
V i r t u a l D a t a S t r u c t u r e s

Doaitse Swierstra x and Oege de Moor 2

1 Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The
Netherlands

2 Programming Research Group, Computing Laboratory, 11 Keble Road, Oxford OX1 3QD,
United Kingdom

A b s t r a c t
We demonstra te the calculational style of program development. In doing so we introduce
vir tual da t a structures which play the rSle of a catalyst in the development of programs,
in the sense tha t in the final program they have been transformed away. We identify
design steps which have to be taken in many algori thm developments: the choice of an
algebraic view, the use of algebraic laws in choosing a representatlve and the choice of a
generator. The techniques are demonstrated in a number of algori thm developments.

1 I n t r o d u c t i o n

The purpose of this paper is to demonstrate a number of techniques which may be used in
calculating algorithms for sequence-oriented problems. It may be considered as a further
step in the development of a programming method which s tar ted with [5]. The basic
observation underlying this method is that algorithms can be the result of a systematic
developmen L in which all design decisions and applied insights are clearly identifiable.
One might even claim that the essence of an algori thm is its derivation, and not the
program text that results from such a derivation.

Originally the theory for algorithm derivation was presented in an imperat ive set-
ting, using predicate calculus as the main tool for reasoning about the various steps in a
derivation. A complicating factor has been that, in deriving a program, the designer has
to cope with two different formalisms and an often intricate relationship, namely between
the programming language itself and the formalism for reasoning about the program un-
der development. Unfortunately, the rich expressiveness of the predicate calculus, which
has been used for the latter, has not forced algorithm developers to express themselves
in more s tructured and more abstract ways. As a result this approach can still be con-
sidered as fairly ad hoc, although various a t tempts have been made to merge the two
components of the formalism [10].

In [7] a purely calculational style of program development has been advocated, in
which the program itself, instead of appearing as a side-effect of a derivation, is the subject
of transformations. The idea is that the process of developing an algori thm consists of a
sequence of transformations, starting with an inefficient specification, which may even be
nonexecutable, and resulting in an executable, efficient program. The main idea which
makes this approach stand out between other tranformational methods is the emphasis on

356 Doaitse Swierstra and Oege de Moor

the notational support for easy manipulation. The formulae should be composed in such
a way that transformations suggest themselves. In [2] this process has been demonstrated
to be effective, introducing the so-called Segment Decomposition Theorem, which captures
many instances of the design steps replacing a constant by a variable and strengthening
the invariant, which are well known from the imperative school [6].

The relative success of this approach lies in a well-chosen combination of a notation
for functions, which lends itself to easy manipulation, and the introduction of higher
order functions which enables a more abstract view of many algorithms. As a result of
this work the insight has come that control constructs like maps, filters and reductions,
which were originally used in a a sequence oriented setting, could be formulated more
abstractly by making use of the concept of a homomorphism. Homomorphisms naturally
come into existence when one generalizes reduce over lists (corresponding to looping
over an array in an imperative setting) to any inductively defined type. Generalisations
of other oft-occurring control structures, i.e. recursion patterns, has led to a wealth of
other classes of morphisms; an overview is given in [9].

The way data structures are considered has shifted in recent years from a more im-
plementation and representation oriented view towards an algebraic view. Within the
field of transformational functional programming, the beginning of this shift was marked
by the identification of the Boom[4]-hierarchy ("boom" is also the Dutch word for tree),
which shows clearly the algebraic relationship between binary trees, sequences, bags and
sets. This hierarchy is established by starting from the signature describing binary trees,
and subsequently adding laws to this signature:

JV : := o : e I [-] : A I +1- : JV x JV,

where we are assuming that A is the base type over which the structures are defined and
that the following law holds for the unit element r3:

D - H - s = 8 " H - D = s

If -H- satisfies no further laws, JV is the data type of unlabelled binary trees. Other
data types can be obtained by postulating further laws. One thus obtains the hierarchy
summarised below:

a s s o c i a t i v i t y (z -H- y) -H- z = x -H- (y -t+ z) s e q u e n c e s
c o m m u t a t i v l t y z -Pry = y -H- z b a g s or m u l t i s e t s
i d e m p o t e n c y x -4+ x : x s e t s

The structure of this paper is as follows. In Sect. 2 we will introduce the class of
problems that is the subject of this paper. In Sect. 3 we will introduce the concepts
which are necessary to understand the derivations to be given in Sect. 5. In Sect. 4 we
will introduce the concept of a virtual data structure, which allows one to optimize certain
function compositions. The importance of this optimisation is that one can reason at the
level of function composition as long as possible, only eliminating intermediate results in
the final transformation step.

