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Abstract. The IsaLog: model and language are presented. The model
has complex objects with classes, relations, and isa hierarchies. The lan-
guage is strongly typed and declarative. The main issue is the de�nition
of the semantics of the IsaLog: language. The novel features are mostly
due to the interaction of hierarchies with negation in the body of rules.
Two semantics are presented and shown to be equivalent: a strati�ed
semantics based on an original notion of strati�cation, needed in order
to correctly deal with hierarchies, and a reduction to logic programming
with function symbols. The solutions are based on a new technique (ex-
plicit Skolem functors) that provides a powerful tool for manipulating
object identi�ers.

1 Introduction

Deductive languages for complex-object databases have received a great deal of
attention recently. In this context, the data model includes classes of objects, that
is, sets of real world objects with the same conceptual and structural properties,
and is-a relationships, used to organize classes in hierarchies. Objects identi�ers
(oid's) are associated with objects, to permit duplicates and to allow for object
sharing and inheritance.

One interesting research direction has been the extension of Datalog(:) for
the management of such a data model. The most relevant proposals in this
area are the languages IQL (Abiteboul and Kanellakis [2]) and ILOG (Hull and
Yoshikawa [13]), which refer to data models in the traditional database sense.
Other interesting ideas have also been proposed as extensions of logic program-
ming languages (Maier [17], A��t-Kaci and Nasr [3], Chen and Warren [12], Kifer
et al. [15, 16]).

In this framework, we have recently proposed IsaLog [5], a logic program-
ming language over a model with (at) classes and (at) relations, with isa re-
lationships among classes. A distinctive feature of IsaLog is the use of explicit
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Skolem functors (an extension of the implicit Skolem functors of ILOG [13]) to
deal with oid invention over hierachies of classes. A declarative semantics, a �x-
point semantics, and a reduction to ordinary logic programming with function
symbols were de�ned and proven to be equivalent.

This paper shows how the technique of explicit Skolem functors allows for a
clear de�nition of the semantics of oid invention, with respect to a model with
hierarchies and a language with negation. The main contribution is the de�nition
of a strati�ed semantics for IsaLog: programs, with a notion of strati�cation
based on a partition of clauses that cannot be reduced to a partition of predicate
symbols. Then, a reduction to logic programming is shown, yielding an equivalent
semantics. Interestingly, this reduction would not be possible without the use of
explicit Skolem functors, thus con�rming their importance.

The paper is organized as follows. In Section 2 we informally present the
framework and the results of the paper; examples are used to illustrate the main
issues. Section 3 is devoted to the de�nition of the model. The language syntax
is de�ned in Section 4. Section 5 formally presents the main results of the paper,
with the de�nition of the semantics of IsaLog: programs. Conclusions and
future research directions are sketched in Section 6. Proofs are omitted, due to
lack of space; the reader is referred to the full paper [6].

2 Overview and Motivation

2.1 The Framework

The data model is based on a clear distinction between scheme and instance.
Data is organized by means of three constructs: classes, relations, and functors.
Classes are collections of objects; each object is identi�ed by an object identi�er
(oid) and has an associated tuple value. Relations are just collections of tuples.
Functors are mainly used to make oid invention fully declarative; for each functor
the database instance contains a function from tuples to oid's. Tuples in relations,
in object values, and in arguments of functions may contain domain values and
oid's, used as references to objects.

Isa hierarchies are allowed among classes, with multiple inheritance and with-
out any requirement of completeness or disjointness. Moreover, we do not require,
as in other works [2], the presence of a most speci�c class for each object in the
database, since this may lead to an unreasonable increase in the number of
classes in the database.

The IsaLog: language is strongly typed and declarative, a suitable extension
of Datalog [11] capable of handling oid invention and hierarchies. Three di�erent
kinds of clauses are allowed in a program:

{ relation clauses, that is, ordinary clauses de�ning relations;
{ oid-invention clauses, used to create new objects;
{ specialization clauses, used to \specialize" oid's from superclasses to sub-
classes; in fact, a specialization clause can be used to specify (on the basis
of some conditions) that an object in a class C also belongs to a subclass C0

of C.



