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Abstract
In this paper we generalize the framework of linear loop transformations in the sense that loop
alignment is considered as a new component in the transformation process. The aim is to match the
structure of loop nests with the data distribution and alignment  in order to eliminate non-local
references whenever possible when compiling a sequential program for a distributed memory
machine. The alignment and distribution functions are assumed to be user specified or
automatically generated by the compiler. The transformation process is modelled with non-
singular matrices and we use the ideas recently proposed in this field to find part of the
transformation matrix and generate an efficient transformed code. However, additional aspects
have to be studied when the alignment and distribution functions are considered, both in the
obtaining of the transformation matrix and in the generation of code.

1 Introduction
Loop transformations have been recognized to be one of the most important components of the
parallelizing and vectorizing technology for current supercomputers. The aim is to transform
nested-loop structures in the source program into semantically equivalent versions with more
opportunities to parallelize them [1, 2].

When distributed memory machines are considered to run scientific codes, data decomposition
is needed. Data have to be decomposed into pieces and distributed among all processors.
Optimizing locality is crucial for this kind of architectures and for non-uniform memory
architectures (NUMA) in general. As a consequence, it is important to access local data whenever
possible to avoid the access to remote data. When non-local references are necessary, and in order
to amortize their remote access, block transfer of data and data reuse are additional aspects to be
considered and optimized to improve the efficiency.

The programming model offered by Fortran-D [3] and HPF [4] gives the programmer control
over how to align and distribute data structures across processors. The compiler has to be able to
assign work to processors (the ownership rule is the simplest way to do this [5]) and restructure
loop nests with the aim of avoiding non-local accesses as much as possible, and when necessary,
optimize communication to transfer remote data [6]. The single-program multiple-data (SPMD)
model [7] is used to generate code. Each processor runs the same program but accesses to different
parts of the data.

Research in the past years has focussed at finding a matrix theory for program transformations

Torres, J. [et al.]. Align and distribute-based linear loop transformations. A: Workshop on Programming Languages and Compilers for Parallel Computing. 
"Languages and Compilers for Parallel Computing: 6th International Workshop Portland, Oregon, USA, August 12–14, 1993: proceedings". Springer, 1993, 
p. 321-339. ISBN 978-3-540-57659-4. The final authenticated version is available online at https://doi.org/10.1007/3-540-57659-2_19.



2

to reveal program parallelism [8, 9] or exploit data locality and block transfers [10, 11]. From the
specification of the source loop nest and the transformation matrix, a target loop nest is generated
with more opportunities to exploit parallelism or for data reuse. This step has been solved when
unimodular matrices are used [8, 9] and in general, when non-unimodular matrices are considered.
The key point in the solutions proposed in the last case is the use of the Fourier-Motzkin
elimination method and the Hermite Normal Form decomposition [12, 13, 14].

In this paper we propose to consider the set of statements in the loop body as a new component
in the framework of non-singular transformations. This allows to consider loop alignment [15, 16,
17] in a unified way with other loop transformations. We assume that data alignment and
distribution is either user specified or automatically generated by the compiler. From the reaching
alignment and distribution functions for each array, and array references in the statements, a
different transformation for each statement of the loop is derived with the aim of reducing the
number of non-local accesses. In the scope of this paper we consider that the same transformation
matrix is used for all the statements and add a different alignment component to each of them.

The owner computes rule is the basic mechanism to associate loop iterations to processors.
Sometimes the owner computes rule can be relaxed allowing processors to compute values for data
they do not own. Once computed, these values have to be send to the owners. Deciding the
alignment component for a statement can be done by analyzing its multiple right-hand side and the
left-hand side references to distributed arrays. In order to reduce the number of non-local accesses,
the owner computes rule can be broken.

Aspects dealing with the assignment of iterations to processors and generation of
synchronization or communication instructions that take care of dependences are not considered in
this paper.

