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Abstract

A compositional parallel program is a program constructed by

composing component programs in parallel� where the composed pro�

gram inherits properties of its components� In this paper� we describe

a small extension of C�� called Compositional C�� or CC�� which

is an object�oriented notation that supports compositional parallel

programming� CC�� integrates di�erent paradigms of parallel pro�

gramming� data�parallel� task�parallel and object�parallel paradigms�

imperative and declarative programming� shared memory and message�

based programs� CC�� is designed to be transportable across a range

of MIMD architectures�

� Introduction

��� Compositionality

Programming languages provide mechanisms for structuring programs as a
composition of component units� Properties of programs composed using
sequential or functional composition can be derived from properties of their
components� For example�

wp�F �G�Q� 	 wp�F�wp�G�Q��






where wp denotes weakest precondition� and ��� denotes sequential compo�
sition� and Q is the desired postcondition of fF �Gg� Functional composi�
tion� as in f�g�x		� is de
ned in mathematics� Sequential composition and
functional composition follow the principle of implementation hiding� pro�
grammers can compose program speci
cations without being concerned with
program implementation�

In parallel programs� however� implementation hiding is unsatisfactory�
To prove properties of a program composed in parallel we must �in general	
give proofs for the components such that one component does not interfere
with the proof for the other� To prove properties of the composed program
we have to use details of the components which we would rather hide�

One way of hiding implementation is to design parallel composition such
that properties of components are also properties of the composed program�
In this case we need not concern ourselves with implementations of the com�
ponents� nor need we be concerned about one component interfering with
the proof of another� The key issue� then� is to design parallel composition
so that the whole inherits properties of the parts� We introduce a form of
parallel composition� called proper parallel composition� that has this inher�
itance property� We begin our discussion of proper parallel composition with
the question� what does �property p holds in program F� mean�

In closed�system speci
cations� p holds in F means that p holds in all
computations of F 
���� Here� computations of F refer to computations of F
executing by itself � the environment of F does not execute� With closed�
system speci
cations it is possible that a property holds both for F � and for
G� but not for F composed in parallel with G� In general� closed�system
speci
cations do not compose� See UNITY 
��� for a detailed discussion of
this issue�

In open�system speci
cations� �p holds in F� means that p holds for all
computations of F composed in parallel with G� for any program G� Open�
system speci
cations enjoy the inheritance property� the composed program
inherits properties of its components� Unfortunately� properties in open�
system speci
cations can be too weak to be useful because a property of a
program F must hold when F is composed in parallel with any program�
including programs that the designer of F had not intended to be composed
with F �

Proper composition takes the open�system approach� but only programs
that obey certain rules about naming and assignment can be composed using
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proper parallel composition ���� ���� The rules for proper parallel composition
are designed to yield the inheritance property� The central idea in obtaining
compositionality is that a process has private variables that cannot be refer�
enced by other processes� and shared variables that can be assigned values
at most once� 	A message sequence can be thought of as a list in which
each element 
 a message 
 is assigned a value when the message is sent��
Examples of the use of single assignment variables can be found in ��� ��� �
��

��� Programming Languages for Compositional Pro�

gramming

We turn now to the question of what programming notation should be used
to express proper parallel composition in a program� The advantages and
disadvantages of introducing a new parallel programming language are well
known ����� A signi�cant advantage of using small extensions to widely�used
sequential languages is that programmers can learn the extensions quickly�
and use tools developed for the base language� This is the approach we have
taken� using C�� ���� as our base language� We choose C�� because of
its widespread use� and its support for abstract data types� object�oriented
programming� and the speci�cation of generic algorithms through templates
and inheritance�

In the remainder of this paper� we show how C�� can be augmented
to create a parallel programming language� We call the resulting language
Compositional C�� or CC��� The following discussion will focus on the
essential aspects of CC��� a complete description of CC�� can be found
in ��� �
�� CC�� is a �exible� concurrent object�oriented programming lan�
guage particularly well suited to the implementation of large�scale parallel
programs and high performance parallel programming libraries utilizing a
range of parallel programming paradigms�

Prior to a discussion of CC�� speci�cs� we make a few observations that
have driven the design of CC���

Determinism and Nondeterminism Programmers developing scienti�c
applications want their programs to be deterministic� executions of the same
program with the same inputs should produce the same outputs� Numerical
analysts craft careful sequences of steps to avoid numerical instability� and
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they need to be guaranteed that the same sequence of steps will be executed
in each execution� By contrast� reactive systems are nondeterministic because
they deal with an uncertain environment�

Programmers can guarantee that CC�� programs are deterministic by
following certain simple conventions � if they follow these conventions� then
they have no proof obligation in demonstrating determinism� Programmers
can� if they wish� use nondeterministic constructs� The ability to choose
between deterministic and nondeterministic constructs� and to compose de�
terministic and nondeterministic programs� allows programmers to develop a
variety of applications including reactive systems with components that are
scienti�c applications�

Paradigm Integration No �best	 parallel programming paradigm exists�
Semaphores� monitors� message passing� etc� all have their uses� Di
erent
paradigms can be appropriate even with a single program� CC�� was de�
signed to facilitate the use of a di
erent programming paradigms� such as�

� Task� Data� and Object Parallel� Distributed arrays and dis�
tributed grids can be de�ned as classes in CC��� allowing data�parallel
computations on these objects� In addition� CC�� supports cooper�
ative processing and task parallelism� Furthermore� since CC�� is
object�oriented� it supports the object�oriented paradigm�

� Declarative and Imperative� The extensions to C�� allow declar�
ative programs to be written in CC��� Programmers can� however�
continue to use the familiar imperative style of C���

� Shared Variables and Message�Passing� Though processes in
CC�� share variables� libraries of message�passing channels are pro�
vided so that the message�passing paradigm can be used if desired�
Libraries of semaphores and monitors allow programmers to use the
styles of their choice�

� Compositional C��

As its name implies� CC�� is based on C�� �
��� C�� is itself is an ex�
tension of the C programming language� C�� adds strict typing� function
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overloading� encapsulation� abstract data types and object�oriented program�
ming to C� These features make C�� a good language for implementing
program libraries and large scale software systems�

A central concept in C�� is the class� which combines code and data
into a single unit� or object� The data components of a class are called
data members� The functions associated with a class are called member

functions� in other object�oriented languages� member functions are often
called methods� The subset of the data members and member functions that
de�ne the interface to the class are declared public and are accessible from
outside the class� All other members are private and they are accessible
only to member functions of the class� A class� therefore� forms a unit of
encapsulation�

A member function can only be called from an object� or a reference to
an object� For example� if Obj is a variable whose type is a class containing
a member function f� f is invoked from Obj by the expression� Obj�f��� If
ObjPtr is a pointer to Obj� then ObjPtr��f�� invokes f as well�

The advantages of an object�oriented approach to the design of parallel
systems has long been recognized 	
��� Object�oriented systems provide well�
de�ned interfaces� co�location of function and data� encapsulation of data
and data abstraction� These features encourage the construction of scalable
parallel systems� Consequently� the encapsulation and object�oriented fea�
tures of C�� have made it the basis of a number of parallel programming
systems 	

� �� ���� However� we will show that our points of departure
� declarative and compositional programming � result in a signi�cantly
di�erent approach to parallel programming in C���

CC�� is a pure superset of C��� it consists of C�� plus seven exten�
sions� These extensions impact the language in the following areas�

� �ow of control�

� synchronization and communication�

� nondeterminism�

� locality and heterogeneity�

With the exception of the extensions supporting locality and heterogene�
ity� the C�� constructs extended by CC�� are part of ANSI C as well� Thus
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C programmers can bene�t from CC��� In extending C�� to CC��� the
new constructs were carefully designed to be a minimal and complete set
and to support formal methods� Proving properties of CC�� programs is
beyond the scope of this paper� but is discussed more fully in ��� �	�

��� Flow of Control in CC��

CC�� is intended to be a general purpose parallel programming language�
As such� parallelism in a CC�� program is explicit� Three constructs are
available for parallel composition in CC��
 the par block� the parfor state�
ment and the spawn statement� We shall start the discussion with a descrip�
tion of par blocks�

The par Block� The par block is the most basic means of specifying par�
allel composition in CC��� Its syntax is that of the compound statement in
C�� with the keyword par preceding the block� An example of a par block
is found in Figure �� A par block can lexically contain any CC�� statement
with the exception of the return statement and variable declarations�� As
seen in Figure �� the statements in the block can be sequential blocks and
par blocks can be nested�

par �

procedure����

� procedure����

par � procedure���� procedure	��� 


procedure����




procedure����




Figure �
 An example of a par block

A new thread of control is created for each top level statement in a par

block� A par block terminates when all its statements terminate� However�

�A goto statement is allowed in a par block� but its use is restricted�
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there is no requirement that a par block terminate� Parallel execution of
the statements in the par block is de�ned by fair� interleaved execution of
the top level statements in the block� A de�nition of fairness is given in
Section ���� however� for the time being� take fairness to mean that every
executable statement in a par block will execute eventually� even if the par

block does not terminate�
With the exception of atomic functions� which are discussed in Section ����

the granularity at which the interleaving occurs is not de�ned� As an exam�
ple� consider the par of Figure �� Assume that all the statements in the par
block terminate� Possible execution orderings of the par block include 	but
are not limited to
�

a� a� a� b� b� b�
a� b� b� b� a� a�

The sequential ordering of the function calls within statements S� and S�
is maintained� However� even though these statements are sequential� their
execution is interleaved� Note that execution of ai and bj can be interleaved
too�

par �

� a���� a���� a���� 	 

 Statement S�

� b���� b���� b���� 	 

 Statement S�

	

Figure �� Parallel execution of two sequential blocks

The ability to create a collection of threads is not too useful unless threads
can interact with each other� Communication and synchronization between
threads is discussed in Section ���� We only note here that the primary
communication mechanism in CC

 is shared variables� This is not to
say� however� that CC

 can only execute e�ciently on a shared�memory
computer� As we will see in Section ���� the sharing is constrained in such
a way as to make e�cient execution on a range of parallel architectures
possible�

The parfor Statement� A par is useful when one needs to create a �xed
number of threads and that number is known at compile time� While re�
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cursion within a par block can be used to create an arbitrary number of
concurrent threads� iteration is often a more natural and convenient means
of expressing such computations� For this reason� CC�� has a parallel loop
construct� the parfor�

The syntax of a parfor statement is exactly like the for statement in
C��� The statement speci�es loop initialization� a termination test� an
index�update expression and the loop body� The loop body can be a simple
statement� a sequential block� or a parblock� Note that in C��� the index
variable of a loop is not constrained to be an integer and the termination test
and index update expression can be any valid C�� expression� An example
of a parfor statement is shown in Figure �� Notice the use of the C��

feature that allows the declaration of an index variable to be placed in the
parfor statement itself�

parfor �int index � � � index � N � index��� 	

a
�index�� a��index�
�� a��index��




Figure �� A parfor statement

Each iteration of a parfor creates a new thread which executes in paral�
lel with all other iteration bodies 	and the rest of the computation as well
�
The threads have the same interleaved execution semantics of the par block�
When all the loop bodies terminate� the parfor statement terminates� Vari�
ables declared in the initialization part of a parfor loop receive special treat�
ment� Within each thread� a local copy of the each index variable is created
and initialized with the values of the index variables at the time of thread
creation� Thus in Figure �� each loop body will have a local variable called
index and its value will be set to the value of index in the parfor loop at the
time the thread for the loop body was created� Regardless of the execution
order of the loop bodies� the correct value of index will be available in the
loop body�

The spawn Statement� The third and �nal method for specifying concur�
rent execution in CC�� is the spawn statement� The termination criteria
associated with par blocks and parfor statements imposes structure on a
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concurrent computation� When the statement terminates� all parallel com�
putation is complete and any postconditions associated with the block hold�
However� there are situations in which this structure is a hindrance rather
than a help� An example is a program that sets up a network of intercon�
nected servers� In this case� we would like to start a new thread of execution
for each server and have the program proceed� independent of the termina�
tion of the thread� While this could be done using a parfor or par block�
one has to go to some e�ort to work around the fact that the servers must
terminate before the statement after the par block or parfor statement ex�
ecutions� The situation would be simpli�ed if one could start a new thread
of control and proceed to the next statement immediately� This is exactly
what the spawn statement does� An example of a spawn statement is found
in Figure ��

A spawn statement executes an arbitrary CC�� expression in a new
thread of control� The execution of the statement is interleaved fairly with
the rest of the program� Unlike the par and parfor� a spawn statement termi�
nates immediately� regardless of the status of the process that was spawned�

spawn x � y � g�z��

Figure �	 A spawn statement

Comparison With Other Approaches� Parallel composition as de�ned
by par blocks can be found in a number of other parallel programming nota�
tions� For example� a par is equivalent to the use of cobegin and coend in 
���
and the parallel composition operator in PCN 

���

The use of par blocks di�ers from most other concurrent object�oriented
languages in that with a par block� multiple threads of control exist within a
single object� Other languages tend to associate thread creation with object
creation 
�� 
�� ��� ��� Consequently� only one thread of control is ever
associated with an object� The spawn statement in CC�� can be used
to achieve the same e�ect�

There are two advantages to par �and parfor� over a one�to�one corre�
spondence between objects and threads� First� these statements are block�
oriented� and they make parallelism within a block explicit� there is no ques�
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tion as to which statements execute in parallel and which in sequence� The
second advantage is that one can associate a post condition with a par block
or a parfor statement� When the statement terminates� the post condition
can be asserted� This simpli�es the process of reasoning about the behavior
of the program�

Reasoning about the behavior of a program containing a spawn statement
is more di�cult� Because there is no way of knowing when the thread started
by the spawn starts or completes� assertions about the spawn statement must
state that a condition will hold at some unknown point in the future� Thus
one has no choice but to resort to a temporal operator such as the leads�to

operator �����

��� Synchronization and Communication

In the previous section� we saw how concurrent computations can be created
by the use of par� parfor� and spawn statements� In this section� we will dis	
cuss how concurrently executing program components can share information
and synchronize�

Before we discuss CC

� a brief review of type modi�ers in C

 is
in order� In C

� as well as in ANSI C� the type of a variable can be
modi�ed by the keyword const� The object named by a const variable has
a constant value and cannot be modi�ed� � Figure � illustrates a number of
const object declarations and explains their meaning� For obvious reasons�
a constant object must be initialized at the time the object is created�

From the point of view of concurrency� const objects are very useful�
Once a const object is created� its value is known for the entire lifetime of
the object� Since threads are not allowed to write to a const object� there are
no race conditions associated with it� threads can read the value of a const

object without restriction� From an implementation point of view� const
objects are useful because they can be copied into more than one processor
without concern for maintaining consistency between the copies�

The requirement that a const object be initialized at creation time is too
restrictive to make constants the only basis for communication in a parallel

�Under certain circumstances� the C�� type system can be manipulated in such a way

as to allow the contents of a const variable to be altered� This may or may not result in

a runtime exception� We will not consider such operations in the present discussion�
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�� x is a regular integer�

int x�

�� const x is a constant integer� initialized to ���

const int const�x � ���

�� y is a constant pointer to a constant integer�

�� Neither the pointer nor the integer can be altered�

�� y is initialized to point to const x

const int � const y � �const�x�

�� z is a constant pointer to a integer�

�� The pointer cannot be changed� though the contents of the integer can�

�� z is initialized to point to x�

int � const z � � x�

�� w is a pointer to a constant integer�

�� The object being pointed to cannot be changed�

�� but di�erent objects can be pointed to�

�� w does not have to be initialized�

const int � w�

Figure �� Examples of the use of the const type modi�er in C��
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program� However� the concept can be extended to form the basis of a �exible

