
The Refinement Calculus, and Literate Development 

Carroll Morgan 

Programming Research Group, Oxford University, 11 Keble Road, Oxford OX1 3QD, UK 

Abstract  

The refinement calculus aims to present the development of imperative programs 
(among others) as a collection of part-abstract, part-concrete program fragments, each 
related to its predecessor by a mathematical notion of refinemeni. One of the benefits 
of that  approach is the construction of a mathematically coherent history, as a program 
is developed, of the steps taken; it contains not only the (initial) specification and the 
(final) code, but also the design decisions in between. 

If one views the development history, rather than simply the final code, as the prin- 
cipal product of program construction, then the parallel with Knuth's ideas on "Literate 
Programming" is clear. This contribution explores those connections, introducing the 
refinement calculus along the way, and illustrates the notion of a development history 
and the operations on it by means of a small functional program. 

1 L i t e r a t e  D e v e l o p m e n t s  

Knuth argued that a computer program is more than simply its source code: it is a 
narrative explaining the development of the algorithm it embodies [6]. The refinement 
calculus for imperative programs further supports that  view, and in this paper is used 
as an illustration of it. 

1.1 Deve lopments  subsume code 

High-level computer languages arose to free the programmer from the details of machine 
coding; as a result, machine- or assembler-code became the concern only of the specialist, 
or of certain kinds of optimisers. The high-level source code became the 'deliverable' of the 
project, and was carefully preserved; all subsequent activities necessary for constructing 
the actual working product - -  such as making machine code, integrating with subroutine 
libraries etc. - -  could be done by the computer itself. 

These days we should have as little interest in the source code as we have for some 
time had in machine code: it is time to move on. We should no longer use program listings 
as the sole (reliable) specification of what a program in the field should be doing (but 



162 Carroll Morgan 

perhaps isn't!) They are inadequate for that ,  and they are similarly limited as a s tar t ing 
point  for enhancement. 

We need program developments. What  always results from making a program (but is 
not always recorded) is: 

1. A sequence of steps from specification to program; 
2. The reasons those steps were taken; and 
3. The justifications for their correctness. 

Let us call that  a development. 
We are not suggesting, at  this stage, that  developments are necessarily formal. Nor 

do we suggest that  the three artefacts above are the whole story. The construction of the 
specification itself (often carried out as the development proceeds!) is however not our 
concern here. 

But few people these days are under the illusion that  developments (in the precise 
sense above) can or should reflect what actually happened during a project,  any more 
than they believe that  delivered programs are writ ten systematically,  at  the rate of N 
lines per day, from line 1 to the end. Developments are for understanding what happened; 
they are not necessarily a record of what actually did happen.  

For developments to replace programs as deliverables, they must  of course be writ ten 
down; but  more than that  it must be possible automatical ly to generate the program 
texts  from them. The analogue of a compiler is needed. 

Further,  j u s t  as (some) compilers check the source-code for 'correctness '  in so far 
as they are able (looking for type errors, uninitialised variables, unreachable code), so 
should the compiler 's analogue be able to check developments for correctness. 

1.2 A n  E x a m p l e  D e v e l o p m e n t  

In Figure 1 is a very small development, in the style of the refinement calculus [2, 8, 11]. 
Point (1) is just  its title, written say on the outside of the book containing it. Point (2) 
is the original I specification; point (3) indicates a development step (in this example, the 
only one); point (4) motivates the step; and point (5) is the result. 

The specification (2) - -  a multiple assignment - -  is wri t ten in a language well- 
understood by many people but not, alas, by many computers.  That  is in the nature 
of specifications: they strive for clarity at  the expense, if necessary, of 'compilabil i ty ' .  

The precise nature of (3), the symbol _ ,  we return to below. The role of the motivation 
(4) is to record for subsequent readers the reason for this step. In this case, it reminds 
one that  the 'obvious'  x : :  y; y : :  x is incorrect - -  because z would be overwritten 
before its value could be transferred to y. 

The (compilable) code appears at  (5); in this case, it  is intended to be Pascal code 2. 
The code collector (let us call it) when given the whole development as input would 
produce jus t  the final portion (5) as output .  That  would, in turn, become the input  to a 
Pascal compiler. We might never see that  code; nor would we expect any error messages, 

1 So-called, although as mentioned above it might be very different from what was originally 
agreed between client and programmer. 

2 . . .  or at least close to it. 



The Refinement Calculus, and Literate Development 163 

Swap two  variables  ~(1)  

x,y := y,z *-(2) 
(3) --* E "Temporary variable avoids overwrite" ,---(4) 

be g i n  vat  t; / 
t := z; 
�9 := ~; . - - (5 )  
y := t; 

e n d  

Fig.  1. A small development 

any more than compiler-produced assembler code should result in diagnostics from the 
assembler. 

