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Abstract

A compositional parallel program is a program constructed by
composing component programs in parallel, where the composed pro-
gram inherits properties of its components. In this paper, we describe
a small extension of C++ called Compositional C++ or CC++ which
is an object-oriented notation that supports compositional parallel
programming. CC++ integrates different paradigms of parallel pro-
gramming: data-parallel, task-parallel and object-parallel paradigms;
imperative and declarative programming; shared memory and message-
based programs. CC++ is designed to be transportable across a range
of MIMD architectures.

1 Introduction

1.1 Compositionality

Programming languages provide mechanisms for structuring programs as a
composition of component units. Properties of programs composed using
sequential or functional composition can be derived from properties of their
components. For example,

wp(F; G, Q) = wp(F, wp(G, Q))



where wp denotes weakest precondition, and “;” denotes sequential compo-
sition, and () is the desired postcondition of {F;G}. Functional composi-
tion, as in f(g(x)), is defined in mathematics. Sequential composition and
functional composition follow the principle of implementation hiding: pro-
grammers can compose program specifications without being concerned with
program implementation.

In parallel programs, however, implementation hiding is unsatisfactory.
To prove properties of a program composed in parallel we must (in general)
give proofs for the components such that one component does not interfere
with the proof for the other. To prove properties of the composed program
we have to use details of the components which we would rather hide.

One way of hiding implementation is to design parallel composition such
that properties of components are also properties of the composed program.
In this case we need not concern ourselves with implementations of the com-
ponents, nor need we be concerned about one component interfering with
the proof of another. The key issue, then, is to design parallel composition
so that the whole inherits properties of the parts. We introduce a form of
parallel composition, called proper parallel composition, that has this inher-
itance property. We begin our discussion of proper parallel composition with
the question: what does “property p holds in program F” mean?

In closed-system specifications, p holds in F' means that p holds in all
computations of F' [23]. Here, computations of ' refer to computations of F
executing by itself — the environment of F' does not execute. With closed-
system specifications it is possible that a property holds both for F', and for
G, but not for F' composed in parallel with G. In general, closed-system
specifications do not compose. See UNITY [11] for a detailed discussion of
this issue.

In open-system specifications, “p holds in F”7 means that p holds for all
computations of ' composed in parallel with G, for any program G. Open-
system specifications enjoy the inheritance property: the composed program
inherits properties of its components. Unfortunately, properties in open-
system specifications can be too weak to be useful because a property of a
program F' must hold when F'is composed in parallel with any program,
including programs that the designer of F' had not intended to be composed
with F.

Proper composition takes the open-system approach, but only programs
that obey certain rules about naming and assignment can be composed using



proper parallel composition [21, 12]. The rules for proper parallel composition
are designed to yield the inheritance property. The central idea in obtaining
compositionality is that a process has private variables that cannot be refer-
enced by other processes, and shared variables that can be assigned values
at most once. (A message sequence can be thought of as a list in which
each element — a message — is assigned a value when the message is sent.)
Examples of the use of single assignment variables can be found in [1, 15, 20].

1.2 Programming Languages for Compositional Pro-
gramming

We turn now to the question of what programming notation should be used
to express proper parallel composition in a program. The advantages and
disadvantages of introducing a new parallel programming language are well
known [18]. A significant advantage of using small extensions to widely-used
sequential languages is that programmers can learn the extensions quickly,
and use tools developed for the base language. This is the approach we have
taken, using C++ [13] as our base language. We choose C++ because of
its widespread use, and its support for abstract data types, object-oriented
programming, and the specification of generic algorithms through templates
and inheritance.

In the remainder of this paper, we show how C++ can be augmented
to create a parallel programming language. We call the resulting language
Compositional C++ or CC++. The following discussion will focus on the
essential aspects of CC++; a complete description of CC++ can be found
in [8, 10]. CC++ is a flexible, concurrent object-oriented programming lan-
guage particularly well suited to the implementation of large-scale parallel
programs and high performance parallel programming libraries utilizing a
range of parallel programming paradigms.

Prior to a discussion of CC++ specifics, we make a few observations that

have driven the design of CC++.