communication structure� To do so� CC�� has an additional type modi�er�

sync� A sync modi�er indicates that a variable is used for synchronization�

A sync variable in CC�� is treated exactly like a const variable in plain

C�� with two exceptions�

� Unlike a const object� the initial value of a sync object does not need

to be provided at creation time� Initialization can be delayed� A sync

object is initialized by assigning it a value� Once initialized� a sync

object cannot be assigned to again� It is an error to reinitialize a sync

object�

� Any attempt to read the value of an uninitialized sync object is delayed

until some �nite time after the sync object is initialized�

Subject to the restrictions on reinitialization� a sync object can be used

wherever a regular object can be used� For example� data members of a class

can be all sync� all non�sync or some combination of the two� Structures

can be initialized incrementally	 it is only when accessing a noninitialized

component of a structure that the execution of a thread is blocked�

The sync variable provides a single mechanism for synchronization and

communication between concurrently executing threads� For communication

between threads� two or more threads share a common sync object and one

thread writes a value into the object� Synchronization is achieved in that the

thread reading the value cannot proceed until the value has been written�

Notice that the degree of sharing is not limited	 any number of threads can

reference a single sync object�

From an implementation point of view� sync objects have many of the

same properties as const object	 copies of sync objects can be cached on

any number of processors� While copies of a sync object can be inconsistent�

a copy can be inconsistent in only one way� A copy of an object can be

uninitialized on some processors and initialized on others� The copies that

are initialized will all contain the same value� In the situation where a local

copy of a sync variable is out of date� any attempt to read its value will block

and the correct value of the variable will be obtained� These semantics can

be e
ciently implemented on both shared memory and distributed memory

parallel computers	 hence� sync variables provides a uni�ed� architecture�

independent means of synchronization and communication�
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In CC��� all communication takes place via variables shared between
concurrently executing threads� A parallel composition is proper if all the
variables shared by the procedures being composed are sync variables� Proper
parallel composition enjoys the inheritance property� properties of compo�
nents are also properties of the composed program�

Comparison with Other Approaches No doubt� some readers will have
recognized sync variables as being single assignment variables from data�ow
languages �	
� or from languages based in concurrent logic programming ��
��
A reference to a structure which contains sync objects behaves much like an
I�Structure in the data�ow language ID ���� sync variables di�er in that
the sync attribute can be extended to abstract and concrete data types
as de�nable in C��� In addition� sync variables di�er from variables in
programming languages such as Strand ��
� and PCN ��	� in that the blocking
rule for sync variables prohibits the use of variable�to�variable assignment
found in these languages�

Many concurrent object�oriented languages �	� �� 	�� use function call as
the basis for communication� In actor�based languages� a function call is in�
terpreted as sending a message to the target object to perform the requested
operation� The arguments in the function call are passed to the target object
as well� The function call terminates immediately� without a waiting for a re�
sponse from the target object� Applying this approach to C�� is problematic
in that this approach changes the meaning of function call� By associating
communication with shared variables and assignment� the semantics of all of
the underlying operations in C�� are preserved� Finally� we note that actor
type semantics of function call can be achieved either through the use of the
spawn statement within the body of a member function or assignment to a
sync variable whose value is read by a nondeterministic fair merger�

Fairness� With the introduction of sync variables� we can now de�ne
fairness� At any point in a computation� a thread can be in one of two states�
executable or suspended� A thread is executable when it is created� a
thread becomes suspended when it attempts to read an uninitialized sync

variable� In CC��� an executable thread remains executable until it is
executed� the execution of some other threads cannot make an executable
process become suspended�
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The fairness rule implemented by CC�� is as follows� At all points t in
the computation� the following holds�

�� The program terminates �within a �nite number of steps from t	� or


� for every thread r that is executable at point t� the computation of r
will progress �within a �nite number of steps from t	�

��� Nondeterminism

In this section� we address nondeterminism in CC�� programs� If all parallel
compositions are proper� the resulting program is guaranteed to be determin�
istic if there are no runtime errors� Deterministic behavior simpli�es program
debugging� testing and error analysis� In CC��� nondeterministic behavior
is produced when concurrent threads share a non�sync variable and at least
one thread updates the contents of that variable� Modi�cations to such a
variable are unordered and any thread reading the variable can have non�
deterministic behavior� Note that the sharing does not have to be direct�
the variable to be modi�ed can be encapsulated in an object and the update
made by a member function of that object�

Some control over how modi�cations to shared variables take place is re�
quired� Reads and writes of built�in data types �ints� 
oats� pointers� but not
user de�ned objects	 are atomic� Also� CC�� has the concept of a atomic

function� The semantics of an atomic function are that the execution of an
atomic function will not be interleaved with any other statement in a com�
putation� An atomic function is used to establish the minimum granularity
at which interleaving can take place in the execution model�

A CC�� function that satis�es the constraints described later can be
declared to be atomic� However� atomic functions are most useful when they
are members of a C�� class� Atomic functions are not allowed to access
sync variables� nor can they access variables outside of an object for which
an atomic function is a member� These restrictions allow the semantics to be
ful�lled by ensuring that only one atomic function per class instance executes
at a time�
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��� Data Locality and Heterogeneity

