Lecture Notes in Computer Science

756

Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

Josef Pieprzyk Babak Sadeghiyan

Design of Hashing Algorithms

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Series Editors

Gerhard Goos Universität Karlsruhe Postfach 69 80 Vincenz-Priessnitz-Straße 1 D-76131 Karlsruhe, Germany Juris Hartmanis Cornell University Department of Computer Science 4130 Upson Hall Ithaca, NY 14853, USA

Authors

Josef Pieprzyk
Department of Computer Science, Centre for Computer Security Research
University of Wollongong
Wollongong, N.S.W. 2500, Australia

Babak Sadeghiyan Computer Engineering Department, Amir-Kabir University of Technology Tehran, Iran

CR Subject Classification (1991): E.3-4, G.2.1, F.2.2, D.4.6, C.2.0

ISBN 3-540-57500-6 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-57500-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993 Printed in Germany

Typesetting: Camera-ready by author

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.

45/3140-543210 - Printed on acid-free paper

Preface

Historically, computer security is related to both cryptography and access control in operating systems. Cryptography, although mostly applied in the military and diplomacy, was used to protect communication channels and storage facilities (especially the backups). In the seventies there was a breakthrough in cryptography - the invention of public-key cryptography. It started in 1976 when Diffie and Hellman formulated their public-key distribution system and formally defined public-key cryptosystems. Two years later two practical implementations of public-key cryptosystems were published. One was designed by Rivest, Shamir, and Adleman (called the RSA system); the authors based the system on the two "difficult" numerical problems: discrete logarithm and factorization. The other invented by Merkle and Hellman was based on the knapsack problem, which is even "harder" than these used in the RSA system. Since that time cryptography, traditionally seen as the theory of encryption algorithms, has extended its scope enormously. Now it comprises many new areas, namely authentication, digital signature, hashing, secret sharing, design and verification of cryptographic protocols, zero knowledge protocols, quantum cryptography, etc.

This work presents recent developments in secure hashing algorithm design. The main part of the work was written when the authors were with the Department of Computer Science, University of New South Wales, Australian Defence Force Academy, and Babak Sadeghiyan was a PhD student working with Josef Pieprzyk as his supervisor.

Hashing is a process of creating a short digest (i.e. 64 bits) for a message of arbitrary length, for example 20 Mbytes. Hashing algorithms were first used for searching records in databases. These algorithms are designed to create a uniform distribution of collisions (two messages collide if their digests

are the same). In cryptographic applications, hashing algorithms should be "collision-free", i.e. finding two different messages hashed to the same digest should be computationally intractable. Hashing algorithms are central for digital signature applications and are used for authentication without secrecy.

There have been many proposals for secure hash algorithms, and some of them have been in use for a while. However, many of them have proved insecure. One of the major reasons for this is the progress in technology. The failed effort of many researchers suggests that we should work on some guidelines or principles for the design of hash functions. This work presents some principles for the design of secure hash algorithms. Hash algorithms are classified based on whether they apply a block cipher as the underlying one-way function or not.

For a block-cipher-based hash scheme, if the underlying block cipher is secure against chosen plaintext/ciphertext attack, the hash scheme is secure against meet-in-the-middle attack. We develop structures, based on DES-like permutations and assuming the existence of pseudorandom function generators, which can be adopted both for the structure of block-cipher-based hash schemes and for the underlying block ciphers to be used in such schemes.

Non-block-cipher-based hash functions include a spectrum of many different proposals based on one-way functions from different branches of mathematics. So, in the book, generalized schemes for the construction of hash functions are developed, assuming the existence of a one-way permutation. The generalized constructions are improvements upon the Zheng, Matsumoto and Imai's hashing scheme, based on the duality between pseudorandom bit generators and hash functions, but they incorporate strong one-way permutations. It is shown that we can build such strong permutations with a three-layer construction, in a theoretical approach. Two schemes for the construction of families of strong one-way permutations are also proposed.

Acknowledgement

We were very fortunate to receive help from many people throughout the time of this project. Firstly, we would like to express our deep gratitude to Professor Jennifer Seberry for her critical comments, helpful suggestions and encouragement. Also we would like to thank Professor Tsutomu Matsumoto and Dr Rei Safavi-Naini for their thoughtful criticism, suggestions and corrections. We also received helpful comments about the work from Dr Lawrence Brown, Professor Andrzej Gościnski, Dr Thomas Hardjono, Dr Xian-Mo Zhang and Dr Yuliang Zheng. We thank all our friends from the Department of Computer Science, University College, University of NSW, for their friendliness and everyday support. In particular our thanks go to Dr George Gerrity, Mr Per Hoff, Mr Jeff Howard, Dr Jadwiga Indulska, Mr Martin Jaatun, Mr Ken Miles, Mr Andy Quaine and Mr Wen Ung. Finally we would like to thank Mrs Nilay Genctruck for proof-reading the final manuscript.

This project was partially supported by the Australian Research Council grant number A49131885.