Determinism and Nondeterminism Programmers developing scientific
applications want their programs to be deterministic: executions of the same
program with the same inputs should produce the same outputs. Numerical
analysts craft careful sequences of steps to avoid numerical instability, and



they need to be guaranteed that the same sequence of steps will be executed
in each execution. By contrast, reactive systems are nondeterministic because
they deal with an uncertain environment.

Programmers can guarantee that CC++ programs are deterministic by
following certain simple conventions — if they follow these conventions, then
they have no proof obligation in demonstrating determinism. Programmers
can, if they wish, use nondeterministic constructs. The ability to choose
between deterministic and nondeterministic constructs, and to compose de-
terministic and nondeterministic programs, allows programmers to develop a
variety of applications including reactive systems with components that are
scientific applications.

Paradigm Integration No “best” parallel programming paradigm exists.
Semaphores, monitors, message passing, etc. all have their uses. Different
paradigms can be appropriate even with a single program. CC++ was de-
signed to facilitate the use of a different programming paradigms, such as:

o Task, Data, and Object Parallel. Distributed arrays and dis-
tributed grids can be defined as classes in CC++, allowing data-parallel
computations on these objects. In addition, CC++ supports cooper-
ative processing and task parallelism. Furthermore, since CC++ is
object-oriented, it supports the object-oriented paradigm.

e Declarative and Imperative. The extensions to C++ allow declar-
ative programs to be written in CC++. Programmers can, however,
continue to use the familiar imperative style of C++.

e Shared Variables and Message-Passing. Though processes in
CCH+ share variables, libraries of message-passing channels are pro-
vided so that the message-passing paradigm can be used if desired.
Libraries of semaphores and monitors allow programmers to use the
styles of their choice.

2 Compositional C++

As its name implies, CC++ is based on C++ [24]. C++ is itself is an ex-
tension of the C programming language. C+-+ adds strict typing, function
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overloading, encapsulation, abstract data types and object-oriented program-
ming to C. These features make C++ a good language for implementing
program libraries and large scale software systems.

A central concept in C++ is the class, which combines code and data
into a single unit, or object. The data components of a class are called
data members. The functions associated with a class are called member
functions; in other object-oriented languages, member functions are often
called methods. The subset of the data members and member functions that
define the interface to the class are declared public and are accessible from
outside the class. All other members are private and they are accessible
only to member functions of the class. A class, therefore, forms a unit of
encapsulation.

A member function can only be called from an object, or a reference to
an object. For example, if 0bj is a variable whose type is a class containing
a member function £, f is invoked from 0bj by the expression: 0bj.f(). If
ObjPtr is a pointer to Obj, then ObjPtr->f () invokes £ as well.

The advantages of an object-oriented approach to the design of parallel
systems has long been recognized [17]. Object-oriented systems provide well-
defined interfaces, co-location of function and data, encapsulation of data
and data abstraction. These features encourage the construction of scalable
parallel systems. Consequently, the encapsulation and object-oriented fea-
tures of C++ have made it the basis of a number of parallel programming
systems [16, 5, 25]. However, we will show that our points of departure
— declarative and compositional programming — result in a significantly
different approach to parallel programming in C++.

CCH+ is a pure superset of C++; it consists of C++ plus seven exten-
sions. These extensions impact the language in the following areas:

e flow of control,
e synchronization and communication,
e nondeterminism,

o locality and heterogeneity.

With the exception of the extensions supporting locality and heterogene-

ity, the C++ constructs extended by CC++ are part of ANSI C as well. Thus



C programmers can benefit from CC++. In extending C++ to CC++, the
new constructs were carefully designed to be a minimal and complete set
and to support formal methods. Proving properties of CC++ programs is
beyond the scope of this paper, but is discussed more fully in [9, 6].

2.1 Flow of Control in CC++

CC++ is intended to be a general purpose parallel programming language.
As such, parallelism in a CCH++ program is explicit. Three constructs are
available for parallel composition in CC++: the par block, the parfor state-
ment and the spawn statement. We shall start the discussion with a descrip-
tion of par blocks.

