be executed for small grids in
rapid-prototyping mode using Lisp or Scheme.

6 D e r i v i n g E f f i c i e n t P r o g r a m s f r o m F u n c t i o n a l S p e c i f i c a t i o n s

Of course, our goal is not simply to run these specifications in rapid-prototyping mode,
where execution can be excruciatingly slow. Algorithms such as these are designed to
solve large problems. Slow execution cannot be tolerated in solving, or even in testing
programs for solving, such problems.

Moreover, in many cases these algorithms are interesting precisely because they may
permit exploiting computers having novel high-performance architectures, thereby en-
abling the solution of problems that have heretofore been impossible. Efficient Lisp and
Scheme implementations are not likely to be available for such computers.

Naturally, the question is: How can we obtain, from the functional specification,
programs that execute efficiently and exploit high-performance computers? Our answer
is to use program transformations.

6.1 The Transformat iona l Derivat ion for the Original Specification

From the simple, pure functional specification of Section 4.1 we automatically derive an
efficient implementation for computers having vector hardware, such as the Alliant FX/8
or the CRAY X-MP. We use the TAMPR program transformation system [2, 3] to apply
a sequence of sets of program transformations that derive an efficient Fortran program
from the higher-order functional specification. As we indicated in the introduction, most
of these transformations are basic transformations--ones that are needed to implement
any functional specification in Fortran. These transformations form the framework for
the derivation. Used alone, they do a highly competent job [3]. Nonetheless, because
our basic transformations are applicable to a broad class of functional specification, the
implementations they produce still have the characteristics of implemented functional
code: extensive copying and use of fresh storage, explicit use of a stack (or heap, if
functions are used as first-class objects) to implement recursion, etc.

Such an implementation performs well, but in our experience it cannot hope to equal
the performance of good handwritten imperative Fortran or C code. For example, with-
out further optimization such an implementation is prohibitively inefficient in terms of
storage consumption when large arrays are used. Even if general remedies for such ineffi-
ciencies could be found, we believe that the speed of well-written code comes from taking
advantage of properties of both the problem being solved and the target hardware.

It is just this type of knowledge that we can capture and codify in sets of TAMPR
transformations that are problem-domain-oriented or hardware-oriented. (Fortunately,
our experience shows that it is not necessary for a single set of transformations to be
both problem-domain-oriented and hardware-oriented.) We can then apply the problem-
domain-oriented transformations as part of any derivation starting from a specification in
the problem area, and we can apply the hardware-oriented transformations as part of any
derivation ending in a program for the target hardware, to produce high-performance,

78 James M. Boyle and Terence J. Harmer

automatically generated programs: Over time, libraries of such transformations will ac-
cumulate, enabling efficient realizations of functional specifications from various prob-
lem areas to be produced easily for many different types of hardware, including high-
performance parallel machines, simply by drawing appropriate sets of transformations
from the library.

Thus, to transform the specification of the hyperbolic PDE solver into the imple-
mentation that achieves parity, we intersperse into the outline formed by the basic sets
of transformations a few sets of transformations that perform problem-domain-oriented
or hardware-oriented optimizations. These transformations guide the derivation in the
direction of producing code that will vectorize and that will, when compiled by the Cray
Fortran compiler, run efficiently on the CRAY X-MP hardware.

It is these problem-domain-oriented and hardware-oriented sets of transformations
that we emphasize in this section; however, we begin with a brief overview of the basic
transformations to provide a framework for discussion.