The rest of the paper is organized as follows. In section 2 we present the terminology and
assumptions used along this paper. In section 3 we outline some previous work on loop
transformations, code generation for them and obtaining of the transformation matrix when
NUMA architectures are considered. Section 4 presents the alignment component in the
transformation framework and code generation. In section 5 we discuss some ideas and problems
to obtain the alignment component that is added to each statement. Finally, we conclude the paper
and present some future work.

2 Terminology and Assumptions
Through this paper we consider perfectly nested loops {L1, ..., Ln} where bounds for any loop Lk

(1≤k≤n) are affine functions of indices of its outer loops L1, ..., Lk-1, that is,

The iteration space for this loop nest is defined as

and can be written following the matrix notation used in the literature

ik ak 0,≥ ak 1, i1⋅ ... ak k 1–( ), ik 1–⋅+ + + lk=

ik bk 0, bk 1, i1⋅ ... bk k 1–( ), ik 1–⋅+ + +≤ uk=

IS i1 ... in, ,( ) Z
n∈ lk ik uk≤ ≤, 1 k n≤ ≤{ , }=

α I⋅ β≤
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where

L is constructed from the coefficients ak,i (1≤k≤n, 1≤i≤k-1) of the loop indices in the lower bound
expressions, U is constructed from the coefficients bk,i (1≤k≤n, 1≤i≤k-1) of the loop indices in the
upper bound expressions, ID is the identity matrix, and l and u are constructed from the
independent coefficients ak,0 and bk,0 (1≤k≤n) of the lower and upper bounds respectively.

For example, for the loop nest in Figure 1.a, the IS of the loop can be defined by

Figure 1.b shows the aspect of the IS for this loop. Each point represents the execution of one
iteration of the inner loop body.

In the scope of this paper we consider dense iteration spaces, i.e., spaces where all points
correspond to iterations of the loop.

The loop body is composed of multiple assignment statements {S1, ..., Sm} that reference array

variables whose subscripts are affine functions of loop indices i1, ..., in. Let V be the set of

statements in the loop body. The Statement per Iteration Space (SIS) of a loop nest is defined as
the cartesian product

Each point in the SIS represents the execution of an iteration of a statement of the loop body.

Dependence relations between a pair of statements Si and Sj (denoted  Si δ Sj) appear when

there is an execution ordering between them [18]. We do not distinguish between different kinds
of data dependences because they all impose ordering constraints in the same way. When
dependence relations are uniform (i.e., invariant through the SIS), they can be characterized by
distance vectorsd=(d1, ..., dn) expressing the number of iterations that the dependence extends

across in each loop dimension. Dependences are lexicographically positive, that is, the leading
non-zero component is always positive.

Arrays accessed during the execution of a loop are considered to be aligned among them and
distributed across processors. The alignment and distribution of the arrays is assumed to be user
specified or automatically generated by the compiler [19, 20]. In any case, we consider that each
array accessed in the loop is affected by a set of reaching alignment and distribution functions.
These functions are the standard supported by current data-partitioning languages such as
Fortran-D. The ALIGN statement maps each array element onto an index domain or
DECOMPOSITION. The DISTRIBUTE statement groups elements of the decomposition and
maps them onto the parallel machine. Alignment can be either within or between dimensions and
include offsets. Each dimension is localized or distributed in a block, cyclic or block-cyclic
manner.

α L ID–

ID U–
= and β l–

u
=

1– 0

0 1–

1 0

0 1

i1
i2

⋅

1–

1–

10

8

≤

SIS IS V×=
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Figure 1: Working example: (a) Source loop nest and (b) original IS. (c) Target IS when a non-singular
transformation matrix T is used. (d) Transformed loop nest that scans the points in the

transformed IS skipping over points that do not have to be executed.