1.3 R e f i n e m e n t  

We now return to (3), the symbol U, and the notion of correctness. For programs P and 
Q, in languages like Pascal, we say that  P is refined by Q, writ ten P E Q, if 

(for all a :  wp(P, a) ~- wp(Q, a)) 

holds. 
A checking 'by hand '  of the above development would then read (where a[v\w] means 

'w replacing all (free) v's in a ' )  

wp(begin va r  t; t := x; x := y; y := t end ,  a )  

iff "Definition var;  and assuming a contains no t" 
( v t : :  wp(t : =  x;  x : =  y; ~ : =  t,  ~)) 

iff "Definition of ;" 
(W::  wp(t := x, wp(x := y, wp(y := t , a ) ) ) )  

iff "Definition of :=" 
(Vt:: a [y \ t ] [x \y] [ t \x] )  

iff "Properties of substitution" 
(Vt:: a[y, x, t \ x ,  y, x]) 

iff "t not free in body" 

iff "a  contains no t" 
~[~, x \ - ,  y] 

iff "Definition :=" 
wp(x, y := y, z, a). 

Tha t  may seem rather a lot of work for such a simple development - -  but  par t  of the 
reason the development is simple is that  we've seen it before. (The fact tha t  equivalence 
' iff '  is shown above is an accident of this example: entailment is all tha t  is required.) 



164 Carroll Morgan 

Certainly, remembering standard development steps that  we have done before is the 
key to getting a code collector to do the checking for us. Once a step is checked, we call 
it a refinement, and keep it for later. 

While the collector might not be able to calculate weakest preconditions, or establish 
equivalences in the predicate calculus, it can still check that a given step is an instance 
of one of a large number of stored refinements, each having been checked independently 
beforehand and kept for future (re)use. 

1.4  A R e f i n e m e n t  R u l e b a s e  

To support the checking of development steps one takes advantage of refinements pre- 
viously validated and stored. Three examples are the following, chosen to apply to the 
development of the previous section: 

C h o o s e  spec i f ic  value An expression ? appearing on the right-hand side of an assign- 
ment may be replaced by any value whatever. (The assignment y :=  ? means 'set y 
to any value'.) 

For any expression F,  
x, y :=  E, ? 

E 

x, y :=  E, F. 
I n t r o d u c e  local  var iable  Any variable, not already appearing in the program, may be 

introduced as a new local variable and may then be set to any value. 
For fresh variable t, 

x : : E  
[-- 

beg in  v a r  t; 
z , t  := E ,?  

end .  
L e a d i n g  a s s i g n m e n t  Programs of a certain form (given below) may have a given as- 

signment statement factored out, placed before, and sequentially composed. 
x, y := E[y\  F], F 

[- 

y : :  F;  
x : : E ~  

Using the refinements above, we can repeat the development of Sect. 1.2, where we 
indicate with ,~ the piece of program next to be developed (letting the rest 'carry forward' 
around it): 

x, y := y, ;g 
U "Avoid overwrite" 

b e g i n  vat" t; 
x, y, t :---- y, X, ? '~ 

e n d  



The Refinement Calculus, and Literate Development 165 

v" "Substi tution" 

�9 ,y , t  := y,t[t\x],? 
E "Aim for Leading assignmenf' 

x, y, t :=  y, t[t\.], x 
ff "Leading assignment" 

t : =  x;  

x, y :---- I/, t '~ 
r- "t contains no x" 

,~, y : =  u,t[~\y] 
E "Leading assignment" 

z :=  y; 
y : = t .  

Each of the steps refers either to simple facts about  subst i tut ion or to a refinement in 
our small database.  All that  the collector need check is that  the laws have been properly 
instant ia ted - -  in this case, there are no weakest preconditions or logical implications to 
calculate. 

A second point,  fortuitously raised by the example, is that  developments are not  jus t  
sequences in which the code appears as the final element: they have a richer structure.  In 
general they are trees, or even directed acyelic graphs, from which the code is collected 
by a recursive descent of the structure, assembling at  each node the code resulting from 
its subtrees. 

In the next section we make that  more precise. 

1.5 C o d e  C o l l e c t i o n  

We now give a simple implementation of the above ideas, specialised to the notat ion of 
[9] and Pascal. The functional language Orwell [3] is used to describe it. (This ' imple- 
menta t ion '  is not intended for serious use, of course - -  its purpose is only to explain the 
issues arising from code collection in the refinement calculus.) 

A development is a multi-way branching tree 

> dev ::= Code code 

> [ Ref comment prog ref [dev] 

where we are not specific (here) about the structure of code, comments or programs: 

> code == string 

> comment == string 

> prog == string 

They are jus t  character strings. 

N o t e .  These notes give some ezplanation, for those unfamiliar with Orwell-style func- 
tional languages, of the constructions used in the functional programs of this section. The 
style is to interpolate the relevant symbols (for e~ample ': :=' in the sentence following) 
immediately after their meaning (in this case 'is declared'). 



