Indexing Alternatives for
Multiversion Locking

Paul M. Bober
Michael J. Carey

Technical Report #1184

November 1993

Indexing Alternatives for Multiversion Locking*

Paul M. Bober™ and Michael J. Carey

Computer Sciences Department, University of Wisconsin, Madison Wisconsin 53706, USA

Abstract. Multiversion two-phase locking (MV2PL) provides on-line serializable queries without
introducing the long blocking delays that can occur with conventional two-phase locking (2PL).
MV2PL requires indexing structures, however, that are capable of supporting multiple versions of
data. In this paper, we present several options for extending single-version indexing schemes for use
with MV2PL. These basic approaches are largely orthogonal to the underlying indexing structure (e.g.,
hashing or B+ trees). The options considered differ in where they place version selection information
(i-e., references to individual versions); this information is placed either with the data or with the
index entries of one or more of the indices. We also present the results from a performance study that
show that placing the version selection information with the data is usually the best option, since it
keeps the indices smaller and thus enables a larger fraction of the index pages to remain cached in
the buffer pool.

1 INTRODUCTION

Due to the adoption of relational database technology and the increasing ability of database systems
to efficiently execute ad-hoc queries, query processing is becoming an increasingly important function of
transaction processing systems. The concurrency control algorithm found in most commercial database
systems, two-phase locking (2PL) [14], however, does not efficiently support on-line query processing. This
is because 2PL causes queries to lock large regions of data for long periods of time, thus causing update
transactions to suffer long delays. As a result, many applications run queries without obtaining locks or
using only short-term locks, allowing the queries to see transaction-inconsistent answers. These approaches
are referred to as GO processing and cursor stability locking, respectively.

To solve this data contention problem while providing consistent answers to queries, a multiversion
extension to two-phase locking was proposed and implemented in a system developed at Prime in the early
1980s [12]. This extension was also used in a system developed at Computer Corporation of America (CCA)

[10, 11], and it has subsequently been incorporated in DEC’s Rdb product [23]. In multiversion two-phase

* This research was partially supported by an IBM Research Initiation Grant
An abridged version of this paper will appear in Proceedings of the Fourth International Conference on Extending
Database Technology, Cambridge, U.K., March 1994

** Author’s current address: Transarc Corporation, The Gulf Tower, 707 Grant Street, Pittsburgh, PA 15219

locking (MV2PL), a timestamp mechanism is used in conjunction with the temporary retention of prior
versions of data so that a read-only query can serialize before all update transactions that were active
during any portion of its lifetime. In MV2PL, read-only queries do not contribute to data contention since
they do not have to set or wait for locks. This form of versioning, where old copies of data are retained
temporarily for concurrency control purposes (as opposed to long-term retention for historical queries), has
been referred to as transient versioning [22).

Since indexes are important for good performance in database systems, it is important to to determine
how they may coexist with MV2PL. Conventional single-version indexing structures such as B+ trees and
hashing are not entirely compatible with MV2PL in their current forms, as they support searches on key
value alone (not on both key value and timestamp together). Without timestamp information encoded in
the index, a given query will have no way of knowing if an entry with a matching key references a version
that it should see without first retrieving the version and examining its timestamp information. Thus,
frequent false drops may occur since not all retrieved tuples are actually needed. Furthermore since false
drops are possible, the use of indez-only plans, a common relational query processing optimization that
avoids retrieving actual tuples when only indexed attribute values are needed, is ruled out.3

To support efficient query processing, it is clear that an MV2PL system must utilize an indexing
scheme specifically designed for multiversion data. One approach, taken in DEC’s Rdb system, is to treat
index nodes like data records at the storage level, including having MV2PL applied to them [17]. While
this approach supports index-only plans, it is not compatible with the use of high performance non-2PL
B+ tree concurrency control algorithms such as those proposed in [3, 21, 22]. Because (non-2PL) B-tree
concurrency control algorithms are widely viewed as being important to achieving acceptable performance,
we do not consider the Rdb approach further.

A number of other multiversion indexing approaches have been proposed in the literature; examples
include [13, 28, 18, 20, 22]. With the exception of [22], however, all of these proposed indexing schemes are
designed to support historical databases, where out-of-date versions are retained for an arbitrary length of
time. In contrast to transient versioning databases, historical databases may have a large number of versions
of each tuple (some of which may have been migrated to tertiary storage, e.g., optical disk). Because of

this, the basic indexing design tradeoffs are different for the two types of versioning. For example, while it

3 Using an index-only plan, a query computing the average salary of a group of employees, for example, does not
have to retrieve the employee tuples if an index on employee salary exists; instead it can compute the average by
simply scanning the leaves of the index.

might be reasonable in a transient versioning system to require a query to traverse the entire length of a
(short) linked list of the existing versions of a tuple, this would not be reasonable in a historical versioning
system. Furthermore, it is likely that a historical versioning system will be required to store pieces of its
indexes on tertiary store, as the indexes are apt to grow very large. Lastly, efficient garbage collection is
very important in a transient versioning system, as versions are not needed for very long once they have
been replaced by a more current version.