A program is a set of clauses that speci�es a transformation from an instance of
the input scheme to an instance of the output scheme.

2.2 Oid Invention

The introduction of object identi�ers (oid's) in a declarative context gives rise
to interesting semantic problems, the main one being the need for oid invention,
that is, creation of new objects to populate extensions of classes.

The literature proposes two leading approaches to object creation: the pure
object creating and the logic-programming ones. The pure object creating ap-
proach | which is adopted by some proposals, including IQL [2], LOGRES [9],
and LOGIDATA+ [7] | refers to a \fact for each instance" policy: an oid-
invention clause generates a new oid for each satis�able ground instance of its
body. The main drawback of such a semantics consists in the lack of a means to
explicitly control the generation of objects with the same value (\duplicates").

On the other side, the so-called logic-programming approach treats new oid's
in the output as terms built by means of values and oid's in the input. The ILOG
language [13] proposes a semantics of invention based on Skolem functor terms.
Skolem functors are strongly related to logic-programming function symbols;
in this framework, they provide a neat syntactic tool to specify the terms on
which oid invention depends. ILOG comes with a transparent skolemization
mechanism, in which such terms are chosen to be exactly those occurring in
the clause head. This technique allows for a nice reduction to ordinary logic-
programming semantics, thus making oid invention truly declarative, but has
a major shortcoming: it does not permit the generation of duplicates (when
needed). Therefore, in the ILOG framework, equality implies identity, against
the main motivation for the use of oid's.

Let us give an example that outlines the importance of duplicates. Assume
the joint catalogue of two libraries has to be produced. Each of the libraries has
no duplicate volumes and its catalogue is described by a relation Ri, with the
book title as a key. If we are interested in de�ning the class of books, we need to
collapse volumes (in di�erent libraries) corresponding to the same book. Instead,
if we want the class of all volumes, we have to retain duplicates.

The technique we propose to manage such cases consists in making Skolem
functors become explicit. An explicit Skolem functor for an IsaLog(:) scheme
is a symbol, used to build typed terms in programs. Speci�cally, each functor is
associated with a class, and:

{ explicit functors generalize implicit ones: an explicit functor term for an oid
of a class C has a set of \arguments" that include the attributes of C. This
is necessary in order to avoid ill-de�nedness of object values (that is, the
generation of objects with the same oid and di�erent values). In addition, a
functor for a class may contain other arguments;

{ di�erent functors may be associated with the same class.

In this way the generation of duplicates is allowed. Consider the previous exam-
ple; in both cases the catalogue is generated by means of two clauses that create



objects: in the �rst case we have the same functor (to collapse duplicates) and
in the second, two functors.

book(oid : fbook(title : x); : : :) R1(title : x; : : :):
book(oid : fbook(title : x); : : :) R2(title : x; : : :):

volume(oid : fvolume;1(title : x); : : :) R1(title : x; : : :):
volume(oid : fvolume;2(title : x); : : :) R2(title : x; : : :):

We claim that explicit functors are a very powerful tool for the manipulation
of objects. In fact, not only do they provide a neat way for handling oid invention,
but they also carry information about oid creation. This permits to distinguish
oid's in the same class on the basis of their origin (the class itself or a subclass,
for example), and to access the values that \witnessed" the invention of the oid,
even if they are transparent with respect to the class. This is very useful for
manipulating imaginary objects [1], that is, new objects computed on demand,
like a relational view concerning objects instead of tuples. It is apparent that
these objects exist in some classes of the view, but not in the database. When
we update the database and recompute the view, we can assign the same functor
(witness of an invention) to the same imaginary object. If we have stored the
assignment of oid's to functor terms of previous computations, we can ensure
that an object receives the same identi�er every time the query is computed, so
that imaginary objects maintain their identity as the database evolves [14].