The par Block. The par block is the most basic means of specifying par-
allel composition in CC++. Its syntax is that of the compound statement in
C++ with the keyword par preceding the block. An example of a par block
is found in Figure 1. A par block can lexically contain any CC++ statement
with the exception of the return statement and variable declarations.! As
seen in Figure 1, the statements in the block can be sequential blocks and
par blocks can be nested.

par {
procedurel();
{ procedure2();
par { procedure3(); procedure4(); }
procedure5();

b

procedure6() ;

b

Figure 1: An example of a par block

A new thread of control is created for each top level statement in a par
block. A par block terminates when all its statements terminate. However,

LA goto statement is allowed in a par block, but its use is restricted.



there is no requirement that a par block terminate. Parallel execution of
the statements in the par block is defined by fair, interleaved execution of
the top level statements in the block. A definition of fairness is given in
Section 2.2; however, for the time being, take fairness to mean that every
executable statement in a par block will execute eventually, even if the par
block does not terminate.

With the exception of atomic functions, which are discussed in Section 2.3,
the granularity at which the interleaving occurs is not defined. As an exam-
ple, consider the par of Figure 2. Assume that all the statements in the par
block terminate. Possible execution orderings of the par block include (but
are not limited to):

al a2 a3 bl b2 b3

al bl b2 b3 a2 a3
The sequential ordering of the function calls within statements S1 and 52
is maintained. However, even though these statements are sequential, their
execution is interleaved. Note that execution of a; and b; can be interleaved
too.

par {
{ a10); a20); a3(); } // Statement SI
{v10; 20 ; 3O ; ¥ // Statement S2
t

Figure 2: Parallel execution of two sequential blocks

The ability to create a collection of threads is not too useful unless threads
can interact with each other. Communication and synchronization between
threads is discussed in Section 2.2. We only note here that the primary
communication mechanism in CC++ is shared variables. This is not to
say, however, that CC++ can only execute efficiently on a shared-memory
computer. As we will see in Section 2.2, the sharing is constrained in such
a way as to make efficient execution on a range of parallel architectures
possible.

The parfor Statement. A par is useful when one needs to create a fixed
number of threads and that number is known at compile time. While re-



cursion within a par block can be used to create an arbitrary number of
concurrent threads, iteration is often a more natural and convenient means
of expressing such computations. For this reason, CC++ has a parallel loop
construct, the parfor.

The syntax of a parfor statement is exactly like the for statement in
C++. The statement specifies loop initialization, a termination test, an
index-update expression and the loop body. The loop body can be a simple
statement, a sequential block, or a parblock. Note that in C++, the index
variable of a loop is not constrained to be an integer and the termination test
and index update expression can be any valid C++ expression. An example
of a parfor statement is shown in Figure 3. Notice the use of the C++
feature that allows the declaration of an index variable to be placed in the
parfor statement itself.

parfor (int index = 0 ; index < N ; index++) {
al(index); a2(index+1); a3(index);

b

Figure 3: A parfor statement

Each iteration of a parfor creates a new thread which executes in paral-
lel with all other iteration bodies (and the rest of the computation as well).
The threads have the same interleaved execution semantics of the par block.
When all the loop bodies terminate, the parfor statement terminates. Vari-
ables declared in the initialization part of a parfor loop receive special treat-
ment. Within each thread, a local copy of the each index variable is created
and initialized with the values of the index variables at the time of thread
creation. Thus in Figure 3, each loop body will have a local variable called
index and its value will be set to the value of index in the parfor loop at the
time the thread for the loop body was created. Regardless of the execution
order of the loop bodies, the correct value of index will be available in the
loop body.

The spawn Statement. The third and final method for specifying concur-
rent execution in CC++ is the spawn statement. The termination criteria
associated with par blocks and parfor statements imposes structure on a



concurrent computation. When the statement terminates, all parallel com-
putation is complete and any postconditions associated with the block hold.
However, there are situations in which this structure is a hindrance rather
than a help. An example is a program that sets up a network of intercon-
nected servers. In this case, we would like to start a new thread of execution
for each server and have the program proceed, independent of the termina-
tion of the thread. While this could be done using a parfor or par block,
one has to go to some effort to work around the fact that the servers must
terminate before the statement after the par block or parfor statement ex-
ecutions. The situation would be simplified if one could start a new thread
of control and proceed to the next statement immediately. This is exactly
what the spawn statement does. An example of a spawn statement is found
in Figure 4.