1 2 3 4 5 6

11

12

13

14

15

16

j1

j2

17

18

19

20

21

22

23

24

25

26

1

2

3

4

5

6

7

8

9

10

T
1 2

1 0
=

(b)

(c)

7 8 9 10

DO i1=1, 10
DO i2=1, 8

(a)

A[i1+2.i2, i1] = f(A[i1+2.i2, i1], C[i1+1, i2], B[i1+2.i2-1, i1])

B[i1+2.i2, i1] = g(A[i1+2.i2+1, i1], B[i1+2.i2, i1])

ENDO
ENDO
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DISTRIBUTE E (CYCLIC, :)

ALIGN B (i, j) WITH E (i+1, j-1)

ALIGN A, C WITH E

DO j1=3, 26
DO j2 = j1 + 2 . max (-8, (1-j1)/2), j1 + 2 . min (-1, (10-j1)/2), 2

A[ j1,  j2] = f(A[ j1,  j2], C[  j2+1, ( j1- j2)/2], B[ j1-1,  j2])

B[ j1,  j2] = g(A[ j1+1,  j2], B[ j1,  j2])

ENDO
ENDO

DISTRIBUTE E (CYCLIC, :)

ALIGN B (i, j) WITH E (i+1, j-1)

ALIGN A, C WITH E

(d)
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The sequential code in Figure 1.a shows the reaching alignment and distribution functions for
the arrays referenced inside the loop. Notice that just one dimension is distributed, as specified by
the : attribute in the DISTRIBUTE statement which denotes that the dimension is assigned locally.
In the example, if P is the number of processors, processor p (p=1, 2, ..., P) owns rows p, p+P,

p+2.P, ... of matrices A and C and p-1, p+P-1, p+2.P-1, ... of matrix B.

3 Linear Loop Transformations and Data Access Matrix
A loop transformation is a mapping between two iteration spaces (named original and target IS).
In this paper we consider linear transformations, which can be modelled using non-singular integer
matrices. Unimodular matrices (i.e., matrices whose determinant is±1) are a particular case and can
be used to model some basic transformations such as permutations, skewing and reversal [8, 9].
Non-unimodular matrices can be used to model other basic transformations such as scaling [12],
but in general, any linear transformation represented by a non-singular integer matrix can be
viewed as a composition of these four basic transformations [12].

Let I be a point of the original IS, J a point of the target IS and T the transformation matrix. The
relationship among them is

The target IS can be dense or sparse depending on the unimodularity of the transformation matrix.
In our model, the first p rows of the transformation matrix T define the spatial component of

the transformation and the last n-p rows the temporal component [21]. Iterations in the outermost
loops of the transformed nest are distributed among the processors while iterations the innermost
loops are executed sequentially within each processor.

Let d be a distance vector in the original IS. Due to the fact that T is a linear transformation,

T.d is the transformed distance vector in the target IS. A transformation T is legal if

for all dependence relationsd in the loop. This means that each transformed dependence has to be
lexicographically positive in the target IS.

3.1 Data Access Matrix
A linear transformation has to be found in order to match the structure of the loop nests in a
program with the reaching data decomposition functions. [11] proposes a representation for array
subscripts named Data Access Matrix and its use as starting point to obtain the transformation
matrix. The data access matrix A is a n.n matrix such that the product

yields a vector of n subscripts from array references in the loop. The subscripts and the order they
appear in A correspond to an estimate of their relative importance. For instance, [11] propose an
heuristic that gives more importance to subscripts in the distributed dimensions of the arrays and,
among them, to those that appear more times.

If a data access matrix A has to be used as a transformation matrix, two conditions have to be
imposed:

• matrix A must be invertible.
• matrix A must be legal, that is, it must not violate dependences in the loop.

J T I⋅=

T d 0>⋅

A I⋅
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When matrix A is not invertible, linearly dependent rows have to be eliminated yielding a basis
matrix. This basis matrix has to be legal so additional rows must be deleted if they violate
dependences. Once a legal basis matrix is obtained, it is padded to an invertible matrix by adding
rows which are independent of the rows in the basis matrix and which do not violate dependence
constraints. The transformation matrix obtained using this approach retains as many rows of the
original data access matrix as possible.

Figure 1 shows the example that is used as working example along the paper. Figure 1.b shows
the original IS and Figure 1.c shows the target IS when the following non-singular transformation
matrix is used

Different shades are used in the points to help the reader to establish the relationship between
points in the original and transformed IS. This transformation matrix corresponds to the data access
matrix for the array subscripts in the distributed array dimensions shown in Figure 1.a.