In this paper, we compare a range of possible multiversion indexing approaches that are designed
specifically for use with MV2PL. This paper is an extension of our previous work, where we proposed
and studied the on-page caching scheme for placing transient multiversion data on secondary storage [7];
that scheme in turn is a refinement of CCA’s version pool scheme [10]. Each of the multiversion indexing
approaches that we study in this paper are integrated with on-page caching to present a complete version
placement and indexing solution for MV2PL.

The remainder of the paper is organized as follows: In Section 2 we review the MV2PL algorithm, the
CCA version pool scheme, and our on-page caching refinement. In Section 3 we describe four multiversion
indexing schemes, and in Section 4, we describe the simulation model that we will use to compare them.
In Section 5, we present the results of simulation experiments that compare the indexing schemes in terms

of their 1/O costs for queries and update transactions. Lastly, we present our conclusions in Section 6.

2 MULTIVERSION BACKGROUND

In this section we set the stage for the discussion of multiversion indexing approaches by reviewing the
MV2PL algorithm, the CCA version pool scheme for managing storage for multiple versions of data, and
our on-page caching refinement to the CCA version pool scheme.

MV2PL is only one of a number of multiversion concurrency control algorithms that have been pub-
lished in the literature. Because it is a direct extension of the de facto industry standard, 2PL, we are
primarily concerned with indexing in the context of MV2PL in this work. For completeness, however, we
wish to identify some of the other proposals here. To the best of our knowledge, Reed’s distributed times-
tamp ordering scheme [Reed83] was actually the first multiversion concurrency control algorithm proposal.
Several 2PL-based algorithms that retain at most two versions of data in order to reduce blocking due to
read/write conflicts have also been proposed [5, 27]. Other multiversion extensions of single-version con-

currency control algorithms include: multiversion optimistic validation [25, 9, 19] multiversion timestamp

ordering [2], and the multiversion tree protocol [26]. Finally, in [7], we presented a generalization of MV2PL

that provides queries with a tradeoff between consistency and performance.

2.1 Multiversion Two-Phase Locking (MV2PL)

In MV2PL, each transaction T is assigned a startup timestamp, Ts(T'), when it begins to run, and a
commit timestamp, T (T"), when it reaches its commit point. Transactions are classified at startup time as
being either read-only or update transactions. When an update transaction reads or writes a page? it locks
the page, as in traditional 2PL, and then accesses the current version. Update transactions must block
when lock conflicts occur. When a page is written, a new version is created and stamped with the commit
timestamp of its creator; this timestamp is referred to as the version’s create timestamp (CTS).5 When a
read-only query Q wishes to access a page, on the other hand, it simply reads the most recent version of
the page with a timestamp less than or equal to Ts(Q). Since each version is stamped with the commit
timestamp of its creator, Q will only read versions written by transactions that committed before Q began
running. Thus, Q will be serialized after all transactions that committed prior to its startup, but before
all transactions that are active during any portion of its lifetime — as though it ran instantaneously at its
starting time. As a result, read-only transactions never have to set or wait for locks in MV2PL.

When an update transaction deletes a page in MV2PL, the prior versions of the page must remain
in the database until all queries which may require them have completed. Deletes may thus be handled
by assigning a delete timestamp (DTS) to the last version of each page. Initially, the DTS of the most
recent version is infinite, signifying that it is in the current database. When a page is deleted, the commit
timestamp of the deleter is assigned to the DTS of the current version (denoting that it is no longer part of
the current database). Update transactions should access a page only if it has a current version. Likewise,
a query may access a page only if the query’s startup timestamp is less than the DTS of the most recent

version (i.e., only if the page was not deleted as of the query’s arrival time).

2.2 The CCA Version Pool Organization

To maintain the set of versions needed by ongoing queries, the CCA scheme divides the stored database

into two parts: the main segment and the version pool. The main segment contains the current version

* MV2PL utilized page-level locking in its original form.

5 Actually, to reduce commit-time processing in the absence of a no-steal buffer management policy, the page is
stamped with the creator’s transaction id and a separately maintained list is used to map from transaction ids
to commit timestamps [10].

of every page in the database, and the version pool contains prior versions of pages. The version pool is
organized as a circular buffer, much like the log in a traditional recovery manager [15]. The CCA design
chains the versions in reverse chronological order; in Section 3, we discuss other ways of organizing sets
of versions. Three attractive properties of the version pool are that (i) updates are performed in-place,
allowing clustering of current versions to be maintained, (ii) version pool writes are sequential (i.e., similar
to log writes)®. and (iii) storage reclamation is relatively straightforward. Figure 1 depicts the main segment

of the database, the version pool, the pointers used to manage version pool space, and the version chain

Main Segment .
(current database) Version Pool s
W L M
Zy
last —=
X1
X (update-first—s
T
Xi—2 Yo
N
der-fi Cache Xo
reader-first —= Y, /
/\/\/ Data Page
Fig. 1. CCA Version Pool Organization Fig. 2. A Data Page with a Cache

for a page X. Version pool entries between reader-first and last in the figure contain versions that may
be needed to satisfy read requests for ongoing queries. Entries between update-first and last contain page
versions recorded by ongoing (or recently committed) update transactions.