6.2 Sketch of the T rans fo rma t iona l Der iva t ion

The derivation for the CRAY X-MP consists of about 17 major transformational steps.
Each of these steps is one of three types: domain-dependent transformations that apply
to grid problems (marked in the following list with a single bullet); hardware-specific
transformations that direct the derivation toward code that is efficient on the CRAY
X-MP (marked with two bullets); and general-purpose functional-to-procedural transfor-
mations, such as could be part of a compiler for functional languages (marked with plus).
The major steps in the derivation are as follows:

+ Canonicalizing the pure Lisp specification (syntactic standardization)
+ Unfolding data abstractions and nonrecursive function definitions and simplifying

the result (a form of symbolic execution)
�9 Converting logical connectives to no-short-circuit-evaluation form (supports the Cray-

specific late optimization of precomputing logical expressions)
+ Reducing the complexity of storage usage (implementing reuse of the grid array)
+ Preparing the pure Lisp for transformation to Fortran
+ Eliminating tail recursion
+ Transforming the prepared pure Lisp to structured, recursive Fortran
�9 Introducing a loop to implement rmpgrid and unfolding its higher-order function

argument
** Changing the grid from an array of structures to a structure of arrays
�9 . Hoisting boundary conditions out of the loop (partitioning the index set of the loop)
+ Transforming recursive Fortran to nonrecursive Fortran
�9 �9 Implementing no-short-circuit-evaluation logical operations by Fortran logical oper-

ators
** Flattening nested conditionals (simplifying the loop body to the point that it can be

vectorized by the Cray Fortran compiler)
�9 �9 Eliminating common logical subexpressions
�9 �9 Precomputing logical expressions used in i f tests
+ Eliminating some unneeded type-checking from arithmetic operations

Practical Transformation of Functional Programs 79

+ Cleaning up and implementing the remaining abstractions

These steps are implemented by sets of TAMPR program transformations. Each
TAMPR transformation is literally a rewrite rule, having a pattern and a replacement
each of which is specified in terms of the grammar of the programming language being
transformed. Typically, fewer than ten of these transformation rules are required to im-
plement each of the major steps in the derivation. However, these rules are applied many
times; for the specification for the hyperbolic PDE solver, the entire derivation from pure
Lisp to Cray Fortran requires about 8000 rewrites. Clearly the ability of the TAMPP~
transformation system to apply rules automatically is vital. No one could afford to apply
thousands of transformations by hand, or even to provide substantial guidance for their
application.

A somewhat more detailed discussion of the basic transformation steps (those that
do not cater to either the grid or the Cray), including example code fragments at several
stages, is given in [3] (see also an earlier version in [8]).

6.3 P e r f o r m a n c e o f the Der ived P r o g r a m

The derivation discussed here targets the final program to a CRAY X-MP 1/8 system
having the extended memory address, compressed index/gather-scatter, and vector pop-
ulation count hardware features.

The final version whose performance we measured is the result of many experiments
with the CRAY X-MP. In each experiment, we derived a Fortran program from the spec-
ification using the then-current version of the transformations, measured that program's
performance, altered or added hardware-oriented transformations to produce what we
hoped would be a more efficient version of the program, and performed another experi-
ment. This approach is necessary to understand what works well on the Cray; it became
clear that the transformations must cater to the peculiarities of the Cray CFT77 compiler
as well as to those of the raw CRAY X-MP hardware.

Despite our use of the experimental approach just described, we do not suppose
that every program specifier who uses our program specification and transformation
methodology will develop his own problem-domain-oriented or hardware-oriented opti-
mizing transformations. It is not worthwhile to develop special transformations to opti-
mize specifications for simple problems. However, when using this methodology to solve
large, long-running problems it may well be worthwhile for transformation specialists to
develop transformations specific to the particular problem domain or hardware. More-
over, we believe that developing such optimizing transformations and adding them to a
transformational derivation carried out by the TAMPR program transformation system
is much easier than would be developing and adding them to a conventional compiler
(a step that is essentially impossible for the general user). It should be clear that such
transformations can be developed and inserted into a derivation to obtain increased per-
formance without modifying the specification itself.

Finally, problem-domain-oriented transformations tend to be independent of the tar-
get hardware, while hardware-oriented transformations tend to be independent of a par-
ticular problem. These independence properties permit problem-domain-oriented trans-
formations to be reused in derivations for many types of hardware, and hardware-oriented

80 James M. Boyle and Terence J. Harmer

transformations to be reused in derivations for many types of problem. This reuse further
reduces the cost of developing sets of transformations, by permitting the required effort
to be amortized over a large number of derivations.