166 Carroll Morgan 

The type dev is declared : : = to have two alternative forms, indicated by the tags Code 
and Re:f. The first alternative is of type code; the second has four components, of types 
comment, prog, r e f ,  and [dev].  The first three of those components are character strings 
s t r i n g ;  the last is a list [...] of (sub)developments. 

Thus a development is either code already (Code) or it is a commented refinement 
step (Ref), that takes a program via a refinement rule to a structure containing a number 
of subsequent developments. 

The type r e f  itself contains sufficient information in its values only to identify which 
instantiation, of which refinement rule, justifies the step: 

> r e f  : :=  CV 
> l ILV var  
> I LA va t  expr 
> I Eq 
> 

> var == string 

> expr == string 

Thus a step is either 

- Choosing a specific Value for ?; 
- Introducing a Local Variable (whose name is of type va t ,  a string thus); 
- Factoring out a Leading Assignment (for which is noted the name of the variable 

assigned to, and the expression assigned to it); or 
- A trivial rewriting of the program into some other, Equal  to the first. 

'Note that the type r e f  does not contain enough information itself to apply a rule: 
r e f  values merely select from a database of refinements, provided separately. 

With only the above definitions, we can describe the collection process by the function 
c o l l e c t  below: 

> c o l l e c t  : :  dev  - >  code 

> c o l l e c t  (Code c )  = c 
> 

> c o l l e c t  ( R e f  c p r d s )  = a p p l y  r cs ,  
> where  cs = map c o l l e c t  ds 

> p s  = map g e t _ p r o g  ds  

> g e t _ p r o g  (Code c )  = c 
> g e t _ p r o g  ( R e f  c p r ds )  = p 

i f  check r e f d b  r p ps 

No te .  The function c o l l e c t  is of type : : function ->, with source dev and target code. 
Its result is given by eases over the two possible forms of its argument: either Code c for 
some code c, or Ref c p r ds for comment c, program p, refinement rule r, and list 
of subdevelopments ds. The standard function map is used, for ezample, in the phrase 
map c o l l e c t  ds to form a list cs of codes, by applying c o l l e c t  to each element of the 
list ds of developments. 



The Refinement Calculus, and Literate Development 167 

Collecting a development produces code. A trivial development, code already, jus t  
produces tha t  code. Collecting a development beginning with a refinement s tep involves 
m o r e :  

- Function check is used to check the validity of the step: the current program p is 
compared, in the context of a refinement database r e f d b  and the name and pa- 
rameters of the refinement step r selected from it, with the immediately-resul t ing 
subprograms ps; and 

- Function a p p l y  generates, from the code cs  resulting from the subdevelopments,  the 
code of the current one. 

Note tha t  check refers to the subprograms (before collection), whereas a p p l y  refers to 
the code resulting from the subdevelopments. 

We do not give the details of check here; but we can give the definition of a p p l y :  

> apply :: ref-> [code] -> code 
> 

> apply (ILV v) [el = "begin vat " ++ v ++ "; " ++ c ++ " end" 

> apply CV [el = c 

> apply (LA v e) [c] = v ++ ":= " ++ �9 ++ "; " ++ c 

> apply Eq [c] = c 

N o t e .  In " b e g i n  v a r  " ++ v, the (constant) string "beg in  v a r  " is concatenated ++ 
with the string (variable) v. 

The values of type ref do contain enough information to insert programming-language 
constructs, into the code, that  are appropriate to the part icular  refinement step taken. 

Then one may verify that  c o l l e c t  d, where 

> d = Ref "Avoid overwrite .... x,y:=y,x" (ILV "t") 
> 

> 

> 

> 

> 

> 

[ 
Ref "Substitution .... x,y,t:= y,x,?" Eq [ 

Ref "Aim for Leading assignment .... x,y,t:=y,t[t\x] ,7" CV [ 

Ref "Leading assignment" "x,y,t:=y,t[t\xl,x" (LA "t .... x") 

Ref "t contains no x .... x,y:=y,t" Eq [ 

Eel "Leading assignment .... x,y:=y,t[x\y]" (LA "x .... y") [ 

Code "y : =t "] ] ] ] ] ] 

gives the program (with indentation added) 

begin vat t; 

t:=x; x:=y; y:=t 

end 

N o t e .  The phrase [Code " y : = t " ]  is the singleton list of developments, containing the 
one element Code " y : = t " .  

The program contains no comments, and indeed does not need its indentation, because 
humans need never read it. Neither need humans read the definition of d above: it is 



168 Carroll Morgan 

the machine-readable form of the development. A recursive procedure p r i n t ,  similar to 
c o l l e c t ,  given d could produce a listing of the development as in Sect. 1.4. 

With the simple refinements so far used as illustration, structure of a development 
is still essentially linear 3, even though the code is distributed through it. Section 1.8 
gives rules corresponding to many other refinements of [9], where it is apparent that  a 
development is a multi-way branching tree. 