Garbage collection in the version pool is done when the oldest query finishes, thus allowing the reader-
first pointer to move. Garbage collection is simple due to the sequential nature of this deallocation process;
however, a problem with the CCA scheme is that a very long running query may hold up the reclamation
of version pool space. Another problem is that the ordinary sequential I/O patterns of queries may become
disrupted by random 1/0 operations to the version pool. Moreover, because a query must read successively
older versions (relative to the current database) as it ages, the number of version pool I/O operations that

¢ In contrast, DEC’s Rdb system stores old versions of records on ”shadow” pages which must be first read and
then written whenever an update occurs [17].

it must make to read a given page increases with time. As a result, queries may begin to thrash if they
are sufficiently large [6]. The on-page version caching refinement discussed next was designed to alleviate

these problems.

2.3 On-Page Version Caching

In [6], we presented and studied a record-level refinement to the CCA version pool scheme in which versions
are maintained on records (as opposed to pages) and a small portion of each main segment (i.e., data)
page is reserved for caching prior versions. Such an on-page cache reduces the number of read operations
required for accessing prior versions. Another benefit is that versions may ”die” (i.e., become unnecessary
for maintaining the view of a current query) while still in an on-page cache and thus not have to be
appended to the version pool at all. We review the concepts of the on-page cache here so that we may show
how it can be integrated with the various indexing approaches. Figure 2 shows a data page with records
X, Y, and Z, and a cache size of 3. Prior versions of these records are resident in the on-page cache in the
figure.

With on-page caching, updates to records are handled in the following manner: When a tuple is updated,
the current version is copied 7 into the cache before it is replaced by the new version. Likewise, when a tuple
is deleted, the current version is also copied into the cache. If the cache is already full, garbage collection is
attempted on the page. Garbage collection examines each entry in the cache to determine whether or not
it is needed to construct the view of any current query. If garbage collection is unsuccessful in freeing a
cache slot, then some prior version is chosen for replacement. The replacement algorithm chooses the least
recently updated entry for replacement (i.e., the entry which has resided in the cache the longest is moved
to the version pool).

In addition to the cache replacement policy, there is also a write policy that determines when a cached
prior version should be appended to the version pool. The write-one policy appends a version only when it
is chosen to be replaced in the cache. This policy attempts to minimize the size of the version pool by 1)
keeping only one copy of each prior version and 2) allowing a prior version the maximum chance of being
garbage-collected before being written to the version pool. In contrast, the write-all policy appends all of

the prior versions in a page’s cache to the version pool at once; this is done when a cache overflow occurs

7 In practice, copying a version into the cache simply means moving its entry in the page’s slot table. The cache
does not have to be a physically contiguous region of the page; cache overflows can be detected by maintaining
a count of bytes occupied by prior versions.

and the least recently updated entry has not yet been appended to the version pool. In this scheme, a
version chain will actually contain two copies of those versions that have been written to the version pool
but not yet replaced from the cache. The write-all policy introduces a degree of positional clustering in the
version pool by attempting to cluster versions from the same main segment page; this benefits queries that
sequentially scan the data by increasing their locality of reference to the version pool. Because of the added
positional clustering, the write-all policy was shown to be able to complete queries at a faster rate than
write-one [6]. Despite having to replicate some prior versions under write-all, the more rapid completion of
queries under this policy was also shown in many cases to lead to a significantly lower overall storage cost
than under write-one; in other cases, the storage cost was not appreciably higher.

As we pointed out earlier, a very long running query may hold up the reclamation of version pool
space. In contrast, versions that reside in an on-page cache may be garbage-collected soon after they
become unnecessary. Also, on-page garbage collection is done whenever an update occurs on a page whose
cache is full, at which time each prior version in the cache is examined to determine whether it 1s still
needed. Since such update operations dirty the data page anyway, on-page garbage collection is essentially
free. For further details about version garbage collection and other aspects of on-page caching, the reader

is referred to [6].

3 MULTIVERSION INDEXING APPROACHES

In this section, we discuss options for extending single-version indexing schemes to handle multiversion
data. We outline four different approaches here and discuss their performance tradeoffs. The approaches
include: Chaining (CH), Data Page Version Selection (DP), Primary Index Version Selection (PI), and All
Index Version Selection (AI). These basic approaches are largely orthogonal to both the version placement
scheme employed and to the underlying indexing structure (e.g., hashing or B+ trees). We describe the
approaches here as they would work with the on-page caching method for storing prior versions (as described
in Section 2) and the B+ tree indexing method [4].

We used several criterion to select the schemes that we will be considering here. First, to be practical,
we decided that the schemes should involve only relatively simple changes to proven indexing methods
(i.e., we didn’t want to consider something so foreign that nobody would want to implement it). Further-
more, because versions come and go rapidly in transient versioning, garbage collection should be relatively

inexpensive. Lastly, we decided that index-only plans should be supported since they are an important

optimization in many existing systems.

The multiversion indexing schemes that we consider differ in how they accomplish version selection,
the mechanism by which the appropriate version of a tuple is located in the collection of existing versions.
Version selection information is either placed with the data or with the index entries of one or more of the
indices. In all of the schemes, we assume that relations have a single primary key index and zero or more
secondary key indices, and that tuples are stored separately from the indices. For purposes of presentation,

we further assume that primary key values cannot be updated.

