
Endomorphic Typing

Michel Sintzoff

Universit~ Catholique de Louvain, Unit~ d'Informatique,
pl. Ste-Barbe 2, B-1348 Louvain-la-Neuve, Belgium

Abstract

This paper surveys a number of requirements for the adequate formulation of deduc-
tions such as program derivations. The kernel of a possible framework for such formu-
lations is proposed. It is described in terms of a naive semantics and of corresponding
algebras; deductions are composed from basic deduction-rules, and typing is defined as an
endomorphism on deductions. Approaches based on typed h-calculi, including the Deva
language, are compared with the proposed one, and a few general issues are discussed.

1 E x p r e s s i o n o f P r o g r a m D e r i v a t i o n s

First, we sum up requirements for the expression of program derivations. These require-
ments stem from experiments in the formalization of program deductions and of pro-
gramming methods. Accordingly, the initial driving force has been programming rather
than logic or algebra; this may explain differences in basic options. Yet, logic and algebra
played a growing part in the subsequent technical elaboration, and the resulting approach
appears to be also relevant for proofs.

1.1 Deduct ions of Programs

Given the Curry-Howard isomorphism between types and formulae [5] (w it is mathe-
matically legitimate to derive programs by extracting recursive functions from construc-
tive proofs. This characterizes one specific method of program design. Our aim is to
express also other mathematical methods of program construction, such as refinements
and transformations.

As a consequence, we relate programs to deductions as follows. Problem specifica-
tions and the corresponding programs are all viewed as formulae at the same level of
discourse. The derivations yielding programs from specifications are then considered to
be deductions of formulae from formulae.

1.2 Specif ications of Deduct ions

Program deductions should not be recorded just in terms of constructive steps, e.g. actual
rewritings, substitutions, or applications of laws: without knowing the desired effect of

306 Michel Sintzoff

such concrete steps, it is difficult to understand the logic of deductions. Thus, operational
steps in program deductions should themselves be specified, e.g. in terms of antecedent
prerequisites and consequent properties [21]. This amounts to using at the meta-level
the technique of specifying program components by pre- and post-conditions: deductions
yielding programs are meta-programs, and the specifications of these deductions are meta-
specifications. If a deduction step is specified by antecedent and consequent formulae, this
step actually realizes an inference rule consisting of that antecedent and that consequent.

It is well recognized that programs should be given together with their specifications,
and should be correct w.r.t, these. Similarly, program deductions and programming meth-
ods should be correct w.r.t, their own specifications. A programming method abstracts
a family of similar deductions; it is specified by the corresponding families of source
specifications and of target programs.

As a consequence, two initial requirements emerge:
- elementary and composed deductions should be correct w.r.t, pairs of formulae;
- deductions and formulae should be expressible at various levels, e.g. for programs,

for rules of program deduction, and for deductions of deduction rules.

1 . 3 S c a l i n g - u p o f D e d u c t i o n s

Applications demonstrate the importance of structuring means in expressing program
deductions [22]. The need for constructs which are already well known at program level
has been naively re-discovered at the level of program deductions. The following charac-
teristics appear essential for effective scaling-up and intellectual mastery:

- compositionaiity: deductions should be composed serially, collaterally, and itera-
rive]y, viz by functional composition, by product, and by recursion;

- definitionality: auxiliary deductions should be definable in abbreviations;
- genericity: deductions should be parametrizable w.r.t, formulae and their properties;
- inheritance: contexts in which deductions are formulated should themselves be struc-

tured and re-usable, also using abstractions, compositions, definitions, and genericity;
- economy: identical structures, e.g. composition, at different levels should use iden-

tical means of expression;
- consistency: the formalization framework may not cause new logical errors.

1 . 4 P u b l i s h a b l e D e d u c t i o n s

A careful distinction must be made between the ideal expression of the ideal deductions
producing a given program, and the faithful expression of the discoveries, searches, at-
tempts, heuristics, hints, and failures underlying the elaboration of those ideal deductions.
The present requirements concern the former and not the latter: these issues must be
separated, lest they become unmanageable. In other words, our current aim is merely to
find formal means of expressing completed deductions in reference publications so that,
by their adequacy and attractiveness, they would favourably compare with the current
semi-formal techniques. This aim may be far-off, but is not far-fetched in principle: after
all, the old semi-formal style of publishing numerical algorithms has been successfully
replaced by the structured use of clear algorithmic notations.

Endomorphic Typing 307

As a consequence, our aim is not primarily to assist thinkers in discovering deduc-
tions, but more modest ly to provide them with a formal and a t t ract ive framework in
which to communicate these deductions in a clear setting. By "a t t rac t ive" , we mean
"bet te r than with usual means". The state of the art in formal notat ions for deductions
is unsatisfactory in this respect: the formalization of semi-formal deductions typical ly
multiplies their length by a significant factor, and often obscures the reasoning instead of
clarifying it. The elegance of exemplary semi-formal deductions [25] should be preserved,
and the expansion factor should rather be a reduction factor. Algebra itself has evolved
this way.