3.2 Code Generation

Once a legal transformation T has been defined, we have to generate a loop nest that appropriately
scans the points in the target IS. In order to do that, we have to:

• generate the bounds of the target DO loops and the stride for each loop index in order to skip
over points of the target IS that do not have to be executed. As we have seen, the original loop
nest is defined by . Therefore, if a transformation matrix T is applied, the target IS

can be obtained from the inverse matrix T-1

However, the bounds obtained by direct elimination from the above inequality might not
have the structure assumed at the beginning of the previous section.

• replace the subscripts in the array references that appear in the loop body such that they are

affine functions of the new loop indices (i.e., substitute I with T-1.J in all subscript functions).
Some previous works [8, 9] have addressed the problem of code generation when unimodular

matrices are used to transform the original IS. [22] includes conditional statements in order to deal
with the sparseness that is introduced in the target IS when a non-unimodular matrix is used. Other
authors [12, 13, 14] have made proposals to avoid these conditionals and, as a consequence, reduce
the overhead introduced by them. The key point in all of them is the use of the Fourier-Motzkin
elimination method and the Hermite Normal Form decomposition [23] to obtain the target loop
nest.

Figure 2.a summarizes the procedure when the source IS is dense and the transformation matrix
is unimodular. With these conditions, the target IS is also dense. If the transformation matrix is
non-unimodular, then a sparse IS is obtained. Figure 2.b shows the procedure applied to obtain the
target code. The basic idea, as proposed in [12] is to decompose the matrix T into the product of a
lower triangular matrix H with positive diagonal elements (Hermite matrix of T) and a unimodular
matrix U (reflecting column transformations performed on T to obtain H) such that

T 1 2

1 0
=

α I⋅ β≤

α T
1–

J⋅ ⋅ β≤

T H U⋅=



7

Applying U to the original IS, and using Fourier-Motzkin elimination, the bounds of a dense
auxiliary IS are obtained. Because of the sparseness of the target IS, two things have to be done:
adjust loop bounds and skip over points that do not have to be executed. Matrix H is used to obtain
the bounds of the sparse target loop nest by direct elimination. The diagonal elements of matrix H
are the strides of each loop index variable in the target loop nest.

Figure 1.d shows how the original loop nest shown in Figure 1.a is transformed applying the
procedure outlined in this section.

Figure 2: Transforming a dense IS using Fourier-Motzkin elimination. (a) When a unimodular
matrix T is used and (b) when a non-unimodular matrix T is used.

4 The Alignment Component
Before presenting the general framework we present the underlying idea in our working example.
Assume that iterations of the outermost loop in Figure 1.d are distributed among P processors in
such a way that processor p (p=1, 2, ..., P) is involved in the execution of an iteration j1 if

(j1-1) mod P = (p-1). With this assignment, the accesses to matrices A and B are local in the

execution of statement S1 but non-local in the execution of statement S2. For instance and

assuming P=4, processor p=1 executes iterations j1=5, 9, ..., 25 and accesses

A(5, j2), A(9, j2), ..., A(25, j2)

B(4, j2), B(8, j2), ..., B(24, j2)

in the execution of S1 which are stored in its local memory and accesses

A(6, j2), A(10, j2), ..., A(26, j2)

B(5, j2), B(9, j2), ..., B(25, j2)

in the execution of S2 which are stored in the local memory of processor p=2. In fact, to make local

the accesses to matrices A and B in statement S2, we would have had to distribute iterations in such

a way that j1 mod P = (p-1). In order to make local all the accesses to A and B, it is necessary to

align the execution of statements S1 and S2, as shown below.