3.1 Chaining (CH)

In the Chaining (CH) versioning selection scheme, each index leaf entry simply references the most recent
version of a tuple; the remainder of the versions are chained behind the current version in reverse chrono-
logical order, as in the CCA scheme [10]. The organization of data pages (with on-page caching) and the
version pool was discussed in the previous section. As described earlier, each version of a tuple has a create
timestamp (CTS) which is the commit timestamp of the transaction that wrote the version. The most
recent version also has a delete timestamp (DTS) which is the commit timestamp of the transaction that
deleted the tuple; the value of the field is infinite if the tuple exists in the current database.

Figure 3 illustrates this scheme by showing an example of how a single tuple is stored and indexed
both on the primary key and on a secondary key. Interior nodes of the index are not shown since they
are identical to those in a single-version B+ tree, as in all of the schemes that will be considered here.
The tuple in Figure 3 has four versions: (al, bl, c1) with CTS 25, (al, b1, c2) with CTS 35, (al, b2, c2)
with CTS 50, and (al, b2, c¢3) with CTS 60. The primary key index is built on the first attribute, with the
secondary key index on the second. Currently, there are three queries running in the system: Q1 with a
startup timestamp of 25, @ with startup timestamp 40, and Q3 with startup timestamp 55. The existence
of these queries necessitates the retention of all of the prior versions shown in the figure.

As shown in the figure, index leaf page entries in the CH scheme consist of a key, a tuple pointer,
a create timestamp (CTS), and a delete timestamp (DTS). The CTS field contains the timestamp of
the transaction which inserted the key into the index, and the DTS field contains the timestamp of the
transaction that (logically) deleted the key from the index. Together, the CTS and DTS fields represent
the range of time over which an index entry’s key value matches some version of the referenced tuple. For
example, in Figure 3, the CTS and DTS fields in the secondary index entry with key b denote that all

versions of the illustrated tuple with timestamps greater than or equal to 25 and less than 50 have bl as

Primary Index

active startup

query timestamp ! CTS 60 DTS inf
(a1, b2, €3)

Q, % Data

CTS 35
Q, 40 Page _j——* (a1, b1, c2)
Q 55 m ____________

)

3

Version Pool

—-—— denotes page boundary

Secondary Index

Fig. 3. Chaining

the value of their second attribute; likewise the CTS and DTS fields in the entry with key b2 denote that
all versions with timestamps greater than or equal to an 50 have an indexed attribute value of b2. Note
that the entries that reference a given tuple (from within the same index) have non-overlapping timestamp
ranges since each version may have only one key value at a time. Delete operations do not physically remove
leaf entries because they may be needed by queries to provide access paths to prior versions of tuples. We
will discuss shortly how the index is searched and how leaf entries are eventually garbage-collected when
they are no longer needed.

With the exception of having logical deletes (i.e., setting the DTS field instead of immediately removing
an entry), operations on the multiversion B+ tree parallel those on an ordinary B+ tree. A single insertion
is made into each index when a tuple is inserted into a relation; a single logical deletion is made in each
index when a tuple is deleted; both an insertion and a logical deletion are made in each affected index
when a tuple is modified (i.e., for each changed key value, the new value is inserted and the old value is

deleted). Later we will see that additional index operations are required in some of the other multiversion

indexing schemes.

The multiversion index is searched just like a B+ tree, except that transactions filter out entries which
do not pertain to the database state that they are viewing. An update transaction, which views the current
database state, pays attention only to index entries whose DTS is infinity (inf in the figure). A query Q,
which views the state of the database as of its arrival, pays attention only to index entries whose CTS and
DTS values satisfy the inequality CT'S < Ts(Q) < DT'S. Such entries were inserted, but not yet deleted,
as of Q’s arrival in the system. By following these rules, false drops do not occur, and therefore index-only
plans may be utilized when applicable. In the example shown in Figure 3, queries @; and @2 must follow
the secondary index entry with key b1, while Q3 must follow the entry with key b2.

As in all of the schemes that we will be discussing, garbage collection within an index leaf page is invoked
when the page overflows. Since the page is already dirty and pinned in the buffer pool at such times, index
garbage collection does not require any additional I/O operations. The garbage collection process examines
each logically deleted entry (i.e., each one with a finite DTS) to determine whether or not it is still needed
for some active query. Specifically, an entry is still needed if there exists a query Q € active queries such
that CT'S < Ts(Q) < DTS (as described above). A logically deleted entry is physically removed if it is not
needed for any active query; such an entry will never be needed later for a subsequently arriving query, as
such queries will be assigned startup timestamps that are greater than or equal to the entry’s DTS.

To minimize the additional storage overhead due to versioning, compression of the timestamp infor-
mation (CTS and DTS) is possible. This will be especially important for indices with small keys. To this
end, a single bit may be used to encode a DTS value of infinity. Likewise, a single bit may also be used to
encode any CTS value that is less than the startup timestamp of all active queries, as all that matters is
the fact that the entry preceded their arrival. (In practice, these two bits together will require extending
index entries by a whole byte.) If a tuple requires only one leaf entry in some index, the entry may have
both fields compressed. This occurs when the index key value in the tuple has remained constant since
the arrival of the oldest active query, which is likely to be a common case. In the example in Figure 3,
the CTS of the secondary leaf entry having key bl may be compressed, and likewise for the DTS of the
entry having key b2. Thus, an index on an attribute that is rarely changed will remain close in size to a
single-version B+ tree. Furthermore, during periods when queries are not run, the indices may be grad-
ually compressed down towards the size of ordinary B+ trees (with the exception of the additional byte
per entry) by merging pages during garbage collection; when queries reenter the system, the indices will

gradually expand as needed. The main disadvantage of compressing the timestamps is the added overhead

10

of maintaining growing and shrinking index entries, but code to handle this should already be part of any

B+ tree implementation that supports variable-length keys.