In this paper there is no separate section on notation. This reflects our view that at
the current state of research, there is no such thing as a fixed notation. Indeed, part of
the research is to discover which concepts are worth a notation of their own, and what

Virtual Data Structures 357

notations are useful in finding derivations. For this reason notation will be introduced on
the fly.

The calculus used in this paper will be rather informal. Current active research in
this area has provided a formal underpinning of the presented notation, and of the laws
formulated using the notation. These foundations are however not the subject of the
research described here; the interested reader is referred to [1][11]. A reader feeling that
a proper understanding of functional programming is lacking is referred to [3].

At the end of this section we want to stress that most of the techniques we are
presenting here have been known for a long time in the area of compiler construction,
and as such belong to the tool-box of most compiler writers. It is the different use and
formulation of these concepts which makes them applicable in a ealculational style of
program derivation. Where appropriate we will indicate such correspondences.

2 T h e P r o b l e m Class

In this paper we study problems of the following form:

f = compose/ o property* o generator , (1)

where o denotes function composition. The generator is a set-valued function that gen-
erates candidates for a solution. For each of these candidates a property is computed
(hence the * symbol, which indicates that the function is supposed to be applied to
each element of the sequence, bag or set which is returned by the generating part), and
finally all these intermediate results are used in computing the final value, by making
use of a so-called reduction in combination with the binary function compose. Hence if
generator.x = { a0, al an } then

f.x ---- (property.a0)compose(property.al)compose(property.a2)... (property.a,,) �9

A typical generator is the function segs, which returns all contiguous subsequences of
its arguments:

s e g s . z = { y l B u , v : u 4 + y 4 + v = z } .

Other examples of generators are

inits.[ao, a l , . . . , an] = { [], [ao], [a0, all,

[[ao, ~ , . . . , an]] }

sptits.[ao, a l , . . . , a ,] = { ([], [ao, a l , . . . , anD,
([ao], [a~, a2 , . . . , a ,]) ,

([~0, ~1 , . . . , an- ,] , [a,]),
([ao, a , , . . . , a,] , []) } .

For example the following specification says that a sequence is ascending:

asc ---- A / o (_< o (1"/x ~/))" o sp=its ,

358 Doaitse Swierstra and Oege de Moor

where T/computes the maximum value of a sequence, by reducing it with the maximum
operator 1", and 1 / t he minimum value. Although this definition might seem to be a bit
contrived it has been our experience that avoiding reasoning about individual elements
of sequences often results in cleaner derivations. In a practical situation one might have a
whole library of equivalent formulations of such properties, all serving their specific role
in different derivations. The x operator takes two functions as its arguments and returns
a function which applies these functions to both components of its argument and returns
the pair of the two results, i.e.:

(f • g) . (x , y l = (f . x , g . ~ l �9

These pairs are subsequently each subjected to a comparison (_<), and finally the conjunc-
tion of all these comparisons is taken (h/) . In words, this would mean that we consider a
sequence ascending if, whichever the way a sequence has been split in two, the maximum
value of the left part is always at most the minimum value of the right part.

Another property that might occur in our generic specification is that a sequence is
balanced:

(= 0) o +1 ,

which describes that the sum of the elements should be equal to zero. Yet a third example
of a property is low:

(<) o (y , #~,
which indicates that the maximum value of a structure should be less than its size,
returned by the function # . We have used (f, g).z = (y.x, g.x).

A further useful operator we will use is the filter <, which takes as its left operand a
predicate, applies this function to all elements of a structure, and returns the structure
containing all elements which satisfy the predicate. So the specification of a function
which computes the length of the longest ascending sequence might be written as:

Iup = T/ o # * o asc< osubs

3 D e s i g n S t e p s

In this section we discuss a strategy for solving problems of the aforementioned kind;
in doing so we will show how different design decisions may lead to totally different
solutions, which are not easily related without taking their derivations into consideration.
The strategy consists of both the identification of a number of decision points where a
design decision has to be taken, and the identification of the alternatives between which
a choice may be made.

As we will see these decision points are described in a rather blunt way, using informal
phrases like pick the right one. It will not always be immediately clear what will be the
right choice, and learning what will be the right choice is a matter of experience, trial and
error. Keep in mind, however, that once we have found the right path, it will be possible to
clearly indicate which decisions have been taken, and probably even why those decisions
eventually turned out to be successful. In this respect the process of deriving more and
more algorithms resembles the process of putting up maps at the branches in a highly
structured maze; a more useful approach than putting up maps in a fiat desert without
any landmarks.

Virtual Data Structures 359

3.1 Algebraic Views

The Concept o f a V i e w . When giving an algebraic specification of an abs t rac t da t a
type, it is easily overlooked that such a description is not unique. Most programming
languages only provide a single built-in construct for a specific class of da t a types, and
thus favor only one specific algebraic view. Often it is possible to provide a different
view, containing different operations and different laws. What makes two different views
equivalent is tha t it is possible to express the operations of one view in the operat ions
of the other view and vice versa, and that the laws obeyed by these mapped operations
remain valid in the target view.