2.3 Isa Hierarchies and Negation

We argued above that functors represent a nice means to manipulate oid's in
the general case. Here we claim that they become almost necessary when isa
and negation are included in the model. As previously sketched, the treatment
of hierarchies in our model has been chosen to be the most general one, allowing
for multiple and incomplete inheritance without most speci�c classes. Such a
context reasonably requires to drop the scheme disjointness assumption, to easily
deal with programs in which a subclass is newly generated and inherits objects
from a superclass de�ned in the input instance. Moreover, it is interesting to note
how hierarchies and negation interact together, requiring an ad hoc treatment.

Example 1. Consider a graph represented by means of two classes: node and arc, with
types () and (from:node, to:node) respectively. Suppose we want to trasform the graph
into a strongly connected one, adding an arc for each pair of non-connected nodes, by
means of the following program (where new-arc isa arc):

1 : path(from:x, to:y)  node(oid:x), node(oid:y), arc(oid:z, from:x, to:y).
2 : path(from:x, to:y)  path(from:x, to:w), arc(oid:z, from:w, to:y).

3 : new-arc(oid:fnew-arc(from:x, to:y), from:x, to:y)  
node(oid:x), node(oid:y), : path(from:x, to:y).

The program appears to be strati�ed: its dependency graph contains no cycle with a
negative edge. On the contrary, if we take into account hierarchies and their properties,
we can argue that it is not strati�ed. In fact, since new-arc depends on (the negation



of) path (clause 3), we can say that the same also holds for arc, since each new object
in new-arc must also appear in arc. Then, since path depends on arc (clauses 1 and
2), we have a violation of the intuition behind strati�cation.

An intuitive proposal [9] for handling hierarchy semantics consists in the
introduction of auxiliary clauses that enforce containment constraints associated
with isa relationships. This means that for each pair of classes C0 and C1 in the
scheme such that C1 isaC0, we need to add a clause:

C0(oid : x;A1 : x1; : : : ; Ak : xk) C1(oid : x;A1 : x1; : : : ; Ak+m : xk+m):

(where Ak+1; : : : ; Ak+m are the additional attributes in C1) that forces objects
in C1 to belong to C0 as well. These clauses, called the isa clauses, depend only
on the scheme and not on the individual programs. The next example shows
that this technique, well suited to a positive framework such as IsaLog [5], does
not catch the complete meaning of negation.

Example 2. Consider the class person with type (name:D, asset:D, father:person)
(where D is a domain of atomic values), and suppose rich-person isa person, self-
made-man isa rich-person. Suppose we want to specialize people on the basis of their
assets, with a special interest in rich people with a non-rich father:

1 : rich-person(oid:x,name:n,asset:a,father:f) 
person(oid:x,name:n,asset:a,father:f), a > 100K.

2 : self-made-man(oid:x,name:n,asset:a,father:f) 
rich-person(oid:x,name:n,asset:a,father:f),
: rich-person(oid:f,name:nf,asset:af,father:�).

Clause 2 speci�es the \specialization" of objects in rich-person to be objects in
self-made-man as well, on the basis of some conditions that include a negation on rich-
person. Intuitively, a natural semantics for this program is obtained by applying �rst
(i) clause 1 and then (ii) clause 2. Essentially, step (i) computes rich-person and
step (ii) computes self-made-man. Surprisingly, if the isa clauses associated with the
scheme are added to the program, the resulting set of clauses is not strati�ed, that is,
the dependency graph contains a cycle with a negative edge.

The shown examples suggest that:

{ ordinary strati�cation [4], de�ned as a partition of clauses that essentially
collapses to a partition of predicate symbols, fails when hierarchies are
present;

{ isa clauses do not represent a solution to the problem.

In the following sections we introduce an original semantics for IsaLog: pro-
grams, based on a notion of isa-coherent strati�cation, that is essentially a parti-
tion of clauses that cannot be reduced to a partition of predicate symbols. Then,
a reduction to logic programming is shown, yielding an equivalent semantics.
Interestingly, this reduction would not be possible without the use of explicit
Skolem functors, thus con�rming their importance.



3 The Data Model

We present only the essential aspects, omitting standard notions and details not
needed in the sequel.