3.2 Data Page Version Selection (DP)

A drawback of the chaining approach used in CH is that a long-running query may have to read a large
number of pages to reach the version of a tuple that it needs. The data page (DP) version selection scheme
is a modification of CH that limits the number of pages that a query must read to two (exclusive of index
pages). It accomplishes this by recording the addresses and timestamps of each version of a tuple in a small
table known as a version selection table (VST).8

The VST is located on the data page that contains the current version of the tuple (or in the case of a
deleted tuple, on the page that contained the final version). Rather than referencing the current version of
a tuple, an index leaf entry references the tuple’s VST. Figure 4 illustrates the DP scheme by modifying
the example used to illustrate the CH scheme. From the figure, it can be seen that a query must now read
at most two pages (a data page and a version pool page) to locate any tuple. In contrast, to locate the
version with CTS 25 in Figure 3 under the DP scheme, a query would have to read three pages.

A disadvantage of DP over CH is the additional room on data pages consumed by the VST entries of
versions that have migrated to the version pool. However, since VST entries are small, this is not likely to

have a significant impact unless the tuples themselves are small in size.

3.3 Primary Index Version Selection (PI)

The Primary Index (PI) version selection scheme is a modification of DP that stores the version selection
table together with the tuple’s primary index leaf page entry (instead of on a data page). It is similar®
to the scheme presented in [22], which is the only previously published indexing scheme for multiversion
locking that we are awarbe of.

Figure 5 illustrates the PI scheme by adapting the running example. Note that a versioned tuple has

only one entry in the primary index because primary index keys cannot be changed.

8 For versions that are replicated under the write-all cache write policy, this scheme would list replicated versions
in the VST twice (i.e., once for their on-page cache copy and once for their version pool copy).

9 The overall versioning scheme in [22] differs somewhat in that it bounds the number of versions of each tuple by
essentially restricting the number of query startup timestamps in use simultaneously. This difference is orthogonal
to the indexing issues that we are discussing here, however.

11

Primary Index

CTS25D1S 35
{a1, bi, c1)
adlve starup] 0 Tlereped VL]
\query tmestamp |
oy "m”;;“ " Data
1
Q 40 Page CTS 35 DTS 50
2 (a1, b, c2)
Q, O I e L | S ——
»E———_—‘—(A1' b2, c3) \/\/\/\/\

Version Pool

—-—— denoles page boundary

Secondary Index

Fig. 4. Data Page Version Selection

The motivation for placing VSTs in the primary index is that it enables queries to retrieve versions
through the primary index by reading only a single data page or version pool page. There are several
drawbacks to this approach, however. One drawback is that the pointer to a version from its VST must
also be updated when the version is migrated to the version pool. If on-page caching is used, this increases
the path length of update transactions that need to free cache space in order to modify or delete a tuple.
Another drawback is that the presence of the VSTs on primary index leaf pages will lead to a larger primary
index.

The largest drawback with placing the VSTs in the primary index is that secondary indices no longer
provide queries with direct access to the data. Instead, secondary indices provide a mapping from secondary
key to primary key, with the data being retrieved through the primary index. As a potentially important
optimization for update transactions, however, a secondary index entry for the current version of a tuple
can store the address of the current version. This shortcut is illustrated in Figure 5 by the presence of the

CURR field in each secondary index entry. However, this optimization can be used only if the current version

12

active startup
|query _ timestamp |
a 25
1
Q, 40
Qg 55

of a given tuple is always stored in a fixed location (determined when the tuple is created). Furthermore,

read-only queries cannot use this optimization because they cannot tell which version of a tuple to retrieve

Primary Index

CTS 25 DTS 35
(a1, bt, c1)

CTS 35 DTS 50
(a1, b1, c2)

Data TS 50 DTS 60
Data
a1,b2,e3 ||
Secondary Index

Fig. 5. Primary Index Version Selection

without first examining the tuple’s VST in the primary index.

Finally, in terms of performance, requiring all read-only queries to access data through the primary
index is likely to be problematic unless most queries are primary index scans anyway or a large fraction of
the primary index remains resident in the buffer pool. Otherwise, if the buffer pool is not sufficiently large,
a secondary index scan will generate a random I/O pattern in the primary index. Thus, even if the data
were ordered (clustered) on the relevant secondary index key, the query’s I/0O pattern would be partially

random. As a result, it appears unlikely that this scheme can perform well for queries using a secondary

index.

13

Version Pool

——— denotes page boundary

3.4 All Index Version Selection (AI)

In the PI scheme, the primary index is an efficient access method for primary key queries because its leaves
contain the addresses of all tuple versions; secondary indices are inefficient for queries, however, because
accesses must additionally go through the primary index. The all index (AI) version selection scheme is a
modification of PI that places VSTs in the leaf entries of all indices (secondary as well as primary). This
allows direct access to the data from each index, thus removing the aforementioned inefficiency.