P e r f o r m a n c e o n the CRAY X-MP. Table 1 presents the timing comparison between
this version of our derived program and Garbey and Levine's program [14]. While Garbey

Table 1. Program times on CRAY X-MP 1/8 for 16,384 cells,
1000 time steps, Riemann initial conditions

Program CRAY X-MP Time
Version sec

Functional Specification
Transformed to Fortran 7.283
Hand-Written Fortran 7.551

and Levine did not make a large investment in tuning their program for the CRAY X-MP,
they did write the program with the architecture in mind and with the intent of getting
decent vector performance on that machine.

These data show that our automatically derived program certainly achieves parity
with the handwritten program. In fact, our program is about 4% faster than the hand-
written program. Determining exactly why our version is faster is difficult without a
detailed timing analysis of the compiler-generated assembly language code. A cursory
reading of the assembly language indicates, however, that our derived program is better
than the handwritten program at overlapping the use of the multiple functional units of
the Cray during the precomputation of the conditions for the if-statements in the main
loop.

Pe r fo rmance on the Sun 3/110C (68020). Of course, use of the experimental ap-
proach we have described invites the question of whether we were simply lucky to achieve
parity, by managing to manipulate the specification into a form that takes advantage of
the sophisticated optimizations performed by the Cray CFT77 compiler. Could we do
as well generating code for a less sophisticated compiler? One way (at least partially) to
answer this question is to compare the performance of the derived program with that of
the handwritten one on a typical sequential machine. (Of course, one should not set too
much store by such a comparison, because both programs are, in fact, tuned for the Cray
vector architecture.) Table 2 gives the timing results for these runs. (Note that we have
timed the programs for 100 time steps in Table 2 rather than for 1000 as in Table 1, in
order to obtain reasonable running times on the Sun.)

Indeed, on the Sun our program is about 4% slower than the handwritten program.
This is a result of our Cray optimizations increasing the amount of work performed by
the Cray-tailored version of the program. These optimizations result in fast execution on

Practical Transformation of Functional Programs 81

Table 2. Program times on Sun 3/110C (16.67 MHz) for 16,384 cells,
t00 time steps, Riemann initial conditions

Program Sun 3/110C Time
Version sec

Functional Specification
Transformed to Fortran 136.880

Handwritten Fortran 131.712

the Cray, but are pessimizations on the Sun. Omit t ing them from the derivation enables
us to produce a program from our specification that is faster than par i ty on the Sun (but
slower than pari ty on the Cray), as il lustrated in Table 3.

Table 3. Program times on Sun 3/110C (16.67 MHz) and CRAY X-MP
for 16,384 cells, 100 time steps, Riemann initial conditions

Program Sun 3/110C Time CRAY X-MP Time
Version sec sec

Functional Specification
Transformed to Fortran 136.880 .729
Functional Specification
Transformed to Fortran
without Redundant Pre-

computation of Predicates 119.560 .829
Handwritten Fortran 131.712 .757

6.4 T r a n s f o r m a t i o n M D e r i v a t i o n fo r t h e n - D i m e n s i o n a l S p e c i f i c a t i o n

We have developed a transformational derivation for the one-dimensional PDE problem
and demonstra ted tha t a program generated automatical ly by this derivation achieves
pari ty with handwrit ten code for the same problem. How much of our effort in devel-
oping this derivation is applicable to the n-dimensional specification? Have we simply
replaced a development style tha t requires the development of new procedural implemen-
tat ions when changes are made to the problem specification by a style that requires the
development of new transformational derivations when the specification is changed?