F-M dense target ISdense original IS

legal unimodular T
(a)

(b)

densedense

unimodular U

sparse

Hermite Normal Form H

original IS auxiliary IS target IS
(points skipped)

elimination

F-M
elimination

direct
elimination
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Consider that each statement in the loop is represented with a hyperplane in the SIS and that
we apply a different transformation to each statement in such a way that the resulting target IS is
the one shown in Figure 3. Different shades are used to identify the different hyperplanes. If
processor p executes iterations j1so that (j1-1) mod P = (p-1), then all the accesses to matrices A

and B are local. For instance, processor p=1 executes j1=5, 9, ..., 25 and accesses

A(5, j2), A(9, j2), ..., A(25, j2)

B(4, j2), B(8, j2), ..., B(24, j2)

in the execution of both S1 and S2.

Figure 3: Target SIS assuming that each statement of the loop is
transformed with a different transformation.

Due to the alignment of the hyperplanes, most of the iterations in the target loop execute both
statements but others just execute one of them. The new bounds of the target loop nest have to be
the union of the bounds for each statement. The body has to include the appropriate conditional
statements to ensure that each statement is executed within its bounds.

In this section we generalize the framework of linear transformations to include loop
alignment. Some additional aspects have to be considered in the generation of the target loop nest,
such as the generation of conditional guards to preserve the semantics of the original loop nest and
the optimization of these conditional guards to reduce as much as possible the execution overhead
introduced.
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4.1 Bounds for each statement

We can consider that the SIS is the composition of several hyperplanes, one for each statement in
the loop body. Consider that the hyperplane associated to a statement Si is transformed using the

following transformation

where Di is the displacement applied to the Si hyperplane. Notice that all the statements are

transformed using the same transformation matrix T.

Let T=H.U be the decomposition of matrix T into a unimodular matrix U and the Hermite upper
triangular matrix H. Therefore, the transformed IS for statement Si is

being Ki the auxiliary IS of the statement Si

The bounds of the auxiliary space for statement Si can be derived from the bounds of the original IS

and using U-1, the inverse matrix of the unimodular transformation,

So the bounds of the auxiliary IS of Si can be obtained applying the Fourier-Motzkin elimination

method to

or more clearly to

where

Using the matrix H, we can obtain the bounds of the target IS for each statement Si by direct

elimination.

For instance, consider that we transform each statement hyperplane in the working example in
the following way:

The decomposition of T in the Hermite Normal Form is given by
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The bounds of the auxiliary space of each statement can be obtained from

and are,
DO k1

1
 = 3, 26

DO k2
1

 = max (-8, (1-k1
1
)/2), min (-1, (10-k1

1
)/2 )

for statement S1, and

DO k1
2

 = 4, 27

DO k2
2

 = max (-9, -k1
2
/2), min (-2, (9 -k1

2
)/2)

for statement S2. Due to the sparseness of the target SIS, we have to modify or adjust these bounds

using matrix H. Since H is lower triangular, we can derive the relationship between both spaces

and finally obtain the bounds
DO j1 = 3, 26

DO j2 = j1 + 2 . max (-8, (1-j1) /2) , j1 + 2 . min (-1, (10-j1)/2), 2

for statement S1, and

DO j1 = 4, 27

DO j2 = j1 + 2 . max (-9, -j1 /2) , j1 + 2 . min (-2, (9 - j1)/2) , 2

for statement S2. Notice that the elements in the diagonal of matrix H are the strides in each loop

dimension.

4.2 Cover Bounds

Now we have to obtain the bounds of the union of the two statement hyperplanes in order to obtain
the target loop nest. We define the cover bounds as the bounds of a space that includes all the
statement hyperplanes. The cover bounds can be obtained by elimination from

where the maximum function is applied to each component of the vectorsβi. In our working
example we have to solve

obtaining the following target loop nest
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DO j1 = 2, 28

DO j2 = j1 + 2 . max (-9, -j1/2) , j1 + 2 . min (-1, (10-j1)/2), 2

From now on, and for reasons of clarity, we denote withlowerki  andupperki  the lower and upper

bounds for each hyperplane Sk in loop dimension Li, with stepi the stride for loop dimension Li,

and withlowercover
i  anduppercover

i  the lower and upper bounds of the cover in loop dimension Li.