Figure 6 illustrates the AI scheme by adapting the running example one last time. The figure shows
the addition of a VST in each secondary index leaf entry, providing a direct access path for queries from
the secondary indices to the data. However, a drawback of this modification is that placing additional
information in the secondary indices increases the size of all indices. Another serious drawback of the Al
scheme is the additional path length that it imposes on update transactions when versions are created

or when they are migrated to the version pool. In the AI scheme, when a new version is created as a

Primary Index

/\/\/\ CTS 25 DTS 35

1 (a1, b1, 1) <

active statup | | b1 e e

O B N - i
Q 25 Page (a1, b2, ¢2)

1

5 CTS 35 DTS 50

% @ A S B
a1, b2, ¢3) T
Q, 55
““““““““““ VAVAVAYS
NN Version Pool
[DTS50 | | [DISinf
KEYb1 | |IKEY b2
ggs PTR : CTS PTR
1 50
U] -
L8 N J
Secondary Index ——— denotes page boundary

Fig.6. All Index Version Selection

14

result of a tuple modification, every secondary index must be updated—even if the associated key value was
unaffected by the modification. In contrast, in the other multiversion indexing schemes, a secondary index
does not have to be updated if the modification does not change the indexed attribute value. For example,
in Figure 6, the creation of the versions (al, bl, c2), and (al, b2, ¢3) required placing their addresses in
the secondary index VSTs; in the other multiversion indexing schemes, the creation of these versions did
not require updating the secondary index at all. Likewise, when a version is migrated to the version pool,

all of the references to the version must be updated.

3.5 Summary of Multiversion Indexing Approaches

In this section we have outlined a range of B+ tree based multiversion indexing schemes, with each scheme
differing in how it supports version selection. In CH, version selection is supported by chaining versions
in reverse chronological order, while in DP, version selection is accomplished via the use of a VST that is
stored together with the current version of a tuple. In PI, VSTs are stored in the primary index instead,
and in Al, VSTs are stored in all of the indices. The advantage of placing version selection information
in an index is that it allows queries to directly access the versions that they need from the index without
having to go through one or more intermediate data pages for each version that has been migrated to
the version pool. A drawback to placing version selection information in an index is that when a tuple
is modified (i.e., a new version of the tuple is created), version selection information for the tuple must
be updated in the index-even if the key value for that index was not affected by the change. In the next
section we describe a simulation model that we will use to compare these alternative schemes, and in the

following section we present the results.

4 SIMULATION MODEL

In this section, we describe the model that we will be using to compare the performance of the different
approaches to adding versioning to B+ tree indexes. The model is designed to predict the 1/0 cost of
update and search operations issued by short update transactions and long-running queries, respectively. We
consider update operations including record insertions, deletions, and modifications, and queries executing
index scans.

We do not model the details associated with locking of the indexes and data in the simulation model;

we do this to avoid the significant overhead that they would introduce in terms of code complexity and

15

simulation execution time. To insure that simulated transactions see a consistent view of the meta-data
(indexes, VSTs, etc.) in the absence of concurrency control, we execute record updates atomically, and we
handle each query’s initial index descent similarly (i.e., before it reaches the leaf level). It should be noted
that this modeling approach requires that we have only a single resource in our model (i.e., the resource
that we believe to be the bottleneck in a real system), as multiple resources would not be utilized properly;
we thus model a DBMS with a single disk.

To explain the details of the model, we will break it down into two major components, the application
model and the system model. Both of these have several subcomponents that will be described in this sec-
tion. Table 1 summarizes the parameters of the application model, and Table 2 summarizes the parameters

of the system model.

4.1 The Application Model

The first component of the application model is the database, which for simplicity is modeled as a collection
of records (i.e., as one relation). The database initially contains NumRecs records, and each record occupies
RecSize bytes. An unclustered primary key index (P), clustered secondary index (CS), and unclustered
secondary index (US) exist on the data.l® We assume that the cardinality of the domain of the key for
index i is DomainCard;, and that the index keys have a fixed size of KeySize; bytes. The actual key
values are chosen from a uniform distribution, with duplicate keys allowed in all but the primary index.

The second component of the application model, the source module, models the external workload of
the DBMS. Update transactions arrive in the system with rate ArrivalRateypaate, while queries originate
from a fixed set of M PLgyery terminals. Each of the query terminals submits only one job at a time, and
there is no delay between the completion of a query and the submission of the next query from the same
terminal. For simplicity, queries execute a single relational select operation, while update transactions
execute a single tuple insert, delete, or modify (i.e., select-update) operation.

The additional parameters which describe a read-only query include the access path, AccessPathguery
(i-e., the index to scan), and the average query selectivity, AvgSelguery (i-e., the fraction of tuples that
are selected by the scan). The actual selectivity for a query is chosen uniformly from 0.75 to 1.25 times
AvgSelgyery.

10 Ty our view, primary keys do not usually have an interesting order (e.g., social security numbers, confirmation

numbers, etc.), and are unlikely to be used to specify a range scan. Thus, we model a database that is clustered
on a secondary key rather than the primary key.