We believe that the transformational approach will become more widely accepted only
when derivations can be shared and the effort in developing t ransformational derivations
is seen not to be wasted. Our aim is thus to develop transformations that are gene ra l - -
not t ied exclusively to the problem under consideration. Transformations specific to a
part icular problem domain, for example, to algorithms for solving problems on grids, or

82 James M. Boyle and Terence J. Harmer

to cellular automata algorithms, are acceptable in fulfilling this aim. However, transfor-
mations specific to a single specification are not. Similarly, acceptable hardware-oriented
transformations are applicable to a specific class of hardware architectures, for example,
to machines with vector capability or to MIMD architectures. But, these transformations
should, in most cases, be useful for deriving efficient implementations from many problem
specifications. In a few cases, writing special-purpose transformations may be appropri-
ate, but such applications are perhaps rare, and the number of such transformations in
a typical derivation is few or none.

We believe that the majority of the transformations that we developed--perhaps we
should say, all of the transformations that we should have developed--are applicable to
the n-dimensional specification. In generalizing the specification we did discover that a
few of the transformations in the derivation for the one-dimensional case were not de-
signed with adequate generality to handle the n-dimensional case. The most significant
example is that we need transformations to perform partial evaluation (symbolic execu-
tion) in order to obtain efficient code for specific dimensionalities from the n-dimensional
specification. That is, to obtain a specification to solve the two-dimensional problem,
we wish to augment the n-dimensional specification with a specification that the set of
neighbors is can be represented by the six directions west , n o r t h w e s t , n o r t h e a s t ,
e a s t , s o u t h e a s t , southwest . Partial evaluation should then simplify the specification
to operate on these six neighbors without overhead.

We are currently developing the partial evaluation transformations to simplify the
n-dimensional specification to particular dimensions. The need for these transforma-
tions has precluded our deriving executable programs for specific dimensions from the
n-dimensional specification. We discuss the role of partial evaluation in obtaining an ef-
ficient program for the one-dimensional problem from the n-dimensional specification in
the next section.

A One-Dimensional Specification from the n-Dimensional Specification. We
can use the n-dimensional specification to obtain a specification for the one-dimensional
case. The first task is to define appropriate implementations for the data abstractions.
The implementations of most data abstractions follow from those used in the original
one-dimensional specification.

However, it is necessary for the derivation to construct efficient implementations
for the f i l t e r , map, and reduce functions operating on the 2-tuple holding the one-
dimensional pair of neighbors. The aim is to simplify and optimize the implementations
of f i l t e r , map, and reduce to produce intermediate code from these operations that is
similar to that produced from our one-dimensional specification.

filter
An example of the refinement path for the filter operation under partial evaluation
is given in Figure 6, starting from a subexpression appearing in the definition of the
function entered: f ronmeighborce l l . (In this example, the variable ne ighbors as
argument to f i l t o r represents the two-element set of neighbors of a point.)
A f i l t e r operation constructs a set in which each element satisfies the f i l t e r
predicate. The definition of f i l t e r is unfolded and restricted to the one-dimensional
case. Then the set selection operation e l emen to f se t , which is adjacent to a set

PracticMTransformation of FunctionM Programs

In the specification

elementofset (f i l t e r (lambda neighbor .
ex i td i r ec t ion (ce l lo f (neighbor))
= opposi tedirect ion (d i rec t ionof (neighbor)) ,

neighbors))

unfold def in i~onoff i l~er (fo~ a 2-tuple)==~

elementofset(
makeset(

i f (lambda neighbor .
ex i td i rec t ion(ce l lo f (ne ighbor))

opposi tedirect ion (di rect ionof (neighbor))
(first(neighbors)))

then f i r s t (ne ighbors)
e lse empty(),
i f (lambda neighbor .

ex i td i rec t ion(ce l lo f (ne ighbor))
opposi tedirect ion (di rect ionof (neighbor))

(second(neighbors)))
then second(neighbors)
e lse empty()

))

optimize elementofset on a set of one element==~

i f (lambda neighbor .
ex i td i rec t ion(ce l lo f (ne ighbor))
= opposi tedirect ion (di rect ionof (neighbor))

(f i r s t (ne ighbors)))
then f i r s t (ne ighbors)
e lse i f (lambda neighbor .