The choice of an algebraic view resembles the choice for a specific context free gram-
mar in describing a language. There may be many grammars describing the same lan-
guage, as there are many views describing the same data. The parsing process corresponds
in this case to a conversion from one view, i.e. a list of characters with some structure, into
a value of the initial da ta type of another view, in this case described by the grammar.

P o s s i b l e V i e w s . In this paragraph we will discuss some useful views on sequences. We
stress however that the number of alternatives is almost unbounded, and tha t having a
l ibrary of such possible views at hand is quite a useful tool in deriving algorithms.

Most functional languages take the cons view for granted in which sequences over A
are elements of the following initial da ta type for which we will reserve the word list:

C V : : = [] : e I : C - : A x C V .

Equally acceptable, and well known views are provided by the join view:

the snoc view:

J V : : = [] : e l [-] : A I - H - : J V x JV ,

SV : := n :~ I - -~ : SV x A ,

the labeled tree view:

L T V : : = n : e l - -~ - ~- - : L T V x A x L T V ,

and the spine view:
SPY : := n : e I--<: SPY x (LTV x A) ,

which is a mixture between the labeled tree view and the snoc view. In [13] some examples
of views and the conversions between them may be found. In the sequel we will encounter
such a conversion.

We will now introduce our first decision point.

Algebraic View: Inspect what algebraic view the program is supposed to accept,
and decide whether i l l s useful to convert the data into a different view.

In the example derivations we will encounter some criteria on which such a decision might
be based. Notice however that this observation is not a very deep one; it is jus t a different
way of expressing that we store the input to be treated into a convenient da t a structure,
which is a common step in program design.

360 Doaitse Swierstra and Oege de Moor

C a t a m o r p h i s m s . The views introduced in the previous parts may all be considered
as the definitions of initial algebras, where the operators may be considered as term-
constructors. Since we will encounter many (uniquely defined) homomorphisms from such
initial algebras into other algebras we will give them a special name, i.e. eatamorphisms,
and introduce a special notation for such morphisms. Since such a catamorphism is
uniquely defined by the algebra that is its codomain, we will denote them by summing
up the operators associated with the codomain between banana, brackets.

As an example consider the function length, which computes the length of a list, and
which might be defined as follows:

length.(a h t- z) = 1 + (length.z)
length.O = 0 .

In our notation this function, which is a eatamorphism from lists to the algebra of
integers, may be written as ~0, (1-i-)~, where (1-t-) is the operator corresponding to the
>+--constructor and 0 the operator corresponding to the D-constructor. In this notation
the ~ is a so-called lifted operator which is defined by (f-t-g). (x, y) = (f . z) + (g.y),
and 1 is the constant function always returning 1. We will use the expression | an
abbreviation for catamorphisms of the form ~1| | operating on CV or SV, when (1| |
is a monoid.

As a final notion in this section we define the so-called accumulation//, which may
be expressed in terms of reductions and inits by:

| | o inits . (2)

The concept is important in the derivation of many programs, since its use in general
introduces a considerable reduction in the complexity of the program. So it is the case
for lists that the left hand side of (2) may be computed in O(n) steps, whereas a naive
implementation of the right hand side will take O(n 2) steps. That this is indeed the case
may be deduced from the following alternative, but equivalent, definition of/ / , which can
be easily proved by calculation:

| = 71"2 o {] (10 , [10]) , ~)
(a, b)6e = (a | c, b--I< (a | c)) .

3.2 Algebraic laws

Once a specific algebraic view has been chosen, there is often a further choice to be made.
Due to the algebraic laws associated with the view, there may exist freedom in the way a
value is represented, and thus the conversion from the given data type into the required
data type is a non-deterministic function (or relation). The laws define equivalence classes
of terms, and any element of such a class might be chosen. Depending on the further
functions which will be applied to the representation, it may b~ worthwhile to make use
of the available freedom to choose a specific element from the class.