16

Parameter Meaning
NumRecs number of records in the database
RecSize number of bytes occupied by a record
DomainCard; cardinality of the domain of index #’s key
KeySize; number of bytes occupied by index i’s keys
Arrival Rateypdate |update transaction arrival rate
MPLgyery number of query terminals
AccessPathgyery |access path to be used by queries
AvgSelguery average query selectivity
Prodigy probability that an update transaction will modify a tuple
Pipsert probability that an update transaction will insert a tuple
Pacter oy e modification will affect the uncl
. probability that a tuple modification will affect the unclus-
Modi fyProbindesed tered secondary index key
Table 1. Application Model Parameters
Parameter Meaning
I0Cost service time of an I/O request
PageSize number of bytes in a disk page
CacheFrac |fraction of each data page devoted to its on-page cache
FillFactor |initial data page fill factor
CachePolicy |on-page cache policy (WRITE-ALL or WRITE-ONE)
PtrSize number of bytes to hold a disk address
TI1DSize number of bytes to hold a transaction identifier
SlotOverhead [number of bytes used for an object’s slot table entry
NumBuf fers|number of pages in the buffer pool

For update transactions, the

deleted is always indexed by its

4.2 The System Model

subcomponents: the transaction

Table 2. System Model Parameters

parameters Pmodify, Pinsert, and Pielete specify the distribution of update
transactions among the three operation types. Each tuple in the database has an equal probability of being
chosen for modification (or deletion) by a given modify (or delete) operation. The tuple to be modified or
primary key value and located through the primary index. Modify opera-
tions change one attribute value at a time, either changing a secondary index key value (with probability

ModifyProbipgezea) or a non-indexed attribute value (with probability 1 — ModifyProbindesed)-

The system model is designed to predict the I/O service time requirements of the various index operations
in a workload specified by the application model parameters. The system model is broken down into these

scheduler, the data manager, and the buffer manager. We describe these

17

components in the remainder of this subsection.

The transaction scheduler controls the timing of transaction execution. Because update transactions
typically have stringent response time constraints, the scheduler gives them priority over queries. As dis-
cussed in the beginning of this section, update transactions are executed atomically, as are queries when
they are initially descending an index for a scan. Upon arriving in the system, an update transaction
is queued if it cannot be processed immediately. When the scheduler is invoked it examines the update
transaction queue; if the queue is non-empty it removes the first update transaction and executes its in-
dex operation to completion. If the update transaction queue is empty the scheduler chooses to execute a
portion of a query instead. For fairness, the query that was submitted from the query terminal that has
consumed the least amount of disk service time thus far is chosen for execution; the scheduling policy thus
allocates an equal fraction of the disk bandwidth among the query terminals. When a query is chosen for
execution, it is executed until it has made at least one disk request and is beyond the initial descent phase
of an index scan. Lastly, instead of modeling a disk arm in detail, we assume that each disk request requires
IOCost milliseconds.

The model component known as the data manager encapsulates the implementation details of the
indexes, data pages, and version pool. The following are the relevant parameters of the data manager. A
fraction of each data page CacheFrac is reserved for use as an on-page cache; the remaining portion is used
for storing current versions, and is initially filled to a fraction FillFactor of its total capacity. The cache
replacement policy employed is CachePolicy. PtrSize is the size of a disk pointer in bytes, and T'IDSize
is the size of a transaction identifier in bytes. We assume that the usual slotted page organization ! is
used in the implementation, and SlotQuerhead is the overhead in bytes for each slot table entry (i.e., for
versions, VSTs, etc.). We further assume that the optional compression of TID fields described at the end
of Section 3.1 is carried out whenever an index page overflows.

The last component of the system model, the buffer manager, encapsulates the details of an LRU buffer
manager with ”LOVE/HATE” hints (a la Starburst[16]). The number of page frames in the buffer pool
is specified as NumBuf fers, and the frames are shared among data, index, and version pool pages. Two
LRU chains are maintained for unpinned pages in the buffer pool, one for pages that were last unpinned

with a HATE hint and another for pages last unpinned with a LOVE hint. Because index pages have a

higher rate of access than other pages, the index pages are unpinned with a LOVE hint, while data and

11 Objects on a slotted page are always referenced through a small vector on the page (referred to as a slot table). In
this way, objects can be easily moved within a page without having to update external references to the object.

18

version pool pages are unpinned with a HATE hint. The page replacement algorithm selects a page from
the LOVE chain only if the HATE chain is empty. Dirty pages are cleaned when they are being replaced

from the buffer pool.

4.3 Discussion of Model Assumptions

The model contains several simplifications that warrant further discussion. These include the absence of
locking, the modeling of a single disk, and the lack of modeling of a CPU. The first two simplifications are
reasonable since techniques for concurrency control and data placement across multiple disks are orthogonal
to the indexing tradeoffs that we are studying here (i.e., those details are unlikely to change the relative
ordering of the indexing schemes). The third simplification would be potentially problematic for predicting
the performance of a CPU-bound configuration; however, we believe that the qualitative results would be
similar since the CPU requirements of a given operation under each indexing scheme is roughly proportional
to the number of disk pages accessed. Also, given the relative trends in CPU speeds and disk speeds, we

expect 1/0 to be the bottleneck resource in future OLTP/decision support environments.