By semi-formal deductions, we refer to the current representations of deductions by
sequences, trees or graphs; in the lat ter case, the vertices are intermediate formal expres-
sions, and the edges are informal indications. These informal edges should be formalized
in such a way that the formulae on vertices could be left out at will, and tha t the deduc-
tions would become nice as well as precise.

Besides clari ty and structure in the expression of program deductions, addi t ional use-
ful effects can be obtained. For instance, formal deductions can be verified and processed
by algorithms; we all know the pitfalls of hasty, semi-formal deductions. Thus, au tomated
assistance in maintaining correctness and in performing s tandard sub-deductions can cer-
tainly be provided. But the wish to assist should not hamper the fundamental aims of
elegance and structure in the final expressions of deductions. Let us avoid thinker-hosti le
systems.

2 N a i v e V i e w o f a F r a m e w o r k o f E x p r e s s i o n

The requirements above, even excluding automated assistance, are challenging; we try to
satisfy these by successive approximations, being unable to do it at once. We thus present
yet another approximation in this direction, and focus on its semantics so as to discuss
fundamental issues. Semantics means here understanding, not primari ly mathemat ica l
theories or operat ional models. The concepts presented below have been identified and
selected on the basis of experiments in the expression of program deductions using various
methods.

A deduction step realizes a correspondence between formulae. Such formulae may
express problem-specifications and programs. So, a central concept is that of an effective
derivation step c implementing a ru l e from formula a to formula b, in short c : a ~ b.
The Curry-Howard isomorphism between types and formulae

types formulae
functions -- deductions

is thus instantiated to the following relationship:

types formulae for specifications and programs

funct ions - deductions o f programs f r o m specifications

The type Tc of a deduction c has the structure of an inference rule from a problem-
specification a to a program b, viz Tc = (a ~-* b). This constitutes the essence of cor -
r e c t n e s s for a deduction c.

308 Michel Sintzoff

In general, Tu = v means that u realizes, implements, or substantiates v; in other
words, v is the class or the type of u. If a and b respectively belong to the classes t and
s, then the product a • b belongs to the class pairing t and s, viz the product t x s.
Accordingly, a rule or correspondence from a to b, which is also a pair, belongs to the
class which is a correspondence from t to s. The type of a construction has thus the
s a m e s t r u c t u r e as this construction.

The types of derivations can be viewed as abstract derivations, and may themselves
be given more abstract types. The concept of abstractness is relative, since any classifying
entity can in turn be classified. For instance,

T(8192) = Natural , T(Natural) = Algebra, T(Algebra) = Ins t i tu t ion .

Deductions should be composed from basic deduction-rules by serial composition,
collateral composition, case-analysis, and repetitions. Hence, other important concepts
are those of composition, product, sum, and iteration. Functional composition appears
more fundamental than function application to the extent that priority is given to the
c o m p o s i t i o n of deductions.

Deductions are thus structured very much like functions or programs. As function-
expressions are formulae, deduction-expressions should also be taken as formulae, in
order to express and to specify the deductions of deduction-rules ; this need has been
repeatedly stressed in the context of program derivation [18, 23]. Hence, a useful concept
is that of hi#her-level formulae for expressing deductions or properties of formulae. We
adopt a deduction-level view from the outset, for the same reason we prefer function-level
expressions for programs.

Environments define specific theories in which given deductions are carried out. Such
contexts should be tackled as formal entities on a par with deductions; thus, formulae for
contezts should be as well composed as formulae for deductions. Contexts and deductions
should be definable generically, viz using abstraction and instantiation. Inheritance of
available contexts and deductions is essential for an understandable composition of new
ones; inheritance must be supported at least by the introduction and the use of definitions
with scope rules.

Confusion between semantic levels must be prevented, e.g. by a safe stratification of
formulae. In any case, cons i s t ency must be preserved.

The economy of fundamental structures is fostered by unifyin# redundant variants
of identical syntactical operators, e.g. binding in functional expressions and binding in
dependent products, and by using dualities whenever appropriate, e.g. between products
and sums.

The above concepts are closer to the spirit of well-structured higher-level program-
ming languages, than to the style of basic logic languages where structuring means usu-
ally are lacking or are introduced as extensions. There is a similar difference between an
ML-like language and a basic typed-h-calculus.

3 A l g e b r a i c D e f i n i t i o n o f t h e P r o p o s e d F r a m e w o r k

The view presented in the previous section can be formulated in terms of simple algebras.
These will be presented gradually, by successive enrichments. In these algebras, typing

Endomorphic Typing 309

is defined as an e n d o m o r p h i s m : it is an homomorphism because types result from
abs t rac t deductions which have the same structure as the deductions to be typed; this
homomorphism is internal, i.e. it is an endomorphism, because types are values too, albei t
somewhat more abstract than other ones.