A spawn statement executes an arbitrary CC++ expression in a new
thread of control. The execution of the statement is interleaved fairly with
the rest of the program. Unlike the par and parfor, a spawn statement termi-
nates immediately, regardless of the status of the process that was spawned.

spawn x + y + g(z);

Figure 4: A spawn statement

Comparison With Other Approaches. Parallel composition as defined
by par blocks can be found in a number of other parallel programming nota-
tions. For example, a par is equivalent to the use of cobegin and coend in [22]
and the parallel composition operator in PCN [12].

The use of par blocks differs from most other concurrent object-oriented
languages in that with a par block, multiple threads of control exist within a
single object. Other languages tend to associate thread creation with object
creation [5, 16, 25, 2]. Consequently, only one thread of control is ever
associated with an object. The spawn statement in CC++ can be used
to achieve the same effect.

There are two advantages to par (and parfor) over a one-to-one corre-
spondence between objects and threads. First, these statements are block-
oriented, and they make parallelism within a block explicit; there is no ques-



tion as to which statements execute in parallel and which in sequence. The
second advantage is that one can associate a post condition with a par block
or a parfor statement. When the statement terminates, the post condition
can be asserted. This simplifies the process of reasoning about the behavior
of the program.

Reasoning about the behavior of a program containing a spawn statement
is more difficult. Because there is no way of knowing when the thread started
by the spawn starts or completes, assertions about the spawn statement must
state that a condition will hold at some unknown point in the future. Thus
one has no choice but to resort to a temporal operator such as the leads-to
operator [11].

2.2 Synchronization and Communication

In the previous section, we saw how concurrent computations can be created
by the use of par, parfor, and spawn statements. In this section, we will dis-
cuss how concurrently executing program components can share information
and synchronize.

Before we discuss CC++, a brief review of type modifiers in C++ is
in order. In C++, as well as in ANSI C, the type of a variable can be
modified by the keyword const. The object named by a const variable has
a constant value and cannot be modified. ? Figure 5 illustrates a number of
const object declarations and explains their meaning. For obvious reasons,
a constant object must be initialized at the time the object is created.

From the point of view of concurrency, const objects are very useful.
Once a const object is created, its value is known for the entire lifetime of
the object. Since threads are not allowed to write to a const object, there are
no race conditions associated with it; threads can read the value of a const
object without restriction. From an implementation point of view, const
objects are useful because they can be copied into more than one processor
without concern for maintaining consistency between the copies.

The requirement that a const object be initialized at creation time is too
restrictive to make constants the only basis for communication in a parallel

?Under certain circumstances, the C++ type system can be manipulated in such a way
as to allow the contents of a const variable to be altered. This may or may not result in
a runtime exception. We will not consider such operations in the present discussion.
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// x is a reqular integer.
int x;

// const_x is a constant integer, initialized to 23.
const int const_x = 23;

// vy is a constant pointer to a constant integer.

// Neither the pointer nor the integer can be altered.
// vy is initialized to point to const_x

const int * const y = &const_x;

// z is a constant pointer to a integer.

// The pointer cannot be changed, though the contents of the integer can.
// z is initialized to point to .

int * const z = & x;

// w is a pointer to a constant integer.

// The object being pointed to cannot be changed,
// but different objects can be pointed to.

// w does not have to be initialized.

const int * w;

Figure 5: Examples of the use of the const type modifier in C++
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program. However, the concept can be extended to form the basis of a flexible
communication structure. To do so, CC++ has an additional type modifier:
sync. A sync modifier indicates that a variable is used for synchronization.

A sync variable in CC++ is treated ezactly like a const variable in plain
C++ with two exceptions:

e Unlike a const object, the initial value of a sync object does not need
to be provided at creation time. Initialization can be delayed. A sync
object is initialized by assigning it a value. Once initialized, a sync
object cannot be assigned to again. It is an error to reinitialize a sync
object.

o Any attempt to read the value of an uninitialized sync object is delayed
until some finite time after the sync object is initialized.

Subject to the restrictions on reinitialization, a sync object can be used
wherever a regular object can be used. For example, data members of a class
can be all sync, all non-sync or some combination of the two. Structures
can be initialized incrementally: it is only when accessing a noninitialized
component of a structure that the execution of a thread is blocked.

The sync variable provides a single mechanism for synchronization and
communication between concurrently executing threads. For communication
between threads, two or more threads share a common sync object and one
thread writes a value into the object. Synchronization is achieved in that the
thread reading the value cannot proceed until the value has been written.
Notice that the degree of sharing is not limited; any number of threads can
reference a single sync object.