Data locality is an important aspect of both sequential and parallel programs�

Locality determines how e�ectively a program utilizes the memory hierarchy

of a computer system� While it is certainly in the purview of the compiler to

preserve and enhance the data locality present in a program� it is ultimately

the responsibility of the programmer to specify a program with suitable data

locality�

In sequential programs� locality of reference is achieved by carefully posi�

tioning data elements in data structures� tuning algorithms to exploit char�

acteristics of the memory hierarchy of a speci�c computer and introducing

explicit structures� such as software bu�ers and caches� While such devices

are available to parallel programs as well� use of these techniques is com�

plicated due to the increased complexity found in parallel programs� To

facilitate the construction of algorithms that can exploit locality in CC���

we provide an additional mechanism for grouping objects together� This

CC�� construct is called a logical processor object� In addition to providing

a way of specifying locality� processor objects also form the basic mechanism

for constructing heterogeneous software systems�

A C�� program consists of a set declarations� A declaration can declare

a variable� de�ne a function� class or data type� Each program contains some

number of declarations that are known to the whole program� that is they

are global�

CC�� deviates from C�� in that all global declarations are contained

in a special class called the logical processor class� The logical processor

class is not de�ned in the program text� Rather� it is de�ned by the user

externally and is created by a system building utility� such as the linker�

Functions that would be global in C�� become public member functions of

the logical processor class for the program� Likewise� class declarations and

type declarations become nested declarations in the processor class�

There can be more than one type of processor class in a CC�� com�

putation� Each logical processor object is a complete� independent CC��

program� except that one logical processor object can refer to another logical

processor object via a pointer to that logical processor� or via a global pointer�

which is described later� In C�� terminology� we say that all members of a

processor class have internal linkage� In particular� variables declared static

are not shared between instances of processor objects�
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Because all linkage is within a single logical processor object� there is
no name space outside of logical processor objects� Global members of a
processor object can only be accessed via a pointer to that processor object�
An important rami�cation of processor objects is that all object creation
within a processor object is done using a local version of the new operator�
Thus both dynamically and statically allocated objects are local to a speci�c
processor object�

The operators that access a logical processor can be overloaded� eliminat�
ing the need for an application program to ever refer directly to a processor
object� This provides a �exible� user�de�ned scheme for addressing logical
processors �for examples� see �	
��� Examples of how a user might view logical
processor ids include an integer� a pair of integers �if the logical processors
form a two�dimensional mesh�� or an enumerated type�

When a computation starts� it has a single processor object mapped onto
a single processor� Additional processor objects can be dynamically cre�
ated by the new operator�� Processor objects can be mapped onto a speci�c
computational resource through use of the placement argument to the new

function� For example� the statement


proc�t � sPtr � new ���� Solver	

creates a new instance of the program Solver and maps that instance onto
node ��� The placement argument can be of any type allowing for sophis�
ticated mapping strategies� if no placement argument is speci�ed� the new
processor object is co�located with the current processor object�

Global Variables� A major consideration in the design of CC�� was to
be a complete superset of C��� One problematic aspect of this requirement
is that CC�� must support global variables� �le scope variables and static
variables� Logical processor objects provide a good mechanism for handling
these types of variables�

Recall that global declarations in a program become public members of
the logical processor object constructed for that program� Also� each instance
of a processor object is independent� Consequently� a global or static variable

�The new operator is used to dynamically allocate memory of for an object of a speci�c

type in C��� A new not only allocated the needed memory but also ensures that the

memory is properly initialized according to the type of the object requested�
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is local to a processor object� If more than one instance of a processor object
exists� then each one has its own �local global�� If a function in the processor
object refers to a global variable� the object used is located in the processor
object in which the function is located�

It can be argued that our treatment of global variables has the disadvan�
tage that programmers versed in C�� semantics would expect a global to be
global to an entire computation� Furthermore� a smoother transition from a
sequential program to a parallel program would be obtained if a global name
were global to a computation rather than global to the processor object� We
counter this argument by observing that in the degenerate case of a single
processor object� CC�� globals behave exactly like C�� globals� Computa�
tions with more than one processor object are no longer C�� programs and
some deviation from C�� behavior should not be unexpected� Furthermore�
a parallel language should not produce by default a construct as completely
unscalable as a globally shared variable�

There are several advantages to our approach� Because it is a natural
consequence of processor objects we do not need to introduce a new concept
to explain global variables� This minimizes the number of concepts that a
programmer must understand in order to use CC��� In addition� a frequent
use of global variables is to reference large data structures which are subject
to domain decomposition when parallelizing a program� In these situations�
a �local global� is the right concept� Finally we note that global distributed
objects can be built from processor object �local globals� �	
��

Global Pointers� In C��� a reference to an object can be stored in a
pointer variable or a reference variable� In CC��� pointers and references
can be used as well� However� in CC�� we must distinguish between the
situations in which a pointer or reference variable resides in the same logical
processor as the object being referenced or a di�erent logical processor from
the object being referenced� The 
rst case is referred to as a local pointer
or reference� the second case is referred to as a global pointer or reference�
Thus in CC��� a pointer can be either a local pointer or a global pointer�
For clarity� the following discussion will be limited to pointers� however� it
applies to references as well�

In Figure � we saw that C�� allows a pointer to be modi
ed by the
keyword const� In CC��� the modi
ers that can be applied to a pointer

	�



are augmented to include the keywords global and sync� A pointer that is
not declared to be a global pointer is a local pointer� Thus� the statement�

int � global g ptr�

declares g ptr to be a global pointer to an integer� More than one modi�er
can be used in a declaration� thus the statement�

int � global const g ptr�

declares a variable that is a constant� global pointer �i�e� an inter�logical
processor pointer whose value cannot be changed��

A pointer in one logical processor object that points to a location in an�
other processor object must be a global pointer� A pointer in one logical
processor object that points to a location within the same logical processor
object can be either a local pointer or a global pointer� If a global pointer
points to a sync object� the CC		 implementation can cache the contents
of the pointer in the processor object containing the pointer� Although the
correct semantics are maintained regardless of the pointer type� e
cient pro�
gram execution on a wide range of architectures favors the use of global
pointers to sync objects �when possible� over global pointers to non�sync
objects�

Global pointers provide a mechanism for remote procedure call� If one
holds a global pointer to an object� then a member function in that object
can be invoked through the global pointer� The member function executes
in the processor object that contains the target object� not in the processor
object that contains the pointer�

This concludes our discussion of CC		� In the next section� we will
demonstrate how CC		 is used in a small example�

� A CC�� Programming Example

In this section� we illustrate how CC		 is used to write a parallel program
with a small example� a queueing simulation� A central point about this
program is that the CC		 program is identical to a C		 program for the
same problem� except that some variables are declared to be sync and a for

loop is replaced by a parfor loop�

��



The structure of the program is shown in Figure �� The simulation con�

sists of a number of queue elements� The input to a queue element is a

sequence of the times at which service requests are made and a sequence of

service requirements in terms of seconds� The output of a queue element is

the sequence of times at which service requests complete� Interarrival times

for the �rst queue element are generated by an interarrival time generator�

Interarrival times for subsequent queue elements are the outputs from the

previous stages in the simulation� Service times for each queue element are

generated by a service time generator� Each box in the �gure represents a

task in the simulation that can execute in parallel�

Arrival Time
Generator

� Queue
Simulator

Service Time
Generator

�

� q q q � Queue
Simulator

Service Time
Generator

�

�

Figure �� Structure of the queueing simulation

The arrows in Figure � represent a sequence of �oating point values� We

will represent a sequence by a list of cells whose type declaration is in

Figure �� Notice that the �elds for cell are declared sync�

The code for the arrival generator and service time generator is shown

in Figures 	 and 
 respectively� These routines simply generate a list of

cells� The class randm is a random number generator� With the exception

of the sync type modi�ers� these routines are no di�erent from their C



counterparts�

The implementation of the queue element is shown in Figure ��� Note

what happens in the while loop if the simulator gets ahead of either the

service time generator or the interarrival time generator� The pointers to

these lists are updated by assigning them values from the next component

of a cell� Since the next �eld is a sync pointer� this assignment will block

�




inline float max�float a� float b� � return ��a�b� � a � b�	
	

struct cell �

sync float value	

sync cell � next	

cell�float t� �value � t	
 

 initialize new cell


	

Figure �� Data type declarations for queueing simulation

void generate�arrivals�int n� float mean� randm rand� cell � sync p�

� 

 n � �



 p is set to be a list of n arrival times with mean value �mean��

cell � q � p	

float t � ���	

int i	

for�i��	 i�n	 i��� �

t � t�rand�generate�mean�	

q��next � new cell�t�	

q � q��next	




q��next � �cell�� NULL	


	