3.1 The Basic Algebras CT0: Compos i t ion of Rules and Typing

The first algebras we introduce are quite simple: they merely allow one to compose objects
which in general have a rule-like structure. The CT0-aigebras embody the main features
of the proposed approach, namely composition of rules and endomorphie typing. The
addi t ion of other operations does not modify this kernel.

The presentation of the CT0-aigebras consists of the following signature and axioms;
the axioms for typing are given separately so as to clarify the definition.

Signature

Objects, i.e. CT0-elements, are defined as follows:
- constant objects are given;
- if a, b are objects, then rule(a, b) and comp(a, b) are objects, termed "composi te";
- there are no other objects.

This amounts to the following signature, where the constants ~ j (j E J) are nullary
functions:

~j : --* object
rule, comp : object • object ---* object

The following left-to-right notations are used:

corn p(a, b) a; b
rule(a, b) a ~-+ b

A composite rule-object a ~ b expresses a binary correspondence between the objects
a and b. These correspondences are relational rather than functional, since a ~ b as well
as a ~-* c are allowed for any objects a, b, c. The recursive construction of objects by ~-*
mirrors that of simple functional types.

Axioms

The operation comp is associative, and the operation rule is transitive:

a; (b; c) -- (a; b); c (1)

(a ~-+ b); (b ~ c) -- (a ~ c) (2)

Thus, when b and d are distinct objects, (a ~ b); (d ~-+ c) is defined but is not
reducible. The transi t ivi ty of ~-* mirrors the transit ivi ty of implication and of rewriting.

310 Michel Sintzoff

The typing endomorphism

The typing endomorphism T maps objects to objects and it preserves the structure
of CT0:

T : object ~ object

T(a; b) = (Ta; Tb) (3)

T(a ~-* b) = (Ta ~ Tb) (4)

In CT0, rule-objects a ~-* b are defined for any objects a, b. To characterize realizable
rule-objects, we may use the typing endomorphism T: a rule-object a ~-~ b is viewed as
realizable, viz valid or inhabited, if it is is in the range of T, i.e. if there is some more
concrete object e such that Tc = (a ~-~ b). This c can be seen as a construction realizing
the rule-type a ~ b.

The gist of the typing endomorphism is the correspondence between concrete deriva-
tions such as (a; b) and their abstract counterparts such as (u; v), which may well be
(p ~ q); (q s-. s) = (p ~-* s).

Constraints on the typing endomorphlsm

The definition of typing as an endomorphism mainly says it preserves the structure
of objects, i.e. T is stable through rule and comp. This may be seen as too permissive:
for instance, it may be unwise to accept cycles through repeated typing, viz T3a = a.
On the other hand, it may be useful to have a root-object r which is its own type, viz
T r = r; such a root may serve as a terminal object w.r.t, typing.

From a mathematical standpoint , cycles may well exist in endomorphisms as in
graphs. From a methodological standpoint , it may be wiser to consider only pure hierar-
chies in the abstract ion levels of types, To this end, we may impose addit ional constraints
on the typing endomorphism. For instance, in order to exclude cycles in typing, we can
use typing to s t r a t i f y objects as follows.

Among the constant objects, there is a roo t -ob jec t r such that T r = r. This root-
object ensures T is always defined. If we want to forbid typing cycles also on the root,
we may simply introduce a denumerable set of roots ri such that Trl = ri+l for i > 0.

Then, each object is given a l eve l which measures its distance from below to the
root-object by repeated typing. Levels stratify objects; a t the top of the hierarchy, we
have the objects of level zero, or skeletons, which are composed of the root-object only.

The level of any object a is the smallest integer n such tha t Tna is a skeleton. Thus,

level(a; b) = level(a ~ b) = m~x(level(a), level(b)) .

The greater the level of an object, the more concrete or the more informative it is.
The root-object gives almost no information. A stratifying endomorphism T decrements
levels; this prevents semantic confusion between objects in different layers of abstraction.

For instance, if

Endomorphie Typing 311

T c = a , T a = r , T r = r , T b = (a ~ - * r) ,

then the level of ((a ~ c) ~ b) is 2 and its skeleton is ((r ~ r) ~-* r):

T 2 ((a c) b)
: T ((r ~-* a) ~ (a ~ r))
=

The proposed stratification induces a tree-like organization of typing. This could be
generalized to a direct acyclic graph, by extending the endomorphism T to a relation.

To be on the safe side, we assume henceforth that the typing endomorphism T stratifies
objects.