From an implementation point of view, sync objects have many of the
same properties as const object; copies of sync objects can be cached on
any number of processors. While copies of a sync object can be inconsistent,
a copy can be inconsistent in only one way. A copy of an object can be
uninitialized on some processors and initialized on others. The copies that
are initialized will all contain the same value. In the situation where a local
copy of a sync variable is out of date, any attempt to read its value will block
and the correct value of the variable will be obtained. These semantics can
be efficiently implemented on both shared memory and distributed memory
parallel computers; hence, sync variables provides a unified, architecture-
independent means of synchronization and communication.
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In CCH++, all communication takes place via variables shared between
concurrently executing threads. A parallel composition is proper if all the
variables shared by the procedures being composed are sync variables. Proper
parallel composition enjoys the inheritance property: properties of compo-
nents are also properties of the composed program.

Comparison with Other Approaches No doubt, some readers will have
recognized sync variables as being single assignment variables from dataflow
languages [20] or from languages based in concurrent logic programming [15].
A reference to a structure which contains sync objects behaves much like an
[-Structure in the dataflow language 1D [3]. sync variables differ in that
the sync attribute can be extended to abstract and concrete data types
as definable in C++. In addition, sync variables differ from variables in
programming languages such as Strand [15] and PCN [12] in that the blocking
rule for sync variables prohibits the use of variable-to-variable assignment
found in these languages.

Many concurrent object-oriented languages [2, 4, 26] use function call as
the basis for communication. In actor-based languages, a function call is in-
terpreted as sending a message to the target object to perform the requested
operation. The arguments in the function call are passed to the target object
as well. The function call terminates immediately, without a waiting for a re-
sponse from the target object. Applying this approach to C++ is problematic
in that this approach changes the meaning of function call. By associating
communication with shared variables and assignment, the semantics of all of
the underlying operations in C++ are preserved. Finally, we note that actor
type semantics of function call can be achieved either through the use of the
spawn statement within the body of a member function or assignment to a
sync variable whose value is read by a nondeterministic fair merger.

Fairness. With the introduction of sync variables, we can now define
fairness. At any point in a computation, a thread can be in one of two states:
executable or suspended. A thread is executable when it is created; a
thread becomes suspended when it attempts to read an uninitialized sync
variable. In CCH++, an executable thread remains executable until it is
executed; the execution of some other threads cannot make an executable
process become suspended.
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The fairness rule implemented by CC++ is as follows. At all points t in
the computation, the following holds:

1. The program terminates (within a finite number of steps from t), or

2. for every thread r that is executable at point t: the computation of r
will progress (within a finite number of steps from t).

2.3 Nondeterminism

In this section, we address nondeterminism in CC++ programs. If all parallel
compositions are proper, the resulting program is guaranteed to be determin-
istic if there are no runtime errors. Deterministic behavior simplifies program
debugging, testing and error analysis. In CC++, nondeterministic behavior
is produced when concurrent threads share a non-sync variable and at least
one thread updates the contents of that variable. Modifications to such a
variable are unordered and any thread reading the variable can have non-
deterministic behavior. Note that the sharing does not have to be direct;
the variable to be modified can be encapsulated in an object and the update
made by a member function of that object.

Some control over how modifications to shared variables take place is re-
quired. Reads and writes of built-in data types (ints, floats, pointers, but not
user defined objects) are atomic. Also, CC++ has the concept of a atomic
function. The semantics of an atomic function are that the execution of an
atomic function will not be interleaved with any other statement in a com-
putation. An atomic function is used to establish the minimum granularity
at which interleaving can take place in the execution model.

A CCH+ function that satisfies the constraints described later can be
declared to be atomic. However, atomic functions are most useful when they
are members of a C++ class. Atomic functions are not allowed to access
sync variables, nor can they access variables outside of an object for which
an atomic function is a member. These restrictions allow the semantics to be
fulfilled by ensuring that only one atomic function per class instance executes
at a time.
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2.4 Data Locality and Heterogeneity

Data locality is an important aspect of both sequential and parallel programs.
Locality determines how effectively a program utilizes the memory hierarchy
of a computer system. While it is certainly in the purview of the compiler to
preserve and enhance the data locality present in a program, it is ultimately
the responsibility of the programmer to specify a program with suitable data
locality.