With this notation, the basic structure of the target loop nest and body can be written as shown
in Figure 4. The key point to note here is that this code is expensive in terms of run-time overhead.
In each iteration of the loop, the guard conditionals that control the execution of each statement
have to be evaluated. In general, there is a part of the SIS where all the statements of the loop body
are executed and it encompasses a large part of the cover.

Figure 4: Basic Structure of the code with guard conditionals.

4.3 Core Bounds

We define the core bounds as the bounds of a space where all the statements of the loop body are
executed. The core bounds can be obtained by elimination from

where the minimum function is applied to each component of the vectorsβi. In our working
example we have to solve

obtaining the following loop nest

DO j1 = 5, 25

DO j2 = j1 + 2 . max (-8, (1-j1) /2) , j1 + 2 . min (-2, (9-j1)/2), 2

DO j1 = lowercover
1 , uppercover

1 , step1

...
DO jk = lowercover

k , uppercover
k , stepk

...
DO jn = lowercover

n , uppercover
n , stepn

...
IF (lowerk

1 ≤ j1 ≤upperk
1 ) and (...) and (lowerk

n ≤ jn ≤upperk
n ) THEN {statement Sk}

...
ENDDO

...
ENDDO
...

ENDDO

α' K
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Again we denote withlowercore
i  anduppercore

i  the lower and upper bounds of the core in each

loop dimension Li. Notice that this core part can be executed without guard conditionals at the

statement level, reducing the run-time overhead introduced by them.

4.4 Code Generation

Let us consider again our working example. Figure 5 shows the skeleton of the target SIS and the
expressions of the boundaries for each of the spaces considered.

Figure 5: Basic skeleton of the SIS for our working example and expressions for the lines
that determine each bound.

In general, the code has three parts, namely prolog, core and epilog parts. The prolog and epilog
parts are defined as the parts of the cover not included in the core that are executed before or after
the core part, respectively. We have to include guard conditionals in these two parts in order to
control the execution of each statement.

For instance consider what happens when j1=10 in Figure 5. In this case, first we have to

execute the iteration j2=0 of S2 (prolog part), then the iteration j2=2, 4 and 6 of both statements

(core part) and finally the iteration j2=8 of S1 (epilog part). Not always these three parts are

executed. For example, observe that for j1=15 only points in the core part have to be executed, and

that for j1=4 no points have to be executed in the core part.

statement S2

statements S1

(1) : j1 + 2 . -j1/2
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upper S2: j1≤27, j2≤min {(3), (7)}

lower cover: j1≥ 2, j2≥max {(1), (5)}

upper cover: j1≤28, j2≤ min {(4), (8)}

lower core: j1≥5, j2≥max {(2), (6)}

upper core: j1≤25, j2≤ min {(3), (7)}
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The structure of the code can be written using our notation as shown in Figure 6. In this code,
and depending on the original loop bounds, transformation and alignment components, the
compiler has a lot of opportunities to simplify the conditionals generated and make the code less
run-time expensive.

Figure 6: Target code generated with prolog, core and epilog parts (for two-dimensional loops)

In particular, the code that is obtained for our working example is shown in Figure 7. For
instance, the compiler can recognize that just one iteration is executed in the prolog and epilog parts
due to the values of the alignment components. Therefore, loops in these parts can be substituted
by conditional statements. The compiler can also recognize that statement S1 is never executed in

the prolog part and statement S2 is never executed in the epilog part.

4.5 Dependence Relations in the Target Space
Let dij  be a dependence relation between two different statements Si and Sj (i.e., SiδSj). The

distance vectordij  is the number of iterations the dependence extends across in each loop

dimension. So

where I1 and I2 are two points in the original IS directly dependent because of the dependence dij .

DO j1 = lowercover
1 , uppercover

1 , step1

DO j2 = lowercover
2 , lowercore

2 - step2, step2
...
IF (lowerk

1 ≤ j1 ≤upperk
1 ) and (lowerk

2 ≤ j2≤upperk
2 ) THEN {statement Sk}

...
ENDDO

IF (lowercore
1 ≤ j1≤uppercore

1 )  THEN

DO j2 = lowercore
2 , uppercore

2 , step2

...
{statement Sk}
...