Here we will discuss shortly some of the laws associated with the different views.
There are no laws associated with CV and 5V views on sequences: the representation of
a sequence as a list is unique, and the associativity of the -H--operator is heavily used

Virtual Data Structures 361

when converting from the join-view to the cons- or snoc-view. When representing bags
in CV however we will get the following addit ional law, representing the t ranslat ion of
the law of commutat iv i ty as formulated in JV in the previous section.

a Y r - (b ~ x) = b ~ - (a ~ - x) ,

and the following law for representing the idempotency of set union:

a (a =

A similar line of reasoning holds for LTV, where we have assumed tha t every next
law is used in the context of the laws introduced earlier, i.e. the formulation of the law
of commutat iv i ty makes use of associativity:

a s s o e i a t l v l t y : (z -< a ~- y) -< b >- z = x -< a ~- (y -< b :,- z)
e o m m u t a t i v i t y : z -< a >- y = y -< a ~- z
i d e m p o t e n c y : 1:3 -< a ~- 13 ~ a ~- y = I::1 -< a ~- y

and for the spine-view, assuming the corresponding laws for LTV part are introduced
accordingly:

a s s o c i a t l v l t y : (x -< (k, a)) -</l , b) = z -< ((k -< a ~- l), b)
c o m m u t a t i v i t y : (x -< (k, a)) -< (l, b) = (x -< (k, b)) -< (l, a)
i d e r n p o t e n c y : (x -.< (I, a)) -.< (l, b) : z -.< (N i l -.< a ~- N i l -< b ~- I)

We will conclude this part with formulating our second decision point:

Algebraic Laws: Inspect what algebraic laws apply to the chosen view, and make
use of these laws to pick useful elements from congruence classes of terms.

As a guideline in choosing the right representative from this class one may inspect prop-
erties of the generators and further functions in the expression at hand.

One may compare this freedom of choice with the use of an ambiguous context free
grammar, giving rise to several different parse trees for a given sentence. So a grammar
might contain a production of the form:

< expr > : : = < expr > < operator > < expr >,

and a parser might use the priorities of the operators to return a parse tree which reflects
the intended meaning of the expression.

3.3 G e n e r a t o r s

Once a specific view has been chosen and a special element within this view for repre-
senting the value at hand, there is still choice left in picking a convenient function for
generating the candidates for further processing. This choice is surprisingly rich.

In [2] only two views are considered, i.e. CV and SV. Neither of these views has laws
associated with it, and a single form of generating segments is studied, leading to the
aforementioned segment decomposition theorem.

362 Doaitse Swierstra and Oege de Moor

The generator used for generating all segments may be defined as:

segs = -FF/ o tails* o inits (3)

in i ts . (x~ a) = (inits.z)74 (z74 a)

inits.O = O74 O (4)

tails.(a = (a (tai ls=)
tails, D = D ~r- O , (5)

which corresponds to summing the segments up by grouping them according to com-
mon end-points. Unfortunately, in this definition neither inits nor tails is expressed as a
catamorphism, and thus we provide a different set of definitions which are:

in i ts . (a~ z) = n>r ((a~l--)* o inits.z)
inits.O = O N- D (6)

tai ls.(x74 a) = ((74a)* o tai ls.x)74 o

tails.O = 074 r7 . (7)

A different approach for generating the tails in SV and CV is to remove all initial
segments from a sequence:

tails = 44-/0 X:~ o (id,inits) (8)

with:

it, "0 = (t > >) * . m ,

where >> is defined by (a +1- b) >> a = b and provided of course that the list l contains
only proper prefixes of m, which is indeed the case in (8). As we will see taking this
generator will lead to a different algorithm for the maximum segment problem.

For JV there are several approaches too for summing up all segments, e.g.:

s e g s . D = D N- D

segs.(x 4+ y) = segs.x 4+ segs.y -{+ -H- * . (ta i ls .xX in i ts .y) .

This generator makes it easy to identify all segments which span a specific point in
the sequence. Of course the function mapping the input into this view should select
tha t representation where the point to be inspected first ends up highest in the term
representing the sequence in iV. A useful generator corresponding to LTV is defined as
follows;

s e g s . O = O ~r- []

segs.(z -< a ~-- y) = segs.x -I+ segs.y +1- (a| X inits.y) (9)

w h e r e a | (u, v) = u -iF [a] +F v

The advantage of this view is that it may be used to separate out those segments which
have a specific element in common, again assuming of course that a useful representative
has been chosen.

We will now formulate our last decision point.

Virtual Data Structures 363

Choice of generator: Choose a useful generator. This choice depends primarily
on the chosen view, and on further functions to be applied to the result of the
chosen generator.

We finally want to note that in providing the different generators we have used the JV
for representing the generated segments. One should keep in mind however that, when
considering these segments as a bag, similar choices are to be made for these intermediate
data structures.

4 V i r t u a l D a t a S t r u c t u r e s

In this section we will introduce an important transformation, which enables us to con-
struct a link with the imperative style of programming. Through the abundant use of
function composition in functional programs, many data structures are first constructed
and immediately afterwards inspected and destroyed by the next function to be applied.