September 1993

Josef Pieprzyk

Babak Sadeghiyan

Contents

1	Introduction			1
	1.1	Backg	round and Aims	1
		1.1.1	Introductory Comments	1
		1.1.2	Discussion of Public-key and Private-key Cryptography	2
		1.1.3	Digital Signature	5
		1.1.4	RSA Cryptosystem and Digital Signature	9
		1.1.5	Signature-Hashing Scheme	10
		1.1.6	Other Applications of Hash Functions	13
	1.2	Conte	nts of the Book	14
2	Ove	rview	of Hash Functions	18
2	Ove		of Hash Functions	18 18
2		Introd		
2	2.1	Introd Prope	luction	18
2	2.1 2.2	Introd Prope	rties of Secure Hash Functions	18 19
2	2.1 2.2	Introd Prope Defini	rties of Secure Hash Functions	18 19 20
2	2.1 2.2	Prope Defini 2.3.1	tions	18 19 20 20

		2.4.1	Rabin's Scheme	25
		2.4.2	Cipher Block Chaining Scheme	26
		2.4.3	CBC with Checksum Scheme	26
		2.4.4	Combined Plaintext-Ciphertext Chaining Scheme	27
		2.4.5	Key Chaining Scheme	28
		2.4.6	Winternitz' Key Chaining Schemes	29
		2.4.7	Quisquater and Girault's 2n-bit Hash Function	30
		2.4.8	Merkle's Scheme	31
		2.4.9	N-hash Algorithm	32
		2.4.10	MDC2 and MDC4	33
	2.5	Non-bl	ock-cipher-based Hash Functions	34
		2.5.1	Cipher Block Chaining with RSA	35
		2.5.2	Schemes Based on Squaring	36
		2.5.3	Schemes Based on Claw-Free Permutations	38
		2.5.4	Schemes Based on the Knapsack Problem	39
		2.5.5	Schemes Based on Cellular Automata	40
		2.5.6	Software Hash Schemes	41
	i	2.5.7	Matrix Hashing	43
		2.5.8	Schnorr's FFT Hashing Scheme	44
	2.6	Design	Principles for Hash Functions	45
		2.6.1	Serial Method	45
		2.6.2	Parallel Method	46
	2.7	Conclu	sions	46
_		, .		. ~
3	Met		f Attack on Hash Functions	48
	3.1	Introd	uction	48

	3.2	General Attacks	49
	3.3	Special Attacks	50
		3.3.1 Meet-in-the-middle Attack	51
		3.3.2 Generalized Meet-in-the-middle Attack	52
		3.3.3 Correcting Block Attack	53
		3.3.4 Attacks Depending on Algorithm Weaknesses	53
		3.3.5 Differential Cryptanalysis	54
	3.4	Conclusions	54
4	Pse	udorandomness	56
	4.1	Introduction	56
	4.2	Notation	58
	4.3	Indistinguishability	58
	4.4	Pseudorandom Bit Generators	60
	4.5	Pseudorandom Function Generators	62
	4.6	Pseudorandom Permutation Generators	66
		4.6.1 Construction	66
		4.6.2 Improvements and Implications	69
		4.6.3 Security	72
	4.7	Conclusions	76
5	Con	struction of Super-Pseudorandom Permutations 7	77
	5.1	Introduction	77
	5.2	Super-Pseudorandom Permutations	78
	5.3	Necessary and Sufficient Conditions	79
	5.4	Super-Pseudorandomness in Generalized DES-like Permutations S	92
		5.4.1 Feistel-Type Transformations	93

		5.4.2 Super-Pseudorandomness of Type-1 Transformations .	96	
	5.5	Conclusions and Open Problems	103	
6	A S	A Sound Structure 10		
	6.1	Introduction	05	
	6.2	Preliminaries	06	
	6.3	Perfect Randomizers	12	
	6.4	A Construction for Super-Pseudorandom Permutation Gener-		
		ators	16	
		6.4.1 Super-Pseudorandomness of $\psi(h,1,f,h,1,f)$ 1	17	
		6.4.2 Super-Pseudorandomness of $\psi(f^2,1,f,f^2,1,f)$ 1	24	
	6.5	Conclusions and Open Problems	30	
7		Construction for One Way Hash Functions and Pseudo- dom Bit Generators 1	32	
	7.1	Introduction	32	
	7.2	Notation	34	
	7.3	Preliminaries	35	
	7.4	Theoretic Constructions	37	
		7.4.1 Naor and Yung's Scheme	38	
		7.4.2 Zheng, Matsumoto and Imai's First Scheme 1	30	
		7.4.3 De Santis and Yung's Schemes	Job	
		1.4.0 De partito and Tang 5 benefites		
		7.4.4 Rompel's Scheme	39	
	7.5	Ÿ	39 40	
	7.5 7.6	7.4.4 Rompel's Scheme	39 40 40	
		7.4.4 Rompel's Scheme	39 40 40 46	

		7.7.2 Parameterization	
		7.7.3 Compressing Arbitrary Length Messages 154	
	7.8	A Single construction for UOWHF and PBG 155	
	7.9	Conclusions and Extensions	
8	Но	v to Construct a Family of Strong One Way Permutations 157	
	8.1	Introduction	
	8.2	Preliminary Comments	
	8.3	Strong One Way Permutations	
		8.3.1 A Scheme for the Construction of Strong Permutations 164	
		8.3.2 A Three-layer Construction for Strong Permutations . 166	
	8.4	Conclusions	
9	Cor	Conclusions 170	
	9.1	Summary	
	9.2	Limitations and Assumptions of the Results 174	
	9.3	Prospects for Further Research	
Bi	bliog	graphy 179	
In	dex	191	

List of Symbols

C	Ciphertext
M	Message or a plaintext
\boldsymbol{K}	Key
Σ	Alphabet
\sum	Summation
\subset	Subset
\rightarrow	Mapping
0	Composition of functions
\in	Set membership
≡	Congruence
!	Factorial
1	Such that (set notation)
\oplus	Exclusive-or (of Booleans)
٧	Or (of Booleans)
٨	And (of Booleans)
<u> </u>	Concatenation
O(f)	Big-Oh of the function f
U	Union
$\lceil x \rceil$	Smallest integer greater than x
$\lfloor x \rfloor$	Greatest integer smaller than x
N	The set of natural numbers
Z_n	The set of integers modulo n
x	Absolute value of the number x
#S	Number of elements in the set S
log	Logarithm to the base n