ENDDO
low = uppercore

2 + step2
ELSE

low = lowercore
2

ENDIF

DO j2 = low, uppercover
2 , step2

...
IF (lowerk

1 ≤ j1 ≤upperk
1 ) and (lowerk

2 ≤ j2 ≤upperk
2 ) THEN {statement Sk}

...
ENDDO

ENDDO

prolog part

core part

epilog part

dij I2 I1–=
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Figure 7: Target loop nest obtained for the example in Figure 1.a when a different transformation
is applied to each statement of the loop body.

If T is the transformation matrix applied,

are the corresponding points in the target SIS. Therefore, due to the fact that T is a linear
transformation, the transformed distance is

The transformation matrix and alignment components must be legal in the sense that they have to
respect all data dependences dij  in the loop.

5 Obtaining the Alignment Components
In this section we present some ideas about how to obtain the alignment component for each
statement in the loop body. The aim of the process is to reduce interprocessor communication when
parallelizing for a coarse-grain MIMD system. With the alignment components we try to minimize
the number of non-local data references in the execution of the code assigned to each processor.

In the same way [11] constructs the Data Access Matrix from the subscripts in array references,
we obtain the alignment components for each statement in the loop body. Constants in the set of
subscripts that make up the Data Access Matrix and the alignment functions for the arrays
subscripted by them contribute to find the alignment components. In fact, just those subscripts that
correspond to the spatial part of the transformation matrix have to be analyzed.

Assume that we are analyzing the reference to a matrix M in a statement of the loop. Letσ be
a vector with the independent coefficients of the subscripts in the spatial part of the transformation
matrix used in the reference to M. For instance, consider the referenceB[i1+2.i2-1, i1] in statement
S1 in the example shown in Figure 8.a. Assume the same transformation matrix T used along the

paper in which the first row corresponds to the spatial part of the transformation. In this case, the
subscript term isi1+2.i2 and the independent coefficient isσ=[-1].

DO j1 = 2, 28

lcover =  j1 + 2 . max (-9, (-j1) /2)

ucover = j1 + 2 . min (-1, (10-j1)/2)

lcore =  j1 + 2 . max (-8, (1-j1) /2)

ucore = j1 + 2 . min (-2, (9-j1)/2)
IF lcover < lcore THEN B[ j1-1, lcover+1] = g(A[ j1,  lcover+1], B[ j1-1, lcover+1])

DO j2 = lcore, ucore, 2

A[ j1,  j2] = f(A[ j1,  j2], C[  j2+1, ( j1- j2)/2], B[ j1-1,  j2])

B[ j1-1,  j2+1] = g(A[ j1,  j2+1], B[ j1-1,  j2+1])

ENDDO
IF ucore < ucover THEN A[ j1, ucover] = f(A[ j1, ucover], C[ ucover+1, ( j1- ucover)/2], B[ j1-1, ucover])

ENDDO

T I1 D
i

+ 
 ⋅ and T I2 D

j
+ 

 ⋅

T dij D
j

D
i

–+ 
 ⋅
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Let φ be a vector whose components are the offsets of the ALIGN function for array M in the
dimensions where the correspondent subscripts are used. In the same example, the align function
for matrix B is

ALIGN B(i, j) WITH E(i+1, j-1)

and thereforeφ=[1] as indicated in the first component of the decomposition.

If we denote with Ts the spatial part of the transformation, the alignment component D for the

reference analyzed can be obtained from

For the reference we are analyzing, we have to solve

Due to the fact that this equation has several integer solutions, we select the one that maximizes
the size of the core part in the resulting code. In this case, this means that the minimum value for
D2 is chosen, so [0, 0] is the alignment vector obtained.

The alignment component Di for a statement Si is the alignment component that appears more

times in all the array references in Si.