In many implementations it will, by using lazy evaluation in the machine model,
not be the case that the data structure is ever completely present in memory. In these
models the constructing phase and the destructing phase act like coroutines, with the
constructing phase producing the next part of the data structure only when it is needed
by the destructing phase. This phenomenon is also present when using the pipe construct
in the Unix operating system. One process is filling the pipe, as if it were writing on a
file, and another process is reading from the pipe as if it were a file. The complete file,
however, is never present as such. It is to be noticed that this technique may introduce a
considerable space optimisation, but does not reduce the number of computation steps.

A simple example of this phenomenon may be found in the following program, which
sums the integers from 1 to n:

aup tob = a : 4 - (a + l) uptob, i f a < b
a upto b = I::], otherwise
sum.l.n = +/ . (1 upto n) .

In this example first a list of integers is constructed, and in the next step this list is
consumed by the catamorphism + / . If one would translate this algorithm directly into
an imperative program this would give rise to two loops: one for constructing the list,
and one for iterating over the constructed list. It would be hard to imagine someone
really programming it like this, because every programmer would immediately merge the
two loops into one, and not construct the list at all. This shows a remarkable difference
between the two styles of programming. In the functional style one would use a number of
higher order constructs, in this case function composition, to construct an algorithm out
of existing components, whereas the imperative programmer would write this program
from scratch. The question which now arises is whether it is possible to keep the elegance
of the functional style, while achieving the efficiency and compactness of the imperative
style.

When a catamorphism is applied to a constructed data structure the optimisation
is straightforward: substitute the operators of the catamorphism directly into the data
structure building algorithm~ at those places where the operators of the initial algebra

364 Do~itse Swicrstra and Oege de Moor

of its domain contribute in constructin# the result. As a result it is not the input for
the catamorphism which is constructed, but the result of applying the catamorphism to
this input. Since this transformation can always be performed, and often there is not a
specific point in the derivation at which this transformation is clone at best, one is free
to postpone this optimisation until the algorithm derivation has been completed.

We will call data structures which have played a catalytic r61e in the derivation of
the algorithm, but have disappeared from the final algorithm virtual data structures.

This approach is again well known in the compiler construction world, and corre-
sponds to the use of an attribute grammar which has synthesized attributes only. Here
the optimisation may be used in which not the parse tree as such is constructed by the
parser, but the Computations which were to be performed on the parse tree, are per-
formed by the parser directly. In a simpler form this transformation is also known as
vertical loop-fuslon to imperative programmers.

In [14] this process has been dubbed deforestation, indicating how the intermediate
tree constructions and reductions have disappeared from the final execution trace.

5 Der ivat ions

In this section we will provide a number of derivations of segment based problems using
the views and choices introduced before. As a first example we will present the problem
of computing the maximum segment sum [5]. This derivation shows how, using two dif-
ferent segment constructors, two completely different derivations may be given. Our first
derivation is heavily influenced by [2]. The second problem we will treat is the computa-
tion of the longest low segment. This problem illustrates the advantage of choosing the
right algebraic view on lists and has been surprisingly hard to solve when attention is
confined to the snoc and cons view.

Before delving into the details of these algorithms we will introduce some laws which
will be used over and over again, and thus deserve a separate introduction. Those inter-
ested in the proofs of these identities may consult [1][11].

m a p - d i s t r l b u t i v i t y f* 0 g* = (f o g)*
m a p - p r o m o t l o n f* 0 -I+/ = q-t-/o f**
reduce-promot ion | 1 4 9 + t - /= | o (|

This last law is an instance of the so-called promotion law. The promotion law says that

h o r 1 7 4

if
h . (a~b) = h.a| h.b and h.l@ ~- 1| .

5.1 M a x i m u m S e g m e n t S u m

The specification for the computation of the maximum segment sum reads as follows:

T! o +/" o sets

Virtual Data Structures 365

and is an instantiat ion of the problem class given in (1).
The solution to this problem answers the great Wall-street question: how much money

could I have made in the past by making a one time investment, given tha t the list of
numbers represent the daily changes in the Dow-Jones index.

I n i t s / T a i l s D e c o m p o s i t i o n . Recall the generic specification (1). The property in the
maximum segment sum to be computed for every segment is a catamorphism. Therefore
we s ta r t with deriving some properties of such catamorphisms, generalizing the + / to
0 / , and the compose operator T to | This will be done assuming that SV is the chosen
view, and segs = q + / o tails* o inits the chosen generator, leading to:

mss = | o 0 / * o - I F / o ta i ls * o ;ni ts .