Figure �� Routines to generate interarrival times in queueing simulation
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void generate�service�int n� float mean� randm rand� cell � sync p�

�

�� n � �

�� p is set to be a list of n service times with mean value �mean��

cell � q 	 p


int i


for�i	�
 i�n
 i

��

float t 	 rand�generate�mean�


q��next 	 new cell�t�


q 	 q��next


�

q��next 	 �cell� sync�NULL


�


Figure �� Routines to generate service requirements in queueing simulation
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void simulate�queue�cell� sync a� cell� sync s� cell� sync d�

�

�� a and s are nonempty input lists of arrival times

�� and service times respectively� and d is set to

�� be the nonempty list of departure times�

�� The length of d is the max of the lengths of a and s�

float t 	 
�
� �� t is the time of the �rst departure

cell � pd 	 d�

cell � pa 	 a
�next�

cell � ps 	 s
�next�

while��pa �	 �cell � � NULL� �� �ps �	 �cell � � NULL���

t 	 �ps
�value� � max�t�pa
�value�� �� Next departure time

pd
�next 	 new cell�t��

pa 	 pa
�next�

ps 	 ps
�next�

pd 	 pd
�next�

��

pd
�next 	 �cell � sync� NULL�

��

Figure ��� Routine to simulate a queue
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int main�� �

const int num�servers � ��	

const float mean�interarrival � 
��	

randm rand
num�servers�
�	

float mean�services
num�servers�	

cell � sync a � new sync cell�����	

cell � sync s
num�servers� � � sync d
num�servers�	

�� Initialize mean service time distributions and random number

�� generators here�

parfor�int i � � 	 i � num�servers	 i��� �

s
i� � new cell�����	 d
i� � new cell�����	

�

par �

generate�arrivals�n� mean�interarrival� rand
��� a�	

simulate�queue�a�s
���d
���	

generate�service�n� mean�services
��� rand

�� s
���	

parfor�int j � 
	 j � num�servers 	 j���

par �

simulate�queue�d
j�
��s
j��d
j��	

generate�service�n� mean�services
j�� rand
j�
�� s
j��	

�

�

�

Figure ��� Main program for queueing simulation
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until the next cell structure in the list has been created� The queue elements
self�synchronize themselves� Again note� that with the exception of the sync
type modi�ers� this is plain C�� code�

Figure �� is the main driver for the queueing simulation� The �rst task
is to create a set of cells that are to be used to connect the simulators�
service time generators and arrival time generators together� The main part
of this routine is responsible for creating the queue elements and service time
generators� This is done by a par block� Within the par� the initial arrival
time generator� service time generator and �rst queue element are created
and connected together via shared cells� The rest of the queue is constructed
in parallel by a nested parfor statement� Each loop body is itself a par block
that creates a queue element and a service time generator and connects them
together using shared references to a cell�

� Conclusions

In this paper� we introduced Compositional C�� as a demonstration of how
compositional programming can be supported in an imperative programming
language� The advantages of CC�� include�

� CC�� is based on a popular programming language� The advantages
of C�� are advantages of CC�� as well� These include strong typing�
data abstraction and object�oriented programming� Object�oriented
design methodologies 	
� that facilitate the construction of large scale
object�oriented programming systems can be applied to software writ�
ten in CC�� as well�

� CC�� is C�� with a small number of extensions� C�� programmers
can learn CC�� within an hour�

� CC�� provides a mechanism for parallel programming� not a pol�
icy� Programmers can develop di�erent types of parallel programs
in CC��� deterministic or nondeterministic� single program multi�
ple data 
SPMD� or multiple instruction multiple data 
MIMD�� Pro�
grammers can use CC�� libraries that implement virtual channels�
semaphores and monitors� Because of this �exibility� CC�� is suited
for both scienti�c and reactive applications�

��



� CC�� was designed to support formal methods� This focus helps not

only in the design and implementation of correct programs� but can be

used to aid in testing and debugging as well�

The principles used in the design of CC�� can be applied to other program�

ming languages as well� Other compositional languages being investigated

include Fortran and Ada�

CC�� is currently implemented on shared�memory parallel computers

and on uniprocessor workstations� We anticipate having an implementation

available on distributed�memory parallel supercomputers and networks of

workstations shortly�
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