V a l i d i t y

In CT0, all compositions of objects are permit ted, including those by rule. We need
to characterize those valid objects which can be recursively deduced from certain objects
by certain rule-objects. To this end, we define the v a l i d i t y of objects as follows. Given
a set of distinguished objects,

- each distinguished object is a valid object;
- if a and b are valid objects, then a; b is a valid object;
- if a is a valid object, then Ta is a valid object;
- there are no other valid objects.

Thus, validity is preserved by comp and T, not by rule: we may derive (u ~-* v); (v --*
w) = (u ~ w) from u ~ v and v ~ w, but we may not throw in any rule-object t ~-~ s,
even if t and s are valid. This definition of validity is assumed for all CT-algebras, with
suitable adapta t ions w.r.t, additional operations.

Note this definition is permissive: it permits rather useless, albeit harmless, objects
such as (a ~ b); (c ~ d) where b # e, and even where Tib # Tic for all i. The given
definition could be strengthened so as to remove such useless objects.

3.2 Algebras CTI: CT0 plus Application and Product

We enrich CT0 by the operations app(a, b) and prod(a, b), corresponding to function
applicat ion and to object product, respectively. We began with composit ion in CT0
because the composition of deductions seems to be more impor tant than their application.

Signature

The following operations are added to CT0 (w

app, prod : object • object ~ object
sell, sel2 : object ~ object

312 Michel Sintzoff

Notations:

app(a, b) a \ b
prod(a,b) a x b

A x i o m s

We restate usual properties, e.g. (a ~. b)(a) = a and (co b)(a) = c(b(a)), and we give
the laws ensuring T remains an endomorphism w.r.t, the new operations:

a \ (a ~ - . b) = b (5)
a \ (b ; c) = (a \ b) \ c (6)

setl(a • b) = a (7)
se~(a • b)= b (8)

T(a \ b) = (Ta \ Tb) (9)

T(a • b) = (T a x Tb) (10)

T(seixa) = se l , (Ta) (11)

T(sel2a) = sel2(Ta) (12)

Validity is preserved by app, prod, sell, sel2.

Illustration

We can now explain more technically why typing is defined as an endomorphism. Let
us assume the following context, where a, b, c, ui, vi, wi(i = 0 . . . 3) are given constants:

We observe

Ta = Tb = Tc = r

Tui = vi

V 0 . .~ -a

vl = (a ~ b)

~,~ = (b ~ ~)

Tvs = (r ,-* r)

wi = Tvi

ievei(u,) = 2, level(vl) = 1, level(wl) = 0 .

At level 2, we may deduce c by d2, using one lifting by T:

Endomorphic Typing 313

ds = uo\(ul; us)
Tds = T(uo\(ul; us))

= Tuo\(Tux; Tus)

= a \ ((a ~ b); (b ~ ~))
--~-C

Using dl at level 1, we may again deduce c, and no lifting by T is needed:

dl = vo\(vl; vs)
= a \ ((a ~ b); (a ~ . c))

At level 0, we may only deduce weaker results, e.g. r by do:

do = w0\(wl; w3)
= ~ \ ((r ~ r) ; / ~ ~ ~))
----7"

The introduction of d2 at level 2 is in fact a useless detour "underground", since Td2
is the real deduction. The endomorphic nature of T permits the direct deduction dl at
level 1. At level 0, the deduction do uses the type of an otherwise unknown rule-object v3.
This yields a sketchy structural information, but is still bet ter than nothing: the result
suggests to use some rule-object v3 of type Tv3 -= w3 = (r ~-+ r) in order to deduce c
which is of type r. Note vo\(vl; v3) of type do cannot be reduced since v3 is unknown,
but it is valid if the vi are assumed to be valid.

If we want to deduce an object at level k, it is superfluous to use deductions at level
k + l , viz one level away from the root. If nothing can be deduced at level k, we may try to
deduce something less informative at level k - 1, viz one level closer to the root. We can
freely choose the most appropriate abstraction level at which to carry out deductions:
the typing endomorphism preserves the structure of deductions and only reduces the
semantic richness.

Relationship with categories

CTl-a lgebras apparently correspond to Cartesian closed categories having an endo-
funetor; indeed, categories served as a useful source of inspiration because composit ion
is their fundamental constructor. In Cartesian closed categories, morphisms (m : u --+ v)
are internalized as exponential objects vU; in CTl-aigebras, they are rather internal-
ized as objects m the type of which is a rule-object, viz T m = (u ~-~ v). The typing
endomorphism in CT1 corresponds to an endofunctor in the corresponding category.

Results from category theory could be resused for CT-algebras. For instance, there is
a principle of duali ty: the dual of a CT0-theorem is obtained by transforming rule(a, b)

314 Michel Sintzoff

and comp(a, b) into rule(b, a) and eomp(b, a); backwards derivations can then defined as
the dual of forward derivations.

The choice between CT-algebras and categories is a matter of taste. We now prefer to
distinguish between objects according to their type structure, rather than to distinguish
between categorical objects and morphisms by definition. However, the present approach
could be re-expressed in terms of categories endowed with an endofunctor.