We s tar t by moving the q + / p a r t forward:

| o 0 / * o % / o ta i ls * o inits
= map-promotion =

| o + 1 - / o 0 / * * o ta i ls * o inits
= reduce-promotion =

| o | o O/** o tails* o inits
= map-distr ibutivi ty =

| (| 0 /* o tails)* o inits
= def ine F = | 0 /* o tails =

| o F* o inits

Using point-wise reasoning we now derive some properties of F. In this calculation we
shall accumulate a number of desirable properties of | and 0 . These propert ies become
the applicabil i ty conditions of one of our theorems. Our first assumption is tha t | and
�9 have unit elements 1| and 1 e respectively.

F.(=-~ a)
= definition of F =

| o 0 / * o tails.(z-4< a)
= definition of tails =

| o O/* . (((~a)* o tails.z) q< [3)
= definition of map, reduce on El =

| o (~a)* o tails.z) -44 l e)
= map distr ibutivity =

@ / . (((O / o (~a))* o tails.z) -t4 l e)
= definition of reduction =

| o 0 /)* o tails.z) -44 l e)
= map distr ibutivity =

| o 0 / * o tails.x) -14 10)
= definition of reduction =

(| o (Oa)* o 0 / * o tails.z) | 1 e
= a s s u m e (Oa) factors out of | =

((Oa) o | 0 / * o tails.z) | 1 e
= folding the definition of F =

((Oa) o F.z) | 1 e

366 Doaitse Swierstra and Oege de Moor

As similar derivation may be given for the empty case:

F.[3
: definition of F =

| ~ / * o tails.Q
= definition of tails :

• I o e l * . (O - ~ O)
= definition of map =

| 1~)
= definition of reduction =

1~ | 1~
= definition of 1| =

l e

Based on these derivations we may now conclude that , using the binary operator
clef

z | a = (x ~ a) | l~ , F may be written as a catamorphism ~15, | D. Note that this
derivation would not have been possible when using the first definition of tails, since this
definition is not a homomorphism (it is a paramorphism, [8]).

Completing the derivation of the segment decomposit ion schema is now straightfor-
ward by using (2). Using these results we have derived the following schema for segment
problems:

, | e l " o segs = | |
w h e r e z | = (x C a) | 1 e
p r o v i d e d (b 0 e) e a = (b �9 a) | (c �9 a) .

By now noticing that indeed it is the fact that (bTc) + a = (b + a)T(c + a) we may
conclude that :

. ~ s = T/0 |

w h e r e z | a = (z + a)T1 + = (x + a)TO.

Finally we may substi tute the operations of T / in the definition o f / / , considering this as
a virtual da t a s tructure, giving:

m . = ~2 o ~0 | 0), ~D
w h e r e
(~, b)~ = (~ | c, (~ | c)Tb)

which corresponds directly to its imperative counterpart , using a single loop and one
addit ional variable:

a, b, i := 0,0 ,0
do i # n -~ a := (a + x[i])~O; b := bT~;i := i + 1 o d

Virtual Data Structures 367

I n l t s / I n i t s D e c o m p o s i t i o n . In this section we will present a different derivation for
the maximum segment problem, start ing from the alternative definition of tails as given
in (S).

We already discussed this generator in Sect. 3.3. Before embarking upon the deriva-
tion, it will be expedient to mention two algebraic propert ies that will be useful in the
sequel. We s tar t by noticing:

+ l . b = + l . ((a +~ b) >> a) = (+ / . (a +~ b) - + / . a)

and consequently:

+ / * 0 x ~ 0 (id,inits)

= relation between ::~, -t- and - = (10)

~_ 0 (+ / o ia, + /* o i.its/

A second impor tant observation is:

(| o e f t) * o inits = t l o | e 8 , (11)

where tt.(a ~t- z) = x. Using these properties we may now derive:

T/0 + / * o X~> o (id, inits)
= (10) =

T/0 x - o (+ / , + / * ~ inits)
= definition of accumulate --

T/. x - 0 (+ / , +//)
= (a - b)T(a - c) = a - (b.~c) - -

(-) 0 (+/,W0 +11)
We present now the following derivation of ross, in which the operator zip converts a pair
of sequences into a sequence of pairs:

ross
-- inits/inits generator, promotion ---

1"/ o (t / ~ + / * o X>> (id, inits))* o inits
= above derivation =

l / o ((-) o (+ / , t / 0 +///))* o inits
= map distr ibutivity =

~/0 (-)* 0 (+ / , W o +//)* 0 inits
= (f , g) * = z i p o (i f , g *) =

t / ~ (-)* 0 zip ~ (+l* ~ inits, (~ /~ +if)* 0 inits)
= definition of accumulate, property (11) --

T/0 (-)* ~ =ip ~ (+/ / , t, 0 W/o +//)
= product =

T/o (-) * o zip o (id, t{ o l / /) o + / /

By making the intermediate da ta structures virtual again, which in this case corresponds
to loop-fusion of five loops, this directly translates into the following imperat ive program,
where the four operators +, ~, - and 1" reappear in the loop-body:

368 Doaitse Swierstra and Oege de Moor

s, m, r := O, c o , - c o {unit elements for + , L T}
r, i := O, 0 {initialize loop and compute tl}
do i # n ~ s := s+x[i];m := mts;r := rT(s -m); i := i + 1 o d

In this program we maintain in s the sum of the elements seen thus far, in m the minimum
value seen thus far, and in r the greatest difference between these values seen thus far.
Since one is only interested in this difference the previous program can be seen as an
optimisation of this program with an extra invariant a = (s - m). An interesting aspect of
this program schema is that the accumulation of the input da t a is explicitly maintained.
If one tries to solve the computation of the longest balanced segment this generator is a
useful s tar t ing point.

This algori thm resembles the Wall-street approach, where the list of numbers indicates
the daily changes in the Dow-Jones index, and the question to be answered is what would
have been the best time for a one-time investment.

5.2 L e n g t h o f a L o n g e s t Low S e g m e n t

In this paragraph we will derive a solution for the problem of computing the length of
a longest low segment. A very similar problem is the computat ion of a largest rectangle
under a histogram, the solution and derivation of which may be found in [12], and which
may be compared with the derivation given here.

The problem may be s tated as follows:

Ills = T/ o # * o low 4 o segs

w h e r e low = (<) o (T/, #)

We s tar t by noticing first that the predicate used in the filter is monotonic in the
second component:

y o (a _<)4 = (a _<)?o T/ (12)

where the ? is a one-point filter that either returns its argument, or returns minus infinity.
Let Va denote a set of segments with a common maximum element a. We may reason as
follows:

V o # * o Iow~.v~
= expand definition of low =

T/~ #* ~ ((_<) o (T/, #))4.va
= maximum of elements of va equals a =

Y 0 #* o ((~ _<) 0 #)~.v~
= move a * through a ~ =

T/0 (~ _<) ~ o # ' .v~
= (12) =

(a <) ? o T/o #* .v . (13)

This suggests that, when summing up the segments grouped by their common maximum
element, we might be very efficient in skipping some of these elements of the group in the
generating process, and thereby get a more efficient algorithm. We thus will t ry to push

Virtual Data Structures 369

the filter into the generating process. Since we want to sum up the elements by common
element we choose the LTV, with the generator given in (9).

Since it furthermore is the case that x E segs.y =~ T/.x _< T/.y, it is profitable to
first sum up all the segments with a common maximum value, and then the rest of the
segments grouped according to their maximum value.

We will now make use of our freedom in choosing an element in LTV which makes
this an easy task. Since the generator introduced in (9) sums up segments by common
element, it is now sufficient if we have an element in the equivalence class generated by
the associative law, for which it is the case that a label value in the tree is a t least the
maximum of the label values in the subtrees, i.e. it is a heap.

IIIs.(x -< a >- V)
= definition Ills =

T /o # * o Jow ~ o seg~.(~ -< ~ >- v)
= unfold definition (9) =

T # / o #* o low 4(segs.z -I+ segs.y -I+ (a| X inits.y))
= filter and reduce promotion, folding Ills =

(IIIs.z)T(IIIs.y)T(T/o # * o low 4o (a| X inits.v))

Although this already looks like a catamorphism it is not one as yet. We now concentrate
on the last part , which may be rewritten, assuming that the predicate

holds:

a =T/.(x-~-[a]-~-y) (14)

(V o # * o Iow,~ o(a| o (tails.x • i,its.u)
= (13) =

(a _<)? o T /o # * ~ (a| o (tails.x x i , its .v)
= map distributivity, (# o (~O) = (1 +) o # o ~+) =

(a -<)? o V o (1+)* ~ (# o ~) * o (tails.x X i , i ts .v)
= promotion: (1 + a)T(1 + b) = 1 + (aTb) =

(a _<)? o (1+) o 1"/ o (# o +t-)*.(tails.x X inits.y)
= length is a homomorphism =

(a _<)7 o (1+) o 1"/o (+ o (# x #))*.(tai ls .x X inits.y)
= map distributivity, map over cross =

(a _<)? o (1+) o T/0 (+)* . (#* o tails.x X #* o inits.y)
= addit ion is monotonic =

(a <) ? o (1+) o (+) . (T /o #* o tails .x,T/o #* o inits.y)
= longest tail of z is x, idem for inits =

(a -<)?0 (1+) o (+) . (# . x , #-Y)
= notat ion =

(~ -<)?(1 + #.~ + #.v)

Tupling this expression with the computations of # .x and # .y leads now to the following
catamorphism on a suitably chosen element in the LTV:

Ills = 7rl ~ ~(0, 0), fDo SVintoLTV (15)

w h e r e f . ((m ,x) ,a , (n , v)) = (mTnT((a -<)?(x + l + y)) , (x + l + y)) (16)

370 D o a i t s e S w i e r s t r a a n d Oege de M o o r

The only problem which now remains open is to find the suitable representation for
the input in LTV-form; this is easily solved by using the well-known algorithm for the
construction of a heap. The algorithm used corresponds directly to precedence parsing.
The only difference is that all operators are equal to the empty tree, and the priority of
the operators is the reverse of what one finds usual. We thus use SPV as an intermediate
representation: svintoltv = SPVintoLTV o SVintoSPV.