1.6 M a k i n g  D e v e l o p m e n t s  

A convenient way of generating values of type dev (like d of Sect. 1.5) is again to use a 
program - -  making a third, after c o l l e c t  and p r i n t .  

That  program's main functions would be to construct developments in a way as 
convenient as possible for the developer: maintaining and displaying the tree structure, 
suggesting steps to take, and checking as the development is made that the steps are 
valid. That  last would usurp the check within c o l l e c t  just as c o l l e c t  itself usurps 
the syntax checking during subsequent compilation. The call to check during collection 
would be unnecessary. 

The program for making developments, call it develop,  is a refinement editor [12]. 
(Compare syntaz-directed editors for making programs.) 

The checks required during the use of develop  are of course not as simple as may 
have been suggested by all the above. Rule WP in the appendix, for example, corresponds 
to the rule weaken precondition of [9], which reads 

W e a k e n  p r e c o n d i t i o n  The precondition of a specification may be weakened. 
Provided pre F pre', 

to: [pre , post] 
r- 

w: [pre' , post] 

where the proviso is an entailment in the predicate calculus. 4 Naturally, these can be quite 
complex, tending to be the verification conditions with which we are all very familiar. 
Their proofs could be delegated to yet another program (eg. [1]), though it has proved 
in practice that some simplification is best performed by develop  itself. 

1 .7  C o n c l u s i o n  

A brief sketch has been given of the way in which the ideas of Hoare [5], Wirth [13], 
Dijkstra [4] and Knuth [6] appear in and inform the use of the refinement calculus, and 
of how the organisation of program developments is favourably affected. 

Developments similar to those we have described above should form one component 
of the collection of artefacts associated with the making of any program, whether large 
or small. The program's source code need not. 

8 ... and thus in this example, sub/ists of developments aren't really necessary. 
4 In [9], the entailment symbol is a triply-barred right arrow. 



The Refinement Calculus, and Literate Development 169 

1.8 Further  Re f inemen t  Rules  

The following declarations are given to cover more completely the rules of [9], and some 
familiarity with it may be necessary to absorb this section fully. They have been slightly 
altered so that  Pascal-like code results (rather than guarded commands [4]): alternations 
(if), iterations (do) are affected. 

N o t e .  In this section we assume rather more familiarity with Orwell also, forgoing fur- 
ther ecplanations of its constructs. 

Further differences, mainly to do with procedures and their parameters, are beyond 
us here; background may be found in [7]. But note that call by value-result is used, rather 
than call by vat. 

> ref ::= 
> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> guard 

> con 

. ~ 1 7 6  

NP proviso 

SP proviso 

SC 

Con con 

Altl guard 

AI~2 guard 

Iter guard 

Proc name 

Rec name con body 

Param [param] 
Call 

== string 

== string 

> proviso == string 

> param ::= Value vat expr 

> I ValueResult vat vat 

> I Result vat vat 

The Proc alternative is used to introduce a procedure with name n. The body of the 
procedure is given as the first subdevelopment, and the calling program is the second: 
thus either or both may subsequently be developed. The check function, or equivalently 
develop,  must when processing Cal l  determine that the program replaced by just a name 
(of a suitable procedure) does in fact correspond to a procedure introduction higher up 
the development tree. This can be accomplished by building up an environment of  name- 
program pairs, augmented by Proc steps, where the program in each case is the procedure 
body before subsequent development. (See function ge t_prog  in Sect. 1.5.) 

The Rec alternative introduces recursion. Unlike procedure introduction, the name- 
program pair is retained in the refinement step, and is not subsequently refined. The 
'calling program' is refined, of course, and subsequent Cal l  steps in it have access to the 
recursion name-program pair in exactly the same way as for procedures. (And that  is 
why p appears in the development structure even though it is ignored by c o l l e c t  below: 



170 Carroll Morgan 

it is used by check . )  The  con componen t  is the  logical cons t an t  used to  force decrease  

of  the  variant .  

The  ex t ra  definit ions for a p p l y  are as follows: 

> apply (WP I) [c] = c 

> apply (SP 1) [c] = c 

> apply SC [cO,cl] = cO ++ "; " ++ ci 

> a p p l y  Con [cO] = cO 
> 

> apply (Altl g) [c] = 
> 

> 

> 

> apply (Alt2 g) [cO,cl] = 
> 

> 

> 

> 

> apply (Iter g) [c] = 
> 

> 

> 

> a p p l y  ( P r o c  n)  [ c O , c l ]  = 
> 
> 
> 

> 

> a p p l y  
> 

> a p p l y  
> 

> where 
> 

> 

> 

> 

> 

> 

> 

> 

> apply Call [c] = c 
> 

> 

> comas = between "," 

> between s = foldr f "" 
> 

"if " ++ g 

++ " then begin " ++ c 

++ " end" 

" i f  " ++ g 

++ " t h e n  b e g i n  " ++ cO 

++ " end e l s e  b e g i n  " ++ c l  

++ " end" 