ex i td i rec t ion(ce l lof (ne ighbor))
= opposi tedirect ion (di rect ionof (neighbor))

(second(neighbors)))
then second(neighbor)
e lse er ror ()

Fig. 6. Refinement of a filter operation

83

construction operation makes et , is simplified into a conditional evaluation that avoids
the set construction altogether. (Note that the sets produced by these definitions are
singleton sets; for sets with a cardinality greater than one an alternative evaluation
strategy might be used.)

map, reduce

An example of the refinement of the map and reduce operations is given in Figure 7.
A map is expanded into the construction of a tuple in which each element of the tuple
is the result of applying the mapped function to the corresponding tuple element. A

84 James M. Boyle and Terence J. Harmer

In the spec i f i ca t ion
reduce (+, O,

map (la~bda neighbor .
bool toint (exi td i rec t ion (ce l lof (neighbor))

= oppositedirection (directionof (neighbor))),
neighbors))

unfold definitmn of map(for a 2-tuple)==~

reduce (+, O,
maketuple

(la~bda neighbor .
bool toint (ex i td i rec t ion (ce l lof (neighbor))

= opposi tedirect ion (d i rec t ionof (neighbor)))
(f i r s t (ne ighbors)) ,

lambda neighbor .
bool toint (exi td i rec t ion (ce l lof (neighbor))

= opposi tedirect ion (d i rec t ionof (neighbor)))
(second(neighbors))))

unfold definitionofreduce==~

(0 + lambda neighbor . booltoint (exitdirection (cellof (neighbor))
= oppositedirection (directionof (neighbor)))

(first(neighbors)))
+ lambda neighbor . booltoint (sxitdirection (cellof (neighbor))

= oppositedirection (directionof (neighbor)))
(second(neighbors))

simpfifyusing identity property of Of or addition=~

lambda neighbor . booltoint (exitdirection (cellof (neighbor))
= oppositedirection (directionof (neighbor)))

(first(neighbors))
+ la~bda neighbor . booltoint (exitdirection (cellof (neighbor))

- oppositedirection (directionof (neighbor)))
(second(neighbors))

Fig. 7. Refinement of reduce and map operations

reduce on this tuple then applies the reduction function (+ in this case) to combine
the elements of the tuple and the initial value for the reduction (0 in this case).

A significant change in the specification from our original one-dimensional form is the
approach to updating the grid of cells. In the new specification, the process is performed
in two stages: the first stage updates all cells and does not consider whether character-
istics are leaving or entering cells; the second stage adjusts the updated cells by moving
characteristics between cells and recording shocks where necessary.

By unfolding the definition of advancedgr id into that of a d j u s t e d g r i d , we obtain

Practical Transformation of Functiona] Programs 85

From the specifications
adjustedgrid (grid) =

mapgrid (lambda grid, loc .
adjustedcell (cellat (loc, grid),

neighborsof (loc, grid)),
advancedgrid (grid))

advancedgrid (grid) =
mapgrid (lambda gr id , lor . advancedcsll (ce l lar (lor g r i d)) ,

grid)

obt~nbyunfolding==~

adjustedgrid (grid) =
la~bda ngrid .

mapgrid (lambda grid, los .
adjustedce l l (c e l l a t (loc , g r i d) ,

neighborsof (loc , g r i d)) ,
ngrid)

(mapgrid (lambda grid, loc . advancedcell (c e l l a t (loc, grid)),
grid))

Fig. 8. Unfolding definition of adjustedgrid

the definition shown in Figure 8. This definition appears to require the computation of
the entire advanced grid before the adjustment step. However, the two mapgrid opera-
tions have compatible shapes (in this case, the same shape) and both involve, of course,
pointwise applications of their function arguments. It is therefore possible to combine
the two pointwise operations to obtain a single mapping.

Of course, the combination must take into account the need for the n e i g h b o r s o f
an element of the grid. The unfolding makes clear that there are two possibilities for
obtaining these neighbor values:

- Combine the mappings, and recompute and discard (or store locally) the advanced
values for neighbor cells as needed.