In CT0, one could define an identity-object id for composition; this would strengthen
the correspondence with categories.

3.3 Algebras CT2:CT1 plus Dependent Product

As well known, dependent products can be naively viewed as infinitary products: we go
from binary products (w to n-ary products and then to w-ary products. The axioms
for products and typing are adapted accordingly. We see a dependent product IIx:ba as
the product of all objects a~ obtained by instantiating the identifier z to an object c such
that Tc = b. The addition of dependent products is thus an auxiliary matter. The kernel
CT0- and CTl-algebras do already provide the gist of the proposed approach.

Signature

The following operations are added to CT1 (w

all, subst : (iden t i f i e r x object) x object --. object
sel : object x object ~ object

T : (simple ~ object) x object ~ object

The identifiers identify place-holders in objects. We assume a one-to-one correspon-
dence between place-holders and identifiers. Hence, distinct binding occurrences always
use distinct identifiers. We thereby abstract from issues concerning clashes between con-
crete identifiers.

The simple objects are the constants and the identifiers.

Notations:

all((x, b), a) lI~:ba
subst((x,c),a) a~
sel(c, a) selca
T(V, a) T v a

Axioms

Let V denote a typing valuation from simple objects (i.e. constants and identifiers)
to objects; V is total.

V : simple --~ object .

A valuation is also known as an environment. In the context of a typing valuation V,

Endomorphic Typing 315

sel(c, all((x, T(V, c)), a)) = subst((x, c), a) ,

viz

selc(IIx:Tv~a) = a~ .

x preserve the structure of a w.r.t, the opera- The typing T v a and the substitution a c

tions rule, comp, app, prod, sell, sel2, and they verify the following axioms where p is
a simple object:

T v p = V p

Tv (H~..b a) =//~..b (Tvo(~,b) ~)
(13)
(14)

(15)

x~ = c (16)

p~=p i f p # x (17)
(lly:b a)~c = IIv:b~ (a~c) (18)

(seld a)~ = seld: (a~) (19)

The typing Tv extends the valuation V homomorphically over objects. In (14), Tv
modifies neither the type b of the formal parameter x nor the selector c, so as to preserve
the structure of w-ary products: a one-to-one correspondence exists between the compo-
nents, or instances, of llx:ba and those of TvII~:ba, as it is the case for binary products
(10).

R e m a r k s

The application a\(a ~-~ b) of a rule-object a ~-~ b on an object a is in no way related to
the selection in a dependent product: we do not identify rule application and parameter
instantiat ion.

If IIx:ba is valid and Tvc = b, then selc(IIx:ba) is valid. If, for each c such that T v c = b,
the object a~ is valid, then the object II,:ba is valid. Since in general the lat ter condition
is difficult to prove, sufficient criteria can be used instead; at worst, we may assume that
only distinguished dependent products are valid.

The constraint of stratification by typing (w is easily adapted to the case of de-
pendent products, by excluding recursion in typing-valuations. This can be guaranteed
by the following straightforward criterion; to simplify, we assume the root r is the only
constant object.

A valuation V = (Ji(xi,a~) defines a strict dependency sequence iff, for each i, the
object ai uses no other simple object than the root r and the identifiers x i such tha t
j < i. If a typing-valuation defines a strict dependency sequence, then the level of each

316 Michel Sintzoff

simple object is finite, and typing does stratify objects. Hence, in a particular language
for deductions, identifiers could be used textually before their declarations; only cycles
in typing are excluded. The strict left-to-right ordering forces a bottom-up organization
of declarations.

Abbreviations could also be introduced, using abbreviation-valuations

Va : s imple --* object .

To an abbreviation V~z = e corresponds the dependent object (x :~ c)a such that

(~ d
:= e)a = a e .

If type-valuations Vt and abbreviation-valuations Va are both provided, the valuations
V are composed as

V = V t u V , .

Since valuations are maps, they could be integrated as first-class objects, viz as prod-
ucts, and then they could also be typed.

3.4 Overall Structure

In order to have a global view of CT2-algebras, we assemble the successive parts of their
definition. The hart (w is given by the axioms on rule and comp. The binary product
prod and the selections sel l , set2 (w are generalized into the dependent product all
and the selection sei (w

Signature

Notations:

a j : --+ object
rule, comp, app, prod : object x object --~ object

all, subst : (i d e n t i f i e r • object) x object ~ object
se l l , sei2 : object ~ object

sel : object x object ~ object
V : s imple --* object
T : (s imple --. object) x object ---, object

rule(a, b) a ~ b
comp(a, b) a; b
app(a, b) a \ b
prod(a, b) a • b
att((x, b), a) ~ :ba
subs t ((z , c), a) a :
set(c, a) selca
T (V , a) T e a

Endomorphic Typing 317

A x i o m s for o p e r a t i o n s

(a ~-* b); (b ~-* c) = (a ~-* c)

b \ (b ~-* c) = c

a; (b; c) = (~; b); c

a\(b;c) = (a \ b) \ c

Sell(a1 x a2) = al

sel2(al • a2) = a2

seio (/ / ~ : r . r a) - - a~ ~

Validity is preserved by comp, app, prod, sell, sel2, sei, T.