We �x a countable set D of constants, called the domain. An IsaLog scheme
is a �ve-tuple S = (C;R;F;typ; isa), where

{ C (the class names), R (the relation names), and F (the functors) are �nite,
pairwise disjoint sets;

{ typ is a total function on C [R [F that associates

� a at tuple type (A1 : �1; A2 : �2; : : : ; Ak : �k) with each class in C and
each relation in R; the Ai's are called the attributes, and each �i (the
type of Ai) is either a class name in C or the domain D;

� a pair (C; � ) with each functor F 2 F, where: (i) C is a class name in C
(the class associated with F ) and (ii) � is a tuple type whose attributes
are disjoint from those of C and of its subclasses;

{ isa is a partial order over C, such that if (C0; C00) 2 isa (usually written in
in�x notation, C0 isaC00, and read C0 is a subclass of C00), then typ(C0) is a
subtype of typ(C00) [10] (that is, for each attribute in typ(C00), the attribute
also appears in typ(C0), with the same type or (if the type is a class name)
with a type that is a subclass). Multiple inheritance is allowed, with some
technical restrictions, omitted for the sake of space.

It is convenient to de�ne the types of a scheme S, where each type is a simple type
(that is, either the domain D or a class name) or a tuple type (whose attributes
have simple types associated).

As in every other data model, the scheme gives the structure of the possible
instances of the database. The values that appear in instances are (i) constants
from D; (ii) object identi�ers (oid's) from a countable set O, disjoint from D;
(iii) tuples over tuple types, whose components are oid's or constants.

Following ILOG, we de�ne instances as equivalence classes of pre-instances:
pre-instances depend on actual oid's, whereas instances make oid's transparent.

A pre-instance s of an IsaLog scheme S = (C;R;F;typ; isa) is a four-tuple
s = (c; r; f ;o), where:

{ c is a function that associates with each class name C 2 C a �nite set of
oid's, preserving the containment constraints (associated with subclassing)
and disjointness constraints (associated with distinct taxonomies).

{ r is a function that associates with each relation name R 2 R a �nite set of
tuples over typ(R);

{ o is a function that associates tuples with oid's in classes, with the appro-
priate type 1.

1 The de�nition is not trivial | with respect to other models, such as IQL [2] |
because we do not require for each object a most speci�c class.



{ f is a function that associates with each functor F 2 F (associated with a
class C) a partial injective function f (F ) from the set of tuples over the tuple
type of the functor to a subset of the oid's in c(C) 2.

{ if a tuple type has an attribute A whose type is a class C 2 C, then the
value of the tuple over A is an oid in c(C) (this condition avoids \dangling
references").

Two pre-instances s1 and s2 over a scheme S are said to be oid-equivalent if there
is a permutation � of the oid's in O such that (extending � to objects, tuples,
and pre-instances in the natural way) it is the case that s1 = �(s2). An instance
is an equivalence class of pre-instances under oid-equivalence. When needed, [s]
will denote the instance whose representative is the pre-instance s.

4 IsaLog
: Syntax

Let a scheme S = (C;R;F;typ; isa) be �xed. Also, consider two disjoint count-
able sets of variables: VD (value variables, to denote constants) and VC (oid
variables, to denote oid's).

The terms of the language are:

{ value terms, that are: (i) the constants in D and (ii) the variables in VD;
{ oid terms: (i) the oid's in O, (ii) the variables in VC, and (iii) functor terms
F (A1 : t1; : : : ; Ak : tk; A01 : t01; : : : ; A

0
h : t0h), where F 2 F and typ(F ) =

(C; � ), typ(C) = (A1 : �1; : : : ; Ak : �k) and � = (A01 : �
0
1; : : : ; A

0
h : � 0h).

The atoms of the language may have two forms (where terms in components are
oid terms or value terms depending on the type associated with the attribute):

{ class atoms: C(oid : t0; A1 : t1; : : : ; Ak : tk), where C is a class name in C,
with typ(C) = (A1 : �1; : : : ; Ak : �k) and t0 is an oid term;

{ relation atoms: R(A1 : t1; : : : ; Ak : tk), where R is a relation name in R,
with type typ(R) = (A1 : �1; : : : ; Ak : �k).