"while " ++ g ++ " do begin " 

++ c 

++ " end" 

"begin procedure " ++ n ++ "; " 

++ "begin " ++ cO ++ " end; " 

++ c l  

++ " end" 

(Rec n p) [c] = "re " ++ n ++ ". " ++ c ++ " er" 

.(Param ps) [c] = "(" ++ c ++ ")[" ++ lefts ++ "\" ++ rights "]" 

l e f t s  = c o m a s  (map l e f t  p s )  

r i g h t s  = c o m a s  (map r i g h t  p s )  

l e f t  (Va lue  v e )  = " v a l u e  " ++ v 
left (ValueResult vl v2) = "value result " ++ vl 

left (Result vl v2) = "result " ++ vl 

right (Value v e) = e 

right (ValueResult vl v2) = v2 

right (Result vl v2) = v2 

e h e r e  f x s  y s  = x s  ++  s + +  y s  



The Refinement Calculus, and Literate Development 171 

2 An Example Development: Square Root 

2.1 Abstract  Program 

We are given a natural  number s; we must set the natural  number r to the greatest  
integer not exceeding v/S, where ~ / t akes  the non-negative square root of its argument.  
Here is our abst ract  program: 

v a r  T, S: n a t  �9 

r: = L ~ J .  (i) 

Our program is abstract ,  though an assignment, because in this case s tudy we assume 
that  neither ~ / n o r  L...J is code. Our aim in development will be to remove them from 
the program, replacing them with more basic constructions. 

2 . 2  Rout ine  Steps 

These first steps remove the square-root V / and floor [. . .J functions from the program 
by drawing on their mathematical  definitions. 

E "simple specification" 

,.: [,. = [ ~ J ]  
E_ "definition L J" 

r: [r < v/s < r +  1] 
E "definition ~/;  r E nat" 

r: [r 2 < s < (r  + 1)~]. (ii) 

Now compare (i) and (ii). The first is written for the client: it uses powerful operators,  
leading to clear and succinct expression. The second, having appealed to the mathemat i -  
cal definitions of those operators,  is written for the programmer: it  exposes the s tructure 
he needs to exploit. 

2.3 The  Key  Step 

If we replace r + 1 in the postcondition by a new local variable q, we might  keep r 2 <_ 
s < q2 invariant while bringing q and r together. That  is a common technique: replace 
an expression by a local variable, then develop code which makes the local variable equal 
to the expression it replaced. The development step is the following: 

E v a r  q: nat �9 

q, r: [r 2 < s < q2 A r + 1 = q] . 

Having separate  bounds on s gives us more scope: initially, q and r could be far apar t ;  
finally, we should establish r + 1 = q. That  suggests an iteration, and the next few steps 
are routine: we introduce an abbreviation ( I  for the invariant), establish the invariant  
(initialisation), and introduce an iteration whose body maintains it. 

The abbreviat ion I ~ . . .  is written as a decoration of the refinement: it  is available 
in the development from that  point on. The symbol ~ identifies the par t  of the program 
to be refined in the very next step. 



172 Carroll Morgan 

E_ I - q r 2 < s < q 2 � 9  

q,r:  [I A r  + l = q ]  
E q,r: [/]; 

q , r : [ I ,  I A r + l = q ]  
U "invariant I ,  variant q - r" 

d o r + l ~ q  --* 
q, r: [r + l ~ q , I ,  q - r < qo - ro] 

od. 

(iii) 
q 

Note that  the invariant bounds the variant below (as required). We leave the refinement 
of (iii) to Ex. 1. 

Our next step is motivated by the variant: to decrease it, we must  move q and r closer 
together. If we move one at  a time, whichever it is will take a value strictly between q 
and r. So we introduce a local variable for that  new value, and make this step: 

_E v a t  p: nat �9 

p : [ r + l < q ,  r < p < q ] ;  (iv) 
q, r: [r < p < q , I ,  q - r < qo - ro] . ,~ 

Note that  remove invariant has removed I from (iv). 
We intend to re-establish r 2 < s < qZ in the postcondltion by an assignment q: = p 

or r: = p. The first requires a precondition s < p2 (at least as strong as that :  recall the 
assignment law); the second requires s > p2. Tha t  suggests a case analysis, leading to an 
al ternation as follows: 

E_ i f  s < p z ~ q: [~ < p2 A p < q , I ,  q < q o ]  (v) 
D s > p  2 ---+ r: t > _ p 2 A r < p ,  I ,  r o < r J  (vi) 
fi 

(v)  E_ q: = p 
(vi) E_ r : =  p. 

Note that  the refinement markers (v) and (vi) refer to the bodies of the al ternation 
branches, and do not include the guards. 

Now only (iv) is left, and it has many refinements: p: = r + 1 and p: = q - 1 are two. 
But a faster decrease in the variant - -  hence a more efficient program - -  will result if we 
choose p midway between q and r: 

(iv) E p: = ( q + r ) + 2 .  