Applying this procedure to all the references in the loop shown in Figure 8.a, we obtain

D1=[0, 0]t for statement S1 and D2=[-1, 1]t for statement S2. The code obtained in this case is

shown in Figure 8.b. Now referencesB[j1-1, j2+1] and A[j1, j2+1] in statement S2 are local and

referencesB[ j1-2, j2+1] and C[j2+2, (j1- j2-2)/2]) are non-local, reducing the number of remote
accesses.

If no alignment components had been added to the transformation, the code shown in Figure
8.c would have been obtained. Analyzing the data accesses performed, one can see that references
A[ j1,  j2] and B[ j1-1,  j2] in the statement S1 and referenceB[ j1-1,  j2] in statement  S2 are local. Other

references are remote. However, observe that the access toC[i1+1, i2] in statement S2 does not

require a remote access because it is reusing the same value that has been accessed in statement S1.

So in this case just accesses toB[ j1,  j2] and A[ j1+1,  j2] are non-local. In conclusion, the same number
of remote accesses are performed.

In general it is necessary to consider the reuse of the array elements in order to find the
alignment components.

6 Conclusions and Future Work

In this paper we have proposed the inclusion of loop alignment as a new component in the
framework of non-singular transformations. This allows the compiler to match the structure of loop
nests according to data alignment and distribution specifications. The aim is to reduce the number
of remote data accesses in distributed-memory machines.

Ts D⋅ σ φ+=

1 2
D1

D2

⋅ 0= → d1 2 d2⋅+ 0=
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Figure 8: (a) Original loop nest. Two different options for the alignment components:

(b) D1=[0, 0]t and D2=[-1, 1]t and (c) D1=D2=[0, 0]t.

We have used some ideas recently published in the literature to generate code that controls the
correct execution of each statement in each iteration of the transformed loop nest and body. In this
case it is more difficult to generate code and we have shown how to reduce the overhead due to
conditionals that appear in the loop body [24].

We have presented a simple method to obtain the alignment component for each statement of
the loop body. It is based on the analysis of constants in the set of subscripts that make up the data
access matrix (in the spatial part of the transformation) and the alignment functions for the arrays
subscripted by them. Data reuse has not been considered in the method we have proposed. A more
precise formulation of the problem of finding the alignment components where data reuse is
considered is part of our future work.

DO i1=1, 10
DO i2=1, 8

(a)

A[i1+2.i2, i1] = f(A[i1+2.i2, i1], B[i1+2.i2-1, i1], C[i1+1, i2])

B[i1+2.i2, i1] = g(A[i1+2.i2+1, i1], B[i1+2.i2-1, i1], C[i1+1, i2])

ENDO
ENDO

DO j1=3, 26
DO j2 = j1 + 2 . max (-8, (1-j1)/2), j1 + 2 . min (-1, (10-j1)/2), 2

A[ j1,  j2] = f(A[ j1,  j2], B[ j1-1,  j2], C[  j2+1, ( j1- j2)/2])

B[ j1,  j2] = g(A[ j1+1,  j2], B[ j1-1,  j2],C[  j2+1, ( j1- j2)/2] )

ENDO
ENDO

(b)

DO j1=2, 28

DO j2 = lcore,ucore, 2

A[ j1,  j2] = f(A[ j1,  j2], B[ j1-1,  j2], C[  j2+1, ( j1- j2)/2] )

B[ j1-1,  j2+1] = g(A[ j1,  j2+1], B[ j1-2,  j2+1], C[  j2+2, ( j1- j2-2)/2])

ENDO

ENDO

(c)

...

...

DISTRIBUTE E (CYCLIC, :)

ALIGN B (i, j) WITH E (i+1, j-1)

ALIGN A, C WITH E
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A possible extension to the work presented in this paper is the use of a different transformation
for each statement. From array references in each loop statement, a different data access matrix or
transformation matrix T and alignment component can be obtained to increase locality. The target
loop nest obtained with this approach has the same structure as the one we have presented in this
paper. In general, the transformed dependence distances become non-uniform and as a
consequence, it is more difficult to generate the associated synchronization/communication
instructions. The study of the legality of all the transformation matrices is more complex because
of this non-uniform characteristic of dependences in the target space.
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