The notions of (positive and negative) literal, rule, fact, and clause are as usual.
The head and body of a clause  are denoted with head() and body(),
respectively. There are three relevant forms of clauses. A clause  is:

{ a relation clause if head() is a relation atom;
{ an oid-invention clause if head() is a class atomC(oid : t0; A1 : t1; : : : ; Ak :
tk), where t0 is a functor term F (A1 : t1; : : : ; Ak : tk; : : :) not occurring in
body() and C is the class associated with F ;

{ a specialization clause if head() is a class atom C(oid : t; : : :), where t is
an oid term and body() contains (at least) a class atom C0(oid : t; : : :)
such that C and C0 have a common ancestor (that is, a class C0 such that
C isa C0 and C0 isaC0).

2 In order to guarantee well-de�nedness in the generation of oid's, by avoiding circu-
larity, a partial order is de�ned over oid's. Moreover, ranges of functors are required
to be pairwise disjoint.



Hereinafter we consider only clauses of the above three forms. A positive clause
is a clause whose body contains only positive literals.

An IsaLog: program P over a scheme S is a set of clauses that satisfy
some technical conditions: well-typedness (about typing of oid terms), safety (as
usual), and visibility (no explicit oid's are allowed). An IsaLog program is an
IsaLog

: program made of a set of positive clauses.

5 Semantics of IsaLog: Programs

We have studied in a previous paper [5] the semantics of positive IsaLog pro-
grams, by means of three independent techniques (declarative, �xpoint, and
reduction to logic programming), and shown their equivalence. The declarative
semantics is based on a notion of unique minimal model. As opposed to what
happens for the standard Datalog framework, it may be the case that the se-
mantics for a program over an instance is unde�ned. There are two reasons for
this: in�nite generation of new objects and multiple inconsistent specialization
of existing objects.

In this section we study the semantics of IsaLog: programs. As usual, the
introduction of negation may lead to the existence of multiple incomparable
minimal models, thus requiring a criterion for the selection of one of the mini-
mal models, as the \right" semantics of a program over an instance. We follow
the approach based on the notion of strati�cation, which howerever requires a
number of variations to be used in our framework, because of the presence of isa
hierarchies.

5.1 Instances as Herbrand Interpretations

In this section we briey explain how an IsaLog instance can be represented by
means of a set of facts, a preliminary tool for the description of the semantics of
IsaLog

: programs.
Given a scheme S = (C;R;F;typ; isa), the Herbrand base HS for S is the

set of all ground facts with predicate symbols from R and C and terms with
function symbols from F and values from O and D. A Herbrand interpretation
is a �nite subset of the Herbrand base. We de�ne a function � that associates a
Herbrand interpretation with each pre-instance s = (c; r; f ;o) of S. We proceed
in two steps:

1. �0(s) is the set of facts that contains one fact for each tuple in each relation
and as many facts for an object o as the number of di�erent classes to which
the object belongs. Each of these facts involves only the attributes that are
relevant for the corresponding class.

2. �(s) is obtained from �0(s) by recursively replacing each oid o such that
o equals f (F ) applied to (A1 : v1; : : : ; Ak : vk), with the term F (A1 :
v1; : : : ; Ak : vk). Note that this replacement is univocally de�ned (since the



functions are injective and have disjoint ranges) and terminates (because of
the partial order among oid's) 3.

The function � is de�ned for every pre-instance but it can be shown that is
not surjective: there are Herbrand interpretations that are not in the image of
�. This happens if one of the following conditions (here informally de�ned) is
violated:

wt (well-typedness): for each fact, all terms have the appropriate type.
con (containment): for each fact C1(oid : t0; : : :), there is a fact C2(oid : t0; : : :)

for each class C2 such that C1 isaC2. This condition requires the satisfaction
of the containment constraints corresponding to isa hierarchies.

dis (disjointness): if two facts C1(oid : t0; : : :) and C2(oid : t0; : : :) appear, then
classes C1 and C2 have a common ancestor in S.

coh (oid-coherence): if an oid term t0 occurs as a value for an attribute whose
type is a class C, then there is a fact C(oid : t0; : : :). This condition rules
out dangling references.

fun (functionality): there cannot be two di�erent facts for the same oid term
with di�erent values for some common attributes.