- Retain two separate mappings, and store the intermediate grid, thereby avoiding
recomputation.

Our one-dimensional specification calls explicitly for the former approach-- the specifica-
tion itself indicates that neighbor values are recomputed rather than being stored. This
strategy is reasonable for the one-dimensional case, where there are only two neighbors,
and for the Cray, where recomputation is cheap when the data are available in vector
registers. Clearly we can derive an update rule that is similar to that written in our
one-dimensional specification from the unfolded form of the code in Figure 8. In the
two-dimensional case, on the other hand, there are six neighbors, and recomputation is

86 James M. Boyle and Terence J. Harmer

probably not economical; hence we plan to retain the implementation in Figure 8, which
explicitly produces the advanced grid.

Once partial evaluation transformations are available to simplify the neighbor oper-
ations, the rest of the one-dimensional derivation may now be used without change to
obtain an efficient Fortran program that will execute on the CRAY X-MP. The derived
program, and hence its execution behavior, is almost identical to that outlined above for
the one-dimensional form.

A Two-Dimensional Specification from the n-Dimensional Specification. We
are currently working on a two-dimensional form of our n-dimensional specification. This
work is still at an early stage, but it follows the same outline as that described for
the one-dimensional specification. We have defined the data abstractions for the two-
dimensional ease, and the focus of our current work is on optimization of two-dimensional
grid operations. One of the challenges in this problem is representing the computations in
the hexagonal geometry of the two-dimensional grid; this geometry makes the arithmetic
significantly more complicated than for the one-dimensional grid. We expect to have
to develop a few new transformations, or variants of some of the ones we have already
implemented, to obtain efficient performance from this specification. However, it is clear
at this stage that we will be able to reuse most of the derivation described earlier, although
we must generalize the problem-oriented transformations for the grid.

7 C o n c l u s i o n s

In the preceding sections, we have discussed how clear, simple functional specifications
can be transformed into efficient implementations. Our example, a significant scientific
computation, transforms into highly efficient Fortran code for the C R A Y X-MP super-
computer. Compared to a handwritten Fortran program for the same application, our
transformed program pays no price in efficiency; the performance of the program derived
from our functional specification slightly outstrips that of the handwritten program.

We have explained our motivations for, and our approach to, developing an improved
specification for this computation, in which the dimensionality of the problem is parame-
terized. This second version of the specification possesses an enormous advantage over the
first--except for a very small number of functions, the same specification solves problems
of any dimensionality. This advantage is one that cannot be achieved (while retaining
efficiency) by using conventional programming languages; generality and efficiency are
incompatible when the specification is the program.

Did we did purchase the advantages of deriving an efficient program from a functional
specification at a high price in human effort? No. Preparing the original problem-domain-
oriented and hardware-oriented transformations that we wrote in order to carry out this
derivation required less than one man-week. (This time does not include the time required
to perform timing experiments on the Cray, which would be necessary no matter what
methodology were used, assuming such experiments could be done at all when using
other methodologies.)

Did we waste our initial effort to develop a derivation for the one-dimensional spec-
ification? No. The same derivation, with a few additional transformations to implement

Practical Transformation of Functional Programs 87

features new to the second version of the specification, was used to develop an efficient
(actually almost identical) Cray Fortran implementat ion of a one-dimensional form of the
n-dimensional specification. The effort in developing these addit ional t ransformations was
approximately one man-hour!

Have we biased the outcome of these experiments, either by the way we wrote our
functional specification or by the way we wrote the transformations? In regard to the
specification, we believe the answer is a resounding no! The specification is available
for examinat ion in its entirety in [7]. We believe that an examination will confirm tha t
where we faced a choice between a specification having clarity, simplicity, and generali ty
and one having efficiency, we have chosen the former. This is part icular ly true for the
n-dimensional example, which aims to be as general as possible.