There we have reached code. But we need not list the entire program, now or ever; and 
we need not document it. 

2 .4 E p i l o g u e  

Proper commenting and laying out of the final code is impor tant  only when there is no 
history of the development of the program: then, the code is all we have. An analogy 
with present practice (where machine processable developments are not retained) is that  



The Refinement Calculus, and Literate Development 173 

commenting of assembler code is necessary only when the high-level source code has been 
thrown away. 

Now we know, though, that  code is not meant to be read: it is meant to be executed 
by computer. And we have developments, such as the one above. It is a sequence of steps, 
every one justified by a refinement law, whose validity is independent of the surrounding 
English text. The initial, abstract, program is at the beginning, and the final executable 
code is easily (mechanically) recoverable, at the end. The structure of the program is 
revealed as well: logically related sections of code are identified simply by finding a 
common ancestor. Furthermore, the development allows the program to be modified 
safely. 

The code of our example is collected in Fig. 2. CouM we choose some other value 
of p on the indicated line? The development, shown in Fig. 3, gives the answer: the 
commented command in the code can be replaced by p: = r + 1 without affecting the 
program's correctness. The validity of the following refinement step is all that  is needed, 
and the rest of the program can be completely ignored: 

p : [ r + l < q ,  r < p < q ]  C_ p : =  r + l .  

No comment could ever have that credibility. 

I[ var q: n a t .  
q,r:= s +  1,0; 
do r T17k  q---* 

I[ var p: nat �9 

p :=  (q-4-r)--2; 
if s < p2 ---~ q: = p 

s~_p2--+r:= p 
fl  

]1 
od 

]1 

Fig. 2. Square root code 

There are still good reasons for collecting code. One is that  certain optimisations 
are not possible until logically separate fragments are found to be executed close to- 
gether. Tha t  is like a peephole optimiser's removing redundant loads to registers from 
compiler-generated machine code: the opportunity is noticed only when the machine code 
is assembled together. And those activities have more in common, for both are carried 
out without any knowledge of the program's purpose. It is genuine post-processing. 

For us, the documentation is the English text accompanying the development history 
(including the quoted decorations on individual refinement steps). Because it plays no 
role in the correctness of the refinements, we are free to tailor it to specific needs. For 
teaching, it reveals the strategies used; for production programs, it might contain hints 
for later modification ( 'Binary chop'). 



174 Carroll Morgan 

(iii) 
(iv) 
(v) 

(vi) 

v a t  r~ 8: n a t  �9 

r : =  LvqJ 
= ~: [.' _< ~ < (. + :)'] 

vax q: nat �9 

q,r: Jr2 ~ s < q '  A r - F l = q ] .  

I ~ r 2 < _ s < q 2 � 9  
q, r: [I A r + l = q] 

IS q,r: [I]; 
q,r: [I , I A r + l = q ]  

IS d o r + l ~ : q  --, 
q,r: [ r + l ~ q ,  I ,  q - - r  < qo--ro] 

o d  
IS var p: nat �9 

p : [ r + l  < q ,  r < p < q ] ;  
q,r: [r < p < q ,  1 ,  q - - r  <q0--r0]  

C if s < p  ~ ~ q: [ s < p 2 A p < q ,  I ,  q<qo]  
I] s > p  2 ---* r: [ s > p 2 A r < p ,  I ,  r0<r]1 
tt 

IS q , r : =  s+l ,O 
p: = (q + r) + 2 "Binary chop." 
q:= p 

IS r:= p 

Fig .  3. Square root development 

(iii) 

(iv) 

(v) 
(vi) 

What of testing and debugging? They are still necessary. The code of the Paragraph 
case study [9, Chapter 20] was collected, transliterated by hand, 5 and then tested. 

But there was an error in the transliteration: a multiple assignment x, y: = E, F was 
translated in error to x: = E; y: = F (the expression F contained z). Such errors are 
easily detected, and even avoided, by incorporating the checks in an automated trans- 
literator. 

A second error was due to a single mistake in the development, and that was removed 
by checking the refinement steps in detail without reading the English text. Thus it is 
the development that  is debugged: the thought of checking the code itself was shockingly 
unpleasant. 

Those were the only errors, and 'it ran third time': mathematieal rigour cannot elim- 
inate mistakes entirely. But it can drastically reduce their likelihood. 

2.5 E x e r c i s e s  

Exerc i se  1. Refine (iii) to code. 

E x e r c i s e  2. Why can we assume r + 1 < q in the precondition of (iv)? Would r < q have 
been good enough? Why? 

5 into Modula-2. 



The Refinement Calculus, and Literate Development 175 

Exercise 3. Justify the branches (v) and (vi) of the alternation: where does p < q come 
from in the precondition of (v)? Why does the postcondition of (vi) contain an increasing 
variant? 