In sequential programs, locality of reference is achieved by carefully posi-
tioning data elements in data structures, tuning algorithms to exploit char-
acteristics of the memory hierarchy of a specific computer and introducing
explicit structures, such as software buffers and caches. While such devices
are available to parallel programs as well, use of these techniques is com-
plicated due to the increased complexity found in parallel programs. To
facilitate the construction of algorithms that can exploit locality in CC++,
we provide an additional mechanism for grouping objects together. This
CCH+ construct is called a logical processor object. In addition to providing
a way of specifying locality, processor objects also form the basic mechanism
for constructing heterogeneous software systems.

A C++ program consists of a set declarations. A declaration can declare
a variable, define a function, class or data type. Fach program contains some
number of declarations that are known to the whole program, that is they
are global.

CCH++ deviates from C++ in that all global declarations are contained
in a special class called the logical processor class. The logical processor
class is not defined in the program text. Rather, it is defined by the user
externally and is created by a system building utility, such as the linker.
Functions that would be global in C++ become public member functions of
the logical processor class for the program. Likewise, class declarations and
type declarations become nested declarations in the processor class.

There can be more than one type of processor class in a CC++ com-
putation. Fach logical processor object is a complete, independent CC++
program, except that one logical processor object can refer to another logical
processor object via a pointer to that logical processor, or via a global pointer,
which is described later. In C++ terminology, we say that all members of a
processor class have internal linkage. In particular, variables declared static
are not shared between instances of processor objects.
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Because all linkage is within a single logical processor object, there is
no name space outside of logical processor objects. Global members of a
processor object can only be accessed via a pointer to that processor object.
An important ramification of processor objects is that all object creation
within a processor object is done using a local version of the new operator.
Thus both dynamically and statically allocated objects are local to a specific
processor object.

The operators that access a logical processor can be overloaded, eliminat-
ing the need for an application program to ever refer directly to a processor
object. This provides a flexible, user-defined scheme for addressing logical
processors (for examples, see [14]). Examples of how a user might view logical
processor ids include an integer, a pair of integers (if the logical processors
form a two-dimensional mesh), or an enumerated type.

When a computation starts, it has a single processor object mapped onto
a single processor. Additional processor objects can be dynamically cre-
ated by the new operator.? Processor objects can be mapped onto a specific
computational resource through use of the placement argument to the new
function. For example, the statement:

proc_t * sPtr = new (23) Solver;

creates a new instance of the program Solver and maps that instance onto
node 23. The placement argument can be of any type allowing for sophis-
ticated mapping strategies; if no placement argument is specified, the new
processor object is co-located with the current processor object.

Global Variables. A major consideration in the design of CC++ was to
be a complete superset of C++. One problematic aspect of this requirement
is that CC++ must support global variables, file scope variables and static
variables. Logical processor objects provide a good mechanism for handling
these types of variables.

Recall that global declarations in a program become public members of
the logical processor object constructed for that program. Also, each instance
of a processor object is independent. Consequently, a global or static variable

3The new operator is used to dynamically allocate memory of for an object of a specific
type in C++. A new not only allocated the needed memory but also ensures that the
memory is properly initialized according to the type of the object requested.
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is local to a processor object. If more than one instance of a processor object
exists, then each one has its own “local global”. If a function in the processor
object refers to a global variable, the object used is located in the processor
object in which the function is located.

It can be argued that our treatment of global variables has the disadvan-
tage that programmers versed in C++ semantics would expect a global to be
global to an entire computation. Furthermore, a smoother transition from a
sequential program to a parallel program would be obtained if a global name
were global to a computation rather than global to the processor object. We
counter this argument by observing that in the degenerate case of a single
processor object, CC++ globals behave exactly like C++ globals. Computa-
tions with more than one processor object are no longer C++ programs and
some deviation from C++ behavior should not be unexpected. Furthermore,
a parallel language should not produce by default a construct as completely
unscalable as a globally shared variable.