A x i o m s for t y p i n g a n d s u b s t i t u t i o n

The basic typing valuation V is given. The substitution S homomorphically extends
a basic, total substitution So over objects; recall clashes of identifiers are excluded since
distinct place-holders are denoted by distinct identifiers.

Tvp = Vp

Tv(a ~-* b) = (Tva ~-* Tvb)

Tv(a; b) = (Tva; Tyb)

T v (a \ b) = (Tva \ Tvb)

Tv(al • a2) = (Tval • Tva2)

Tv (II~::b a) = Hx:b (Tvu(:r,b) a)

Tv(seti~) = seh(Tva)

Tv (sd2a) = sel2(Tv a)

Tv(selc a) = selc(Tva)

Sp = Sop

S(a ~ b) = (Sa ~ Sb)

S(a; b) = (Sa; Sb)

S(a \ b) = (S~ \ Sb)

S(al • ~2) = (Sal • Sa2)

S(Hy:b a) = IIy:sb (S~)

S(8el 1 a) : sel I (Sa)

S(sel:a) = sel2(Sa)

S(seld a) = SdSd (Sa)

318 Michel Sintzoff

4 R e l a t e d W o r k

We compare the present approach with related ones, based on variants of typed A-calculi
[3, 4, 11, 13, 14, 20]. Only a few points are stressed; a complete comparative analysis of
all relevant approaches, which become rather numerous, is another matter.

4 . 1 B a s i c T y p e d X - C a l c u l i

In the classical view, typing is not considered as an homomorphism because it is defined
by specific inference rules, without equality laws between type expressions; one directly
infers

from the hypotheses

T(f; g) = (a ~ c)

T f = (a ~ b) , T g = (b ~ c) .

Here, we use the endomorphism

plus Axiom (2):

T(f; g) = (T f; Tg)

(a ~ b); (b ~ c) = (a ~ c) .

The difference boils down to

f :a~-*b, g:b~-*c f :a~-*b, g:b~-~c
VS.

(f ; g) : ((,, ~ b); (b ~ c)) (f ; g) : ,, ~ c

This is like the difference between using computational expressions and writing their
results:

f = 3 , g = 5 f = 3 , g = 5
VS.

(f + g) = (3 + 5) (f + g) = 8

Recall the objects f and g are in fact superfluous. The deduction of a ~-~ c can remain
at the level of a ~-* b and b ~-~ e, viz

a ~--~ b, b ,-.* c
(a ~-* b); (b ~ c) "

Another point concerns the style of the definition. The first semantics of classical A-
calculi was operational, viz in terms of reduction rules; higher-level mathematical prop-
erties had to be obtained as theorems. Here, algebraic laws by themselves constitute
the basic definition, and typing is globally defined as an endomorphism. Reduction rules
for expressions can then be derived systematically, as often done for algebraic theories;
specific inference rules for typing can be derived similarly.

Endomorphic Typing 319

4.2 Bas ic X - T y p e d X-Calcul i

In such calculi [6, 17], types are viewed as values and can result from the reduction of
type-expressions, which are A-expressions too. Thus, types can be computed at a higher
level of abstraction, in the same syntactical framework: typing begins to look like an
endomorphism.

However, typing does not preserve the structure of functional composition. Indeed,
in A-typed A-calculi, simple functional types are still defined by abbreviation, viz

(a ~ b) - A z : a . b .

With this definition, we cannot compute at the level of types as we want:

(a ~ b); (b ,---, c) :# (a ~ c) ,

since

(Ax : a.b); (Ay: b.c) # (Ax: a.c) .

The semantics of A-typed A-calculi is usually given in terms of reduction rules; alge-
braic laws must be derived as theorems. Moreover, the elaboration of clear mathematical
models has proved difficult. This may explain why these calculi are not used more widely.

4.3 A p p l i e d X - T y p e d X-Calcul i

These applied calculi are elaborations of basic ones in order to improve their expressive
power and practical usefulness. For instance, contexts [7] can be introduced, as well as
products or iterations.

As in the case of pure A-typed A-calculi, typing is not an endomorphism; the se-
mantics remains operational, and is harder to understand because of the additional con-
structs. The CT-algebras could provide instructive models for such applied calculi, suit-
ably adapted. For instance, we can establish a raw correspondence between CT-algebras
and the Deva language, which is one particular version of an applied A-typed A-calculus.
This correspondence could be organized as follows.