Exercise 4. Return to (it) and make instead the refinement 

r- I _ ~ r 2 < s .  

r :  [I ^ s < (r + i)~]. 

Refine that to code. Compare the efficiency of the result with the code of Figure 3. 

3 A S e l e c t i o n  o f  R e f i n e m e n t  Laws  

A selection of refinement laws is given for the development of imperative programs. The 
notation is based on Dijkstra's language of guarded commands [4] and the specifications 
of [9]. 

The laws appear in alphabetical order by name. 

Law absorb assumption 
An assumption before a specification can be absorbed directly into its precondi- 
tion. 

{pre'}; w: ~vre , post] 
= w: ~ r e ' A p r e  , post]. 

Law absorb coercion 
A coercion following a specification can be absorbed into its postcondition. 

w: [ . re ,  post]; ~ s t ' ]  
w: ~ r e  , post A post']. 

Law alternation 

{(V i �9 e,)}  prog 
E if (0i �9 Gi --+ {Gi} prog) ft. 

Law assignment 
If (w = Wo) A pre t- post[w\E],  then 

w, x: ~vre , post] E w: :- E.  

Abbreviation assumption 

{pre} ~- : ~ r e  , true]. 



176 

Abbrev ia t ion  coercion 

~ost] ~ : [true, post]. 

Carroll Morgan 

Law contract frame 

w ,  x :  [pre , post] E w : [ p r e ,  pos t [xo \x ] ] .  

Abbrev ia t ion  default precondition 

w: ~ s t ]  ~ w: [ tr ,e ,  post] .  

Law establish assumption 
An assumption after a specification can be removed after suitable strengthening 
of the precondition. 

w: k,re, po,t]; (pre') 
= w: It,re ^ (Vw- po,t ~ pre') [wo\w], post]. 

Law following assignment 
For any term E, 

w, x: ~re , post] 
E w, ~: [pre,  p o s t [ ~ \ ~ ] ;  

Z ' =  E.  

Law initialised iteration 

w: ~re , inv A ",G~ 
E w: ~re , inv]; 

do G --* w: [G Ix i n v ,  inv ^ (0 < V < Vo)] od. 

Law introduce assumption 

[post] E [post] {post}. 

Law introduce coercion 
skip is refined by any coercion. 

skip E Lvost]. 



The Refinement Calculus, and Literate Development 177 

Law introduce local block 
If x is fresh, then 

w: [we,  post] E I[ vex x: T; a n d  inv * w, x: [pre , post] ]1. 

L a w  introduce logical constant 
If  pre ~- (3c: T �9 pre'),  and c is a fresh name (it does not occur in w, pre, post), 
then 

w: [ w e ,  post] 
E c o n  c: T *  

w: [we' ,  post]. 

Law iteration 
Let inv, the invariant, be any formula; let V, the variant, be any integer-valued 
expression. Then 

w: [inv , inv A ~ ( V i  �9 Gi)] 
E do  

(Di*Gi ~ w: [inv A Gi , inv A (O < V < Vo)] ) 
od.  

Neither inv nor Gi may contain initial variables. The expression Vo is V[w\wo]. 

Law leading assignment 
For any expression E, 

w, x: [pre[x\E] , post[xo\Eo]] 
E x :=  E; 

w, x: ~re  , post]. 

The expression Eo abbreviates E[w, x\wo, x0]. 

Law merge annotations 

{pre') {pr,} = {pre' ^pre) 
[post] [post'] = [post ^pos t ' ] .  

Law multiple substitution 
Provided neither f nor g occurs in F or G, 

prog[parl  f:  T \ F ] [ p a r 2  g: U\G] 
E prog[parl  f:  T, par2  g: U\F,  G]. 

The substitutions p a r l  and par2  may be any combination of value,  resu l t ,  and 
v a l u e  resu l t .  



178 Carroll Morgan 

Law recursion 
For any program prog, 

prog 
E r e N ~ { O < E < v } p r o g � 9  

{ E  = v}prog. 

The integer-valued expression E is the variant. Both N and v are fresh names; 
and furthermore v is a logical constant, which must be removed to reach code. 

A b b r e v i a t i o n  recursive procedure 

procedure P ~ prog[N\P]  
p r o c e d u r e  P ~ re  N �9 prog er. 

Law remove alternation 

i f  t rue- -~  branch fi : branch. 

Law remove assumption 
Any assumption is refined by skip. 

{pre} E skip. 

Law remove coercion 

{pre}[pre] E {pro}. 

Law remove false guard 

i f  (0i �9 Gi --* branchi) 
false ~ branch 

fi 
= if  (fli �9 Gi ~ branchi) ft. 

Law remove invariant 
Provided w does not occur in inv, 

w: ~re  , inv , post] E w: [pre, post]. 



The Refinement Calculus, and Literate Development 179 

Law remove logical constant 
If X occurs nowhere in program prog, then 

I [ e o n X : T * p r o g ] l  E prog. 