There are several advantages to our approach. Because it is a natural
consequence of processor objects we do not need to introduce a new concept
to explain global variables. This minimizes the number of concepts that a
programmer must understand in order to use CC++. In addition, a frequent
use of global variables is to reference large data structures which are subject
to domain decomposition when parallelizing a program. In these situations,
a “local global” is the right concept. Finally we note that global distributed
objects can be built from processor object “local globals” [19].

Global Pointers. In C+-+, a reference to an object can be stored in a
pointer variable or a reference variable. In CC++, pointers and references
can be used as well. However, in CC++ we must distinguish between the
situations in which a pointer or reference variable resides in the same logical
processor as the object being referenced or a different logical processor from
the object being referenced. The first case is referred to as a local pointer
or reference; the second case is referred to as a global pointer or reference.
Thus in CC++, a pointer can be either a local pointer or a global pointer.
For clarity, the following discussion will be limited to pointers; however, it
applies to references as well.

In Figure 5 we saw that C++ allows a pointer to be modified by the
keyword const. In CC++, the modifiers that can be applied to a pointer
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are augmented to include the keywords global and sync. A pointer that is
not declared to be a global pointer is a local pointer. Thus, the statement:

int * global g ptr;

declares g_ptr to be a global pointer to an integer. More than one modifier
can be used in a declaration, thus the statement:

int * global const g ptr;

declares a variable that is a constant, global pointer (i.e. an inter-logical
processor pointer whose value cannot be changed).

A pointer in one logical processor object that points to a location in an-
other processor object must be a global pointer. A pointer in one logical
processor object that points to a location within the same logical processor
object can be either a local pointer or a global pointer. If a global pointer
points to a sync object, the CC++ implementation can cache the contents
of the pointer in the processor object containing the pointer. Although the
correct semantics are maintained regardless of the pointer type, efficient pro-
gram execution on a wide range of architectures favors the use of global
pointers to sync objects (when possible) over global pointers to non-sync
objects.

Global pointers provide a mechanism for remote procedure call. If one
holds a global pointer to an object, then a member function in that object
can be invoked through the global pointer. The member function executes
in the processor object that contains the target object, not in the processor
object that contains the pointer.

This concludes our discussion of CC++. In the next section, we will
demonstrate how CCH++ is used in a small example.

3 A CC++ Programming Example

In this section, we illustrate how CC++ is used to write a parallel program
with a small example: a queueing simulation. A central point about this
program is that the CC++ program is identical to a C++ program for the
same problem, except that some variables are declared to be sync and a for
loop is replaced by a parfor loop.
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The structure of the program is shown in Figure 6. The simulation con-
sists of a number of queue elements. The input to a queue element is a
sequence of the times at which service requests are made and a sequence of
service requirements in terms of seconds. The output of a queue element is
the sequence of times at which service requests complete. Interarrival times
for the first queue element are generated by an interarrival time generator.
Interarrival times for subsequent queue elements are the outputs from the
previous stages in the simulation. Service times for each queue element are
generated by a service time generator. Each box in the figure represents a
task in the simulation that can execute in parallel.

Service Time Service Time
(Generator (Generator
A 4 A 4
Arrival Time[ .Queue L .Queue
Generator Simulator Simulator

Figure 6: Structure of the queueing simulation

The arrows in Figure 6 represent a sequence of floating point values. We
will represent a sequence by a list of cells whose type declaration is in
Figure 7. Notice that the fields for cell are declared sync.

The code for the arrival generator and service time generator is shown
in Figures 8 and 9 respectively. These routines simply generate a list of
cells. The class randm is a random number generator. With the exception
of the sync type modifiers, these routines are no different from their C++
counterparts.

The implementation of the queue element is shown in Figure 10. Note
what happens in the while loop if the simulator gets ahead of either the
service time generator or the interarrival time generator. The pointers to
these lists are updated by assigning them values from the next component
of a cell. Since the next field is a sync pointer, this assignment will block
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inline float max(float a, float b) { return ((adb) ? a : b);7};

struct cell {
sync float value;
sync cell * next;
cell(float t) {value = t;} // initialize new cell

+;

Figure 7: Data type declarations for queueing simulation

void generate_arrivals(int n, float mean, randm rand, cell * sync p)

{// n>0

// p is set to be a list of n arrival times with mean value "mean.”