Conditions fun, con, and dis guarantee that oid's object values are well de�ned
throughout hierarchies.

It can be shown that a Herbrand interpretation over a scheme S satis�es
conditions wt, con, dis, coh, and fun with respect to S if and only if it
belongs to the image of � over the pre-instances of S.

Furthermore, � preserves oid-equivalence, that is, �(s1) and �(s2) are oid-
equivalent if and only if s1 and s2 are oid-equivalent. Therefore, we can de�ne
a function � that maps instances to equivalence classes of Herbrand interpreta-
tions: � : [s] 7! [�(s)]. Since �(s1) is equivalent to �(s2) only if s1 is equivalent
to s2, we have that � is injective. So, � is a bijection from the set of instances
to the set of equivalence classes of Herbrand interpretations that satisfy the �ve
conditions above. The inverse of � is therefore de�ned over equivalence classes
of Herbrand interpretations that satisfy conditions wt, con, dis, coh, and fun.

5.2 Isa-Coherent Strati�cation of IsaLog: Programs

We need some preliminary de�nitions. Assume that a scheme S is �xed. We call
predicate symbol of the scheme S every class and relation name. Given a clause
, we say that  de�nes a predicate symbol Q if one of the following conditions
holds:

{  is a relation clause with head Q(: : :);
{  is an oid-invention clause with head C(: : :), with C 2 C and C isaQ;
{  is a specialization clause with head C(oid : t; : : :), with C 2 C, C isa Q,
and there is no positive literal C0(oid : t; : : :) in body(), with C0 2 C, such
that C0 isaQ.

3 This procedure leaves some oid's in the facts | those that, as allowed by the de�ni-
tion of instance, do not appear in the range of any function.



Essentially, each clause de�nes a predicate symbol Q if it (possibly) gener-
ates new facts that involve Q: an oid-invention clause generates a new fact for
each superclass of the predicate symbol in its head; a specialization clause gen-
erates a new fact only for some superclasses (because the corresponding facts
for other superclasses already exist). Clearly, this distinction is relevant only for
a language with class hierarchies: in languages without hierarchies, each clause
de�nes exactly one predicate symbol.

Given an IsaLog: program P and a predicate symbol Q, the de�nition of
Q (within P) is the set of clauses in P whose set of de�ned symbols contains Q.

A partition P1
:
[ : : :

:
[ Pn of the clauses ofP is an isa-coherent strati�cation of

P (and each Pi is a stratum) if the following two conditions hold for i = 1; : : : ; n:

1. if a predicate symbol Q occurs in a positive literal in the body of a clause
 2 Pi, then the de�nition of Q is contained within [j�iPj ;

2. if a predicate symbol Q occurs in a negative literal in the body of a clause
 2 Pi, then the de�nition of Q is contained within [j<iPj .

An IsaLog: programP is isa-coherently strati�ed if it has an isa-coherent strat-
i�cation. It should be noted that this notion is apparently the same as the usual
one: the di�erence is inside the notion of \de�nition" of a symbol 4.

Isa-coherently strati�ed programs can be characterized by means of prop-
erties of clauses (rather than predicate symbols, as it happens in the Datalog
framework). We need a few de�nitions. We say that a clause 1 refers to a clause
2 if there is a predicate symbol Q that is de�ned by 2 and occurs in a literal in
the body of 1; if such a literal is negative, then 1 negatively refers to 2. Given
a program P we de�ne its clause dependency graph CDGP as a directed graph
representing the relation refers to between the clauses of P. An edge (1; 2) is
negative if 1 negatively refers to 2.

Lemma1. A program P is isa-coherently strati�ed i� its clause dependency
graph CDGP does not contain a cycle with a negative edge.