T h e D e v a l a n g u a g e

The definition of the Deva language amounts to a technical realization of the naive
view of w in terms of the Automath-based language A and its variants [6, 7, 16, 24].
The platform A has been chosen, after a few alternative tentatives, because it is compar-
atively simple and economical, and because it supports some of the major concepts in
w especially deductions as objects and types as abstract objects. However, A is based
on binding and substitution, and does not provide from the start composition, product,
and valuations, as needed for our applications in programming. The definition of Deva
progressively integrated these concepts on top of A. They were first introduced as def-
initional extensions. Then, they were gradually shifted into the language kernel, with
parallel adaptations [8, 9, 27] of the normalization proofs established for A [16, 24]. The
resulting language has been published essentially through case-studies [1, 10, 12, 26]: this
is none-too-surprising since case-studies provided important and continued guidance.

320 Michel Sintzoff

Algebraic view of Deva

We present this view as a set of straightforward correspondences between CT2 and
Deva. Some of these correspondences are approximative, for reasons detailed below. We
use braces to indicate which concepts have not yet been integrated on one side or the
other:

In CT2: In Deva:

objects texts
root r p r i m

rule a ~-~ b
composition a; b
application a \ b

{rule}
cut a o b
{modus ponens}

product a l x a2
dependent product llr:ba
selection scica
{coproduet a l + a2}

product [al, a2]
abstraction [z : b I- a]
application c \ a
sum [11 2]

typing T
type-valuation (x, a)
type-constraint Ta = b

typing Typ
declaration x : a
judgement a :. b

{abbreviation (x, c)}
{valuations}
{operations on valuations}
{reeursion}
{object synthesis}

definition x := c
contexts
operations on contexts
iteration
implicit texts

The Deva typing Typ differs from the CT-typing T essentially in the case of rule-
objects:

T(a ~ b) = Ta ~ Tb
T p(a b) = Typ(b)

Typ does not lift the left-hand-side of rule-objects, and is thus not completely homo-
morphic; see w To obtain an homomorphism, one would need to distinguish rule-
application from projection (viz selection or instantiation), i.e. to distinguish a rule [a F b]
from a mere abbreviation of the abstraction [x : a F b].

The above correspondence between CT2 and Deva illustrates how structural views
influenced the design of the Deva language, if not the details of its definition. The tech-
nical description (e.g. [27]) has been based on the operational semantics of basic)t-typed
A-calculi. It would be useful to base the definition on algebraic properties. One would
thereby improve the general understanding of type-based approaches, especially w.r.t.

Endomorphic Typing 321

hierarchies of types; the proposed endomorphic view of typing is an example of possible
clarification. Moreover, algebraic models can serve as a scientific yardstick for comparing
alternative frameworks, and thus as a helpful safeguard against the Babel-tower syn-
drome.

A interesting phenomenon occurs when program derivations are formalized in Deva.
One tends to highlight deductions directly at the level of rules, rather than at the level of
objects typed by rules; the adequate level of thinking is indeed that of rules. The "judge-
ment" construction is introduced for that reason: it permits to pinpoint intermediate
type-results, if they are important for understanding the deductions; the use of objects
typed by rules is in fact a detour.

The Deva-typing is often presented informally as a "quasi'-homomorphism. Yet, the
actual deductions in Deva remain blocked at the underground level (w hence, the
semantics of the "cut" operator, which is akin to composition in CT, must be given in
terms of complex A-combinations rather than by Axiom (2).

Further work

Specific variants of CT-algebras can be defined by introducing stratification of typing,
restrictions on composition, and results from category theory. One such result could be
the generalization of Axiom (2) to products of rules:

I Ix:d(a ~ b); IIx:d(b s-.+ c) = 11x:d(a ~ c) .

This would permit the structured creation of new valid parametrized rules.
As noted in w the algebraic definition of operations on valuations, e.g. composition,

product, and importation, remains to be worked out. Total iterations could be included.
It would also be useful to include some of the so-called "implicit" Deva computations, e.g.
partial iterations, object synthesis, non-determinism, and higher-order unifications; such
computations in fact provide basic means of automated assistance (w This would
certainly help users, but would entail a significant adaptation of the definition of CT-
algebras. It is unclear where to draw the line.

5 C o n c l u s i o n

We propose to compose deductions at the level of the basic deduction-rules, and to classify
such deductions by a typing endomorphism. The results of typing are again deductions
which may use the same operations, but which provide less semantic information. Thus,
types are viewed as specific "values" to be substituted for identifiers, and type deriva-
tion amounts to a computation with these "values". The typing computation can itself
be defined by a computation expression at a further level of abstraction, and this new
expression in turn can be typed. As a matter of fact, the most frequent deductions are
those done with classifier objects, viz with types: these are the really ordinary deduc-
tions. In deductions, we prefer to work with rules as such, rather than with underground
objects typed by these rules. Hence, the "special" objects are those at the leaves of the
classification tree, viz the usual ordinary values. This is just a change of perspective.