cell * q = p;
float t = 0.0;
int 1;

for(i=0; i<n; 1i++) {
t = t+rand.generate(mean);
g->next = new cell(t);
q = gq->next;
t
gq->next = (cellx) NULL;
s

Figure 8: Routines to generate interarrival times in queueing simulation
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void generate_service(int n, float mean, randm rand, cell * sync p)

{
// n >0

// p is set to be a list of n service times with mean value “mean.”

cell * q = p;
int 1;

for(i=0; i<mn; i++){
float t = rand.generate(mean) ;
g->next = new cell(t);
q = gq->next;

t

g->next = (cell* sync)NULL;
¥

Figure 9: Routines to generate service requirements in queueing simulation
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void simulate_queue(cell* sync a, cell* sync s, cell* sync d)
{

// a and s are nonempty input lists of arrival times

// and service times respectively, and d is set to

// be the nonempty list of departure times.

// The length of d is the max of the lengths of a and s.

float t = 0.0; // t is the time of the first departure

cell * pd = d;
cell * pa = a->next;
cell * ps = s->next;

while((pa '= (cell * ) NULL) && (ps '= (cell * ) NULL)){
t = (ps->value) + max(t,pa->value); // Next departure time
pd->next = new cell(t);
pa = pa->next;
ps = ps->next;
pd = pd->next;

+;

pd->next = (cell * sync) NULL;

+;

Figure 10: Routine to simulate a queue
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int main() {
const int num_servers = 37;
const float mean_interarrival = 1.0;
randm rand[num_servers+1];
float mean_services[num_servers];
cell * sync a = new sync cell(0.0);
cell * sync s[num_servers] , * sync d[num_servers];

// Initialize mean_service time distributions and random number
// generators here.

parfor(int i = 0 ; i < num_servers; i++) {
s[i] = new cell(0.0); d[i] = new cell(0.0);
}

par {
generate_arrivals(n, mean_interarrival, rand[0], a);
simulate_queue(a,s[0],d[0]);
generate_service(n, mean_services[0], rand[1], s[0]);

parfor(int j = 1; j < num_servers ; j++)
par {
simulate_queue(d[j-1]1,s[j]1,d[j1);
generate_service(n, mean_services[j], rand[j+1], s[j]l);

b

Figure 11: Main program for queueing simulation
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until the next cell structure in the list has been created. The queue elements
self-synchronize themselves. Again note, that with the exception of the sync
type modifiers, this is plain C++ code.

Figure 11 is the main driver for the queueing simulation. The first task
is to create a set of cells that are to be used to connect the simulators,
service time generators and arrival time generators together. The main part
of this routine is responsible for creating the queue elements and service time
generators. This is done by a par block. Within the par, the initial arrival
time generator, service time generator and first queue element are created
and connected together via shared cells. The rest of the queue is constructed
in parallel by a nested parfor statement. Each loop body is itself a par block
that creates a queue element and a service time generator and connects them
together using shared references to a cell.

4 Conclusions

In this paper, we introduced Compositional C++ as a demonstration of how
compositional programming can be supported in an imperative programming

language. The advantages of CC++ include:

o CC++ is based on a popular programming language. The advantages
of C++ are advantages of CC++ as well. These include strong typing,
data abstraction and object-oriented programming. Object-oriented
design methodologies [7] that facilitate the construction of large scale
object-oriented programming systems can be applied to software writ-

ten in CC++ as well.

o CC++ is C++ with a small number of extensions. C++ programmers
can learn CC++ within an hour.

o CCH++ provides a mechanism for parallel programming, not a pol-
icy. Programmers can develop different types of parallel programs
in CC++: deterministic or nondeterministic, single program multi-
ple data (SPMD) or multiple instruction multiple data (MIMD). Pro-
grammers can use CC++ libraries that implement virtual channels,
semaphores and monitors. Because of this flexibility, CC++ is suited
for both scientific and reactive applications.
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o CCH+ was designed to support formal methods. This focus helps not
only in the design and implementation of correct programs, but can be
used to aid in testing and debugging as well.

The principles used in the design of CC++ can be applied to other program-
ming languages as well. Other compositional languages being investigated
include Fortran and Ada.

CCH+ is currently implemented on shared-memory parallel computers
and on uniprocessor workstations. We anticipate having an implementation
available on distributed-memory parallel supercomputers and networks of
workstations shortly.
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