5.3 Fixpoint Semantics of IsaLog: Isa-Coherently Strati�ed

Programs

In this section we present the �xpoint semantics for IsaLog: programs. The
presence of isa requires a modi�cation of the traditional approach, as follows.
Given a scheme S = (C;R;F;typ; isa) we de�ne the closure Tisa with respect

to isa as a mapping from the powerset 2
HS of HS to itself, as follows:

Tisa(IS) = IS [ fC2(oid : t0; A1 : t1; : : : ; Ak : tk) j

C1(oid : t0; A1 : t1; : : : ; Ak+h : tk+h) 2 IS; C1isaC2;

and typ(C2) = (A1 : �1; : : : ; Ak : �k)g

4 In ordinary theory of strati�cation [4], the de�nition of a predicate symbol Q (within
a program P) is the set of clauses in P whose head's predicate symbol is Q.



The closure with respect to isa enforces containment constraints on facts asso-
ciated with hierarchies, as required by condition con de�ned in Section 5.1.

Then, given a set of clauses � over a scheme S, we de�ne the trasformation

T�;0 associated with � as a mapping from 2
HS to itself, as follows (where the

notions of substitution and satisfaction are standard):

T�;0(IS) = f�(head()) j  2 �; IS satis�es �(body()); for a substitution �g

Then, the immediate consequence operator T� associated with a set of clauses

� over a scheme S is a mapping from 2
HS to itself:

T� (IS) = Tisa(T�;0(IS))

Let us note that in Datalog frameworks, the immediate consequence operator
essentially coincides with our operator T�;0. The application of Tisa is needed
here to enforce condition con, that is, isa relationships.

Let us note that transformation T� preserves all the conditions satis�ed by
Herbrand interpretations that correspond to pre-instances, but condition fun,
which is not in general preserved [5].

Now, the semantics of an isa-coherently strati�ed program can be de�ned
following the same steps as in the traditional framework [4]. However, most
properties have a signi�cantly di�erent proof, because of the di�erences in the
immediate consequence operator T� due to hierarchies and in the de�nition of
strati�cation.

Let us consider an isa-coherently strati�ed program P over a scheme S. Let
P1

:
[ : : :

:
[ Pn be an isa-coherent strati�cation of P, and IS be a Herbrand

interpretation. Now we de�ne a sequence of Herbrand interpretations by putting

M0;IS
= IS

Mi;IS
= TPi

*!(Mi�1;IS
); for 1 � i � n

where each TPi
is the operator T� , for a set of clauses � = Pi, and T*! is the

union of all the cumulative powers of an operator T : T *!(I) = [n�0T *n(I),
with T *0(I) = I and T *(n + 1)(I) = T (T *n(I)) [ T *n(I). It can be shown
that the last Herbrand interpretation Mn;IS

does not depend on the chosen

strati�cation of P, thus we can refer to it as MP;IS
.

We can now de�ne the isa-coherently strati�ed semantics st-sem of IsaLog:

programs, as a partial function from instances to instances, as follows. Given an
isa-coherently strati�ed program P over a scheme S, and an instance [s]:

st-semP([s]) =

8<
:
��1([MP;�(s)]) if MP;�(s) is �nite and

satis�es condition fun
unde�ned otherwise



5.4 Reduction to Logic Programming for IsaLog: Programs

We have shown in a previous paper [5] that an elegant semantics for (positive)
IsaLog programs can be de�ned as a reduction to logic programming. Given
an IsaLog program P over a scheme S and an instance [s], this semantics is
de�ned by means of three steps:

1. compute the Herbrand interpretation �(s) associated with s;
2. compute the minimum model M of the logic program composed of: (i) (a

syntactic variation of) the IsaLog program P, (ii) the set of facts �(s), and
(iii) the isa clauses associated with the scheme;

3. ifM is in the image of �, then let the LP-semantics of P over [s] be ��1([M])
(or, equivalently, [��1(M)]), otherwise let it be unde�ned.