The transformation of SV into SPV is a straightforward application of parsing, where
the values in the LTV-parts are always at most their associated value in the pair in the
spine:

SVintoSPV = (In, (i d e (o , -)) [}

w h e r e (s -4 (t, ,)) e (u, w) = v > w --+ (s -4 (t, v)) -~ (u, w)
, < w --, s e ((t -~ v >- u), ~)

u e (~, w) = o ~ (~, w) .

(17)

The function converting an SPV-value into an LTV-value (maintaining the heap property)
is given by

S P V i n t o L T V . s = 7rl o lr~ o .<~--1 0 (8 e (I-1, 0 0)) . (18)

So we are finished, and gathering the intermediate results in (15), (17) and (18), we
get

I[~S = 71"1 o ~(0 , O) , f D o 71"1 0 7i'20 . ~ - 1 o (e (i - i , o o)) o ~D,(id(~(12,-))D .

To this result again the virtual data structure optimisation may be applied, effectively
preventing the labeled tree coming into existence at all. In the final result only a parse
stack is maintained, containing the results and lengths of already processed subtrees, and
label values which have not found their corresponding right subtree parts.

The final algorithm now becomes:

I l l s =

~, o (| 0), oo))o ~U, 0d6((0, 0),-))D
where s -< ((m, x), v) Q ((n,y), w) = v _> w --* (s -4 ((m, x), v)) -< ((n, y), w)

v _< w -~ s o ((mT.T((v _<)?(~vl)), ~vl), w)
where x y l = x + y + 1

u o ((. , v), ~) = a .~ ((~, y), w) .

6 A c k n o w l e d g m e n t s

The authors wish to thank Lambert Meertens, Richard Bird, and the participants and
lecturers of the Ameland meetings for working together in a cooperative way in devel-
oping the calculus employed in this paper. This research was supported by the Dutch
Organization for Scientific Research, grant NFI 62-518.

Virtual Data Structures 371

References

1. R.C. Bac_khouse. An exploration of the Bird-Meertens formalism. Computing Science Note
CS 8810, Department of Computing Science, Groningen University, P.O. Box 800, 9700 AV
Groningen, The Netherlands, 1988.

2. R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic o.fProgramming
and Calculi of Discrete Design, volume 36 of NATO ASI Series F, pages 3-42. Springer-
Verlag, 1987.

3. R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall, 1988.
4. Hendrik Boom. private communication, 1979. IFIP Working Group 2.I, Jablonna,

Warschau.
5. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
6. David Gries. The Science of Programming. Springer, 1983. 366p.
7. L. Meertens. Algorithmies - - towards programming as a mathematical activity. In J .W.

de B~kker, M. Hazewinkel, and ,I.K. Lenstra, editors, Mathematics and Computer Science,
volume 1 of CWI Monographs, pages 3-42. North-Holland, 1987.

8. L. Meertens. Paramorphisms. Technical Report CS-R9005, CWI, Amsterdam 1990. To
appear in Formal Aspects of Computing.

9. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In FPCA, LNCS. Springer-Verlag, 1991.

10. C.C. Morgan. Programming from Specifications. Prentice-Hall, 1990.
11. IV[. Spivey. A categorical approach to the theory of lists. In J.L.A. van de Snepscheut,

editor, Mathematics of Program Construction, volume 375 of Lecture Notes in Computer
Science, pages 399-408. Springer-Verlag, 1989.

12. J.C.S.P. van der Woude. Rabbitcount := rabbitcount - 1. In J.L.A. van de Snepscheut,
editor, Mathematics of Program Construction, volume 375 of Lecture Notes in Computer
Science, pages 409-420. Springer-Verlag, 1989.

13. Philip Wadler. Views: a way for pattern matching to cohabit with data abstraction. In Proc.
l~th Symposium of Principles of Programming Languages, pages 307-313. ACM, January
1987.

14. Philip Wadler. Deforestation: transforming programs to eliminate trees. In H. Ganzinger,
editor, ESOP '88 (= Proc. 2nd European Symposium on Programming, volume 300 of
LNCS, pages 345-358. Springer-Verlag, March 1988.