Law rename formal parameter 
If ! does not occur in grog, 

prog[par f: T \A]  = prog[ f \ i l~ar  1: T\A].  

Law result assignment 
Provided f does not occur in E or F,  

w , a : =  E , F  
E [result f : T \ a ] .  

w , f : =  E ,F .  

Law result specification 
If f does not occur in pre, and neither f nor fo occurs in post, then 

w, a: ~re  , post] 
C_ [resul t  f : T \ a ] .  

~, f: ~re ,  post[a\f]]. 

Law right-distribution of assignment over alternation 

z: = E; i f  (0i * Gi ---+ branchi) fi 
= i f  (~i * Gi[x\E] --+ x: = E; branchi) ft. 

Law select true guard 

i f  (~i * G~ --+ branchi) 
true --* branch 

fi 
E branch. 

A b b r e v i a t i o n  sequence assignment 
For any sequence a, if 0 _< i , j  < # a  then 

a[i:= E]~] ~ E when i = j 
a[j] when i ~ j .  



180 

Law sequential composition 

Carroll Morgan 

w, x: [t re , post] 
C_ x: [Fre, mid]; 

w, x: [mid ,  post]. 

The formula mid  must not contain initial variables; and post must not contain 
XO. 

Law sequential composition 
For fresh constants X, 

w,  z:  [Fre , post] 
r-- con  Xo 

x: [we , mid];  
w, x :  [mid[xo\X] , post[xo\Xl].  

The formula mid must not contain initial variables other than x0. 

Law simple specification 

w : =  E = w : [ w = E o ] ,  

where Eo is E[w\wo]. 

Law skip command 
If (w = wo) A Fre t- post, then 

w: ~re  , post] C s k i p .  

A b b r e v i a t i o n  specification invariant 

w: ~ore , inv , post I ~-- w: ~rrc A inv , inv A post] . 

Law strengthen postcondition 
If  pre[w\wo] A post ~ t- post, then 

w :  [pre , post] c_ w: [Fre , p o , t ' ] .  

Law tail recursion 

r e  L e  
i f  --G ~ skip ~ G ---, Frog; L fi 

e r  

- do  G --* Frog od. 



The Refinement Calculus, and Literate Development 

Law value assignment 

w: = E[ f \A]  
E [value f : T \ A ] o  

w'- -  E. 

The actual parameter A may be an expression, 
type T. 

and it should have 

181 

Law value specification 
If post does not contain f ,  then 

w: ~e[f\A],  post[fo\Ao]] 
E [value f : T \ A ] *  

w, f: ~re , post], 

where Ao is A[w\wo]. 

Law value-result assignment 

w, a: = E[f\a],  F[f\a] 
E (w, f:  : E, F)[value resul t  f: T\a]. 

Law value-result specification 
If post does not contain f ,  then 

w, a: [p,e[y\a], post[yo\ao]] 
_ [value resul t  f: T\a]*, 

w, f: [p,e , post[a\f]]. 

Law value-result specification 
If post does not contain a, then 

w, a: [pre[f\a] , post[fo, f \ao,  a]] 
E [value resul t  f: T \a] .  

w, f :  B e ,  post]. 

Law weaken precondition 

If pre ~- pre', then 

w: ~re , post] E w" [pre', post]. 



182 

References 

Carroll Morgan 

1. Abrial, J.-R.: An informal introduction to the B tool. B.P. Project Report, Programming 
Research Group, Oxford University, 1986. 

2. Back, R.-J.R.: A calculus of refinements for program derivations. Acta Informatica, 25:593- 
624, 1988. 

3. Bird, R.S., Wadler, P.: An Introduction to Functional Programming. Prentice-HM1, 1987. 
4. Dijkstra, E.W.: A Discipline o] Programming. Prentice-Han, Englewood Cliffs, 1976. 
5. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications o] the ACM, 

12(10):576-580, 583, October 1969. 
6. Knuth, D.E.: Literate programming. The Computer Journal, 27(2):97-111, 1984. 
7. Morgan, C.C.: Procedures, parameters, and abstraction: Separate concerns. Science of Com- 

puter Programming, 11(1):17-28, 1988. Reprinted in [10]. 
8. Morgan, C.C.: The specification statement. ACM Transactions on Programming Languages 

and Systems, 10(3), July 1988. Reprinted in [10]. 
9. Morgan, C.C.: Programminff from Specifications. Prentice-Hall, 1990. 
10. Morgan, C.C., Robinson, K.A., Gardiner, P.H.B.: On the refinement calculus. Technical 

Report PRG-70, Programming Research Group, 1988. 
11. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. 

Science of Computer Programming, 9(3):287-306, December 1987. 
12. Vickers, T.N,: An overview of a theorem proving assistant. Australian Computer Science 

Communications, 12(1):402-411, 1990. 
13. Wirth, N.: Program development by stepwise refinement. Communications of the ACM, 

14:221-227, April 1971. 