With respect to strati�ed programs, this approach is not satisfactory. Con-
sider the program in Example 2: it has an isa-coherent strati�cation and thus
it is isa-coherently strati�ed; on the other hand, the logic program obtained by
adding the isa clause  : rich-person(oid:x,: : :)  self-made-man(oid:x,: : :) is
not strati�ed in the ordinary sense. Essentially, the problem is caused by isa
clauses that specify the propagation of objects from subclasses to superclasses
more strongly than needed. In the example, the isa clause  is actually needed
only to support the creation of new objects, whereas it does nothing with respect
to applications of clause 2, since 2 specializes in self-made-man objects that
already belong to rich-person.

A solution to the problem is based on a �ner speci�cation of the propagation
of objects: rather than adding isa clauses associated with a scheme, it uses addi-
tional clauses only with reference to the clauses of the program that require oid
propagation. Speci�cally, for each clause  that de�nes more than one predicate
symbol, we add the following set of clauses (the de�ned-symbol clauses):

fC2(oid : t0; A1 : x1; : : : ; Ak : xk) body() j

head() = C1(oid : t0; A1 : x1; : : : ; Ak+m : xk+m)

C1 isa C2; C2( 6= C1) is a de�ned symbol of g

Therefore, we have two di�erent reductions to logic programming. We call them
the isa-clause (IC) reduction and the de�ned-symbol (DS) reduction. We can
therefore de�ne two logic programming semantics for IsaLog: programs (pos-
sibly with negation), the IC-semantics and the DS-semantics, respectively. It is
convenient to de�ne them in three steps again (where the �rst and third coincide
with the analogous for positive programs):

1. compute �(s);
2. compute the perfect modelM (in the standard logic programming sense) of

the logic program composed of: (i) the IsaLog: program P, (ii) �(s), and
(iii) the isa clauses associated with the scheme (for the IC-semantics) or the
de�ned-symbol clauses (for the DS-semantics);

3. ifM is in the image of �, then let the (IC- or DS-) semantics of P over [s]
be ��1([M]), otherwise let it be unde�ned.



We have the following results, which relate the two logic programming se-
mantics with each other and with the �xpoint semantics. The �rst theorem
shows that the DS-reduction can always be used instead of IC-reduction | the
converse does not hold, as we argued with respect to the example above. As
a consequence, the two semantics are equivalent with respect to positive pro-
grams. The second (and more important) theorem states the equivalence of the
DS-semantics and the strati�ed semantics.

Theorem2. For every IsaLog: program, if the IC-reduction is strati�ed, then
the DS-reduction is also strati�ed, and the IC-semantics and the DS-semantics
coincide.

Theorem3. For every IsaLog: program P

{ the DS-reduction of P is strati�ed if and only if P is isa-coherently strati�ed;
{ the isa-coherently strati�ed semantics st-semP and the DS-semantics of P

coincide.

It is worth noting that the DS-reduction is heavily based on explicit Skolem
functors. Let us argue by means of an example. Assume we have a scheme with
the isa relationship between the classes person and student, whose respective
type is (name:D) and (name:D,id-no:D), and a program with an oid-invention
clause:

 : student(oid : fstudent : (name:n,id-no:id), name:n,id-no:id) body():

The DS-reduction introduces a clause

0 : person(oid : fstudent : (name:n,id-no:id), name:n) body():

with the same body and the same functor term in the head. The use of the same
functor guarantees that in each pair of facts generated by these clauses the oid
is the same, and so they refer to the same object. This behavior could hardly
be introduced without explicit functors. As a matter of fact, if implicit functors
were to be used, the clause would produce two di�erent functor terms for the
two classes, thus generating di�erent oid's.

6 Conclusions and Future Work

Several issues need to be further investigated, as follows.

{ The characterization of the de�nedness of the semantics of programs over
instances; more speci�cally, since functors possibly induce model in�niteness,
we need to �nd (necessary and) su�cient conditions for a set of clauses to
have a �nite model.

{ The management of integrity constraints, especially with regard to their
preservation in derived data.

{ The introduction of recursive methods attached to classes of the scheme.
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