322 Michel Sintzoff

A c k n o w l e d g e m e n t s . The author gratefully acknowledges questions, suggestions, and
ideas from M. Weber, Ph. de Groote, B. Tubiermont, M. Proietti , par t ic ipants at the
IF IP WG2.1 State-of-the-Art Seminar (Brazil, 1992), and members of IF IP WG2.3.

References

1. Bert D. and S. Sebbar, Synthesizing abstract data type representation in the Deva meta-
calculus, in [15] 427-450.

2. Broy M. and C.B. Jones (eds.), Programming Concepts and Methods, North-Holland, Am-
sterdam, 1990.

3. Constable R. L., Type theory as a foundation for computer science, in: T. Ito and A.R.
Meyer (eds.), Theoretical Aspects of Computer So]tware, LNCS 526, Springer, Berlin, 1991,
226-243.

4. Coquand Th., Metamathematical investigations of a calculus of constructions, in: P.
Odifreddi (ed.), Logic and Computer Science, APIC SDP 31, Academic Press, London,
1990, 91-122.

5. Curry H.B. and R.Feys, Combinatory Logic, vol.I, North-Holland, Amsterdam, 1958.
6. de Bruijn N.G., Generalizing Antomath by means of a lambda-typed lambda-calculus, in:

Mathematical Logic and Theoretical Computer Science, LNM 106, Marcel Dekker, New
York, 1987, 71-92.

7. de Bruijn N.G., A plea for weaker frameworks, in: [11] 40-68.
8. de Groote, Ph., Ddfinition et Prapridt~s d'un MJtacaicul de ReprJsentation de Thdories,

Ph. D. Thesis, Univ. of Louvain, 1990.
9. de Groote Ph., Nedepelt's calculus extended with a notion of context as a logical framework,

in: [11] 69-86.
10. Gabriel R., Program transformation expressed in the Deva meta-calculus, in: [15] 267-287.
11. Huet G. and G. Plotkin (eds.), Logical Frameworks, Cambridge U. Press, Cambridge, 1991.
12. Lafontalne C., Formalization of the VDM reiflcation in the Deva meta-calculus, in [2] 333-

368.
13. Lambek J.L. and P.J. Scott, Introduction to Higher Order Categorical Logic, CSAM 7,

Cambridge U. Press, Cambridge, 1989.
14. Mitchell J.C., Type systems for programming languages, in: J. van Leeuwen (ed.), Formal

Models and Semantics, Handbook Theor. Comp. Sci. B, Elsevier, Amsterdam, 1990, 365-
458.

15. MSller B. (ed.), Constructing Programs from Specifications, North-Holland, Amsterdam,
1991.

16. Nederpelt R.P., Strong normalization in a typed lambda-ealculus with lambda structured
types, Ph.D. Thesis, Teehn. Univ. Eindhoven, 1973.

17. Nederpelt R.P., An approach to theorem proving on the basis of a typed lambda-calculus,
in: W. Bibel and R. Kowalski (eds.), 5th Conference on Automated Deduction, LNCS 87,
Springer, 1980, 182-194.

18. Pepper P., A simple calculus for program transformation (inclusive of induction), Sci.
Comput. Programming, 9(1987) 221-262.

19. Pitt D. et al. (eds.), Category Theory and Computer Programming, LNCS 240, Springer,
Berlin, 1986.

20. Poign~ A., Category theory and logic, in [19] 103-142.
21. Sintzoff M., Suggestions for composing and specifying program design decisions, in: B.

Robinet (ed.), Proc. 4th Syrup. on Programming, LNCS 83, Springer, Berlin, 1980, 311-
326.

Endomorphic Typing 323

22. Sintzoff M., Understanding and expressing software construction, in: P. Pepper (ed.), Pro-
gram Transformations and Programming Environments, ASI F8, Springer, Berlin, 1984,
169-180.

23. Sintzoff M., Expressing program development in a design calculus, in: Broy M. (ed.), Logic
of Programming and Calculi of Discrete Design, ASI F36, Springer, Berlin, 1987, 343-365.

24. van Daalen D.T., The Language Theory of Automath, Ph.D. Thesis, Teehn. Univ. Eind-
hoven, 1980.

25. van Gasteren A.J.M., On the Shape of Mathematical Arguments, LNCS 445, Springer,
Berlin, 1990.

26. Weber M., Formalization of the Bird-Meertens algorithmic calculus in the Deva meta-
calculus, in: [2] 201-232.

27. Weber M., A Meta-Calculus for Formal System Development. Ph.D. Thesis, Univ. Karl-
sruhe, 1990, and: R. Oldenbourg Verlag, M~nchen, 1991.