Where do we plan to go from here? We are beginning to modify the lowest levels
of the specification for solving the one-dimensional hyperbolic problem to produce a
specification for solving the two-dimensional problem. This work is requiring a few new
transformations that optimize new features of this specification and is also helping us to
refine and generalize the transformations used in our initial one-dimensionM derivation.

Modifying the specification is not the only direction for future work. In a parallel
study, we have developed transformations aimed at deriving efficient programs for the
AMT DAP, a SIMD machine with a 32 by 32 grid of processors, and for the Connection
Machine 2, a massively parallel SIMD machine. Initial experiments using specifications
for other numerical algorithms have demonstrated automatic derivations leading to par-
ity on the DAP [5]. In conclusion, we believe that studies demonstrat ing par i ty between
functional and handwrit ten programs on significant problems are impor tant steps toward
a goa l - - the goal of making functional programming useful to the wide audience of scien-
tists and engineers badly in need of techniques to help them quickly write clear, correct,
and efficient programs.

Acknowledgments

We are indebted to both David Levine and Marc Garbey for explaining their algori thm
and the difficulties of implementing it, and to Hans Kaper for encouraging us to work on
this problem.

References

1. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice-Hall International,
New York, 1988

2. Boyle, J. M.: A transformational component for programming language grammar. Technical
report ANL-7690, Argonne National Laboratory, Argonne, Ill., July 1970

3. Boyle, J. M.: Abstract programming and program transformations-An approach to reusing
programs. In Software Reusability, Volume I, T. J. Biggerstaff and A. J. Per]is (eds.), ACM
Press (Addison-Wesley Publishing Company), New York, 1989, 361-413

4. Boyle, J. M.: Program adaptation and program transformation. In Practice in Software
Adaptation and Maintenance, R. Ebert, J. Lueger, and L. Goecke (eds.), North-Holland
Publishing Co., Amsterdam, 1980, 3-20

88 James M. Boyle and Terence J. Haxmer

5. Boyle, J. M., Clint, M., Fitzpatrick, S., and Harmer, T. J.: The construction of numerical
mathematical software for the AMT DAP by program transformation. In Parallel Process-
ing: CONPAR 92--VAPP V, Second Joint International Conference on Vector and Parallel
Processing, Lyon, France 1-4 September 1992, Ed. L. Bough, M. Cosnard, Y. Robert, and
D. Trystan, LNCS 634, Springer-Verlag, Berlin, 1992, 761-767.

6. Boyle, J. M., Harmer, T. J.: Functional specifications for mathematical computations. In
Constructing Programs from Specifications, B. MSller (ed.), North-Holland Publishing Co.,
Amsterdam, 1991, 205-224

7. Boyle, J. M., Harmer, T. J.: A practical functional program for the CRAY X-MP. Journal
of Functional Programming, 2(1) (Jan. 1992) 81-126

8. Boyle, J. M., MurMidharan, M. N.: Program reusability through program transformation.
IEEE Transactions on Software Engineering SE-10(5) (Sept. 1984) 574-588

9. Burton, F. W., Kollia~, J. (Yannis) G.: Functional programming with quadtrees. IEEE
Software 6 (Jan. 1989) 90-97

10. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton,
N.J., 1941

11. Feather, M. S.: Constructing specifications by combining parallel elaborations. Journal of
IEEE Transactions on Software Engineering 15(2) (Feb. 1989) 198-208

12. Field, A. J., Harrison, P. G.: Functional Programming. Addison-Wesley Publishing Co.,
Wokingham, England, 1988

13. Friedman, D. P., Felleisen, M.: The Little LISPer. Science Research Associates, Inc.,
Chicago, Ill., 1986

14. Garbey, M., Levine, D.: Massively parallel computation of conservation laws. Journal of
Parallel Computing 16 (1990) 293-304

15. Kelly, P.; Functional Programming for Loosely-Coupled Multiprocessors. Pitman Publish-
ing/MIT Press, London/Cambridge, Mass., 1989

16. Wolfram, S: Theory and Applications of Cellular Automata. World Scientific, Singapore,
1986