5 EXPERIMENTS AND RESULTS

In this section, we present the results of a series of experiments designed to compare the performance of
MV2PL under the various indexing approaches described in Section 3. As a baseline for comparison, we
also include the results obtained from GO processing using a single-version B+ tree index-this scheme is
referred to as SV (for single version). Recall that with GO processing, queries are subject to inconsistent
answers since they are run in a single-version database without obtaining locks. The primary performance
metric employed in this study is the amount of I/O time required to execute update and query transactions.
Update transactions issue either record insertion, deletion, and modification operations, while queries issue
clustered or unclustered index scan operations.

The multiversion indexing schemes that we compare in this study differ primarily in where they place
version selection information. As we described in Section 3, the indexing schemes place this information
either with the data or with the index entries of one or more of the indices. The advantage of placing the
version selection information in the indices is that it allows queries to directly access the versions that they
need from a given index without having to go through one or more intermediate data pages for each version

that has been migrated to the version pool. There are two potential drawbacks of this approach, however.

19

First, any attribute of a tuple is modified, even an unindexed one, each index that contains version selection
information for the tuple must be updated. Second, the inclusion of version selection information in one or
more of the indices will lead to larger indices. This in turn may cause the buffer hit rate to drop, as the
buffer pool will be able to hold a smaller fraction of these pages.

In this study, we are interested in quantifying the I/O cost impact of the different approaches to the
placement of version selection information under a range of operating conditions. In particular, we would
like to determine the degree to which including version selection information in the indices reduces query
I/O cost, and the degree to which it increases the I/O cost of modifying tuples. In addition, we would also
like to determine the impact of having version selection information in the indices on the buffer hit rate
since this impacts the I/O cost of all operations; thus, even though the basic page reads and writes involved
in inserting or deleting a tuple do not differ from a single version B+ tree in any of the indexing schemes,
the costs of these operations are relevant in this study since they will differ from scheme to scheme. Finally,
we are interested in comparing the different approaches used in DP and CH to placing version selection

information with the data. Tables 3 and 4 list the settings that we use for the application model and

Parameter Value(s)

NumRecs 50,000

RecSize 208 bytes

DomainCard; 232 for primary key, 50,000 for secondary keys
KeySize; 8 bytes

MPLguery 4

AccessPathguery clustered or unclustered secondary index
AvgSelyery varies (1% to 50%)
Pmodify/Pinsert/Pdelete 60%/20%/20%

MOdifyPT‘Obindewed 20%

ArrivalRateypdate varies (4 per second to 26 per second)

Table 3. Values of Application Model Parameters

system model parameters, respectively. Some of the parameters remain fixed throughout the study, and
others are varied from experiment to experiment. In our experiments, we vary the update arrival rate over a
wide range to show how versioning influences I/O cost as the level of update intensity increases. As update
intensity is increased, the current database state diverges more rapidly from the transaction-consistent prior
states that must be maintained for the active queries. Furthermore, since update transactions compete for

resources with queries, queries are left with a smaller share of the disk resources as the update intensity is

20

Parameter Value(s)
10Cost 20 milliseconds
NumBuf fersj400-1000 pages
PageSize 8192 bytes
CacheFrac |0% or 10%
CachePolicy |WRITE-ONE
FillFactor |80%

Table 4. Values of System Model Parameters

increased. Ultimately, the system will become unstable when it can no longer handle the increased update
load.

We now turn to the results of our experiments. In the first experiment, we look at how the alternative
schemes perform under a base set of parameter settings. In the subsequent experiments, we will vary some

of the key parameters to explore their individual effects on performance.

5.1 Experiment 1: Basic Indexing Tradeoffs

Our base parameter settings include: no on-page caches, a buffer pool size of 500 pages, a query workload
consisting of clustered index scans with 50and an update mix consisting of 60deletes. Most of the index
pages can remain resident in the buffer pool with its size of 500 pages here; in subsequent experiments we
will examine the impact of changing the buffer pool size. Figures 7 through 9 illustrate the results of this
experiment. Figure 7 shows the average 1/O cost of a clustered index scan, Figure 8 shows the I/0O cost
to insert a tuple into the database, and Figure 9 shows the I/O cost to modify a non-indexed attribute
of a tuple (i.e., create a new version of a tuple with indexed attribute values that are the same as those
of the previous version). We vary the update arrival rate between 4 per second and 26 per second along
the x-axis in the graphs; since the multiversion indexing schemes are not able to handle the update load
throughout this whole range, we truncate each scheme’s curve at its last stable point. We do not show the
cost of deleting a tuple from the database, nor do we show the cost of modifying an indexed attribute, as
in both cases the relative cost results were similar to those for insertions.

In Figure 7, we see that the query I/O cost rises gradually with an increase in the update arrival rate
under SV, while it rises much more quickly under the four multiversion indexing schemes. The gradual rise

in the case of SV is caused by an increase in the fraction of dirty pages in the buffer pool as the update

21

150000 150

+SV +SV
o DP & DP
#CH % CH
&Pl Pl
Al 2 Al
100000+ 100
g g
& =
S 8
50000+ 50+
0 T y y T 0 T T v v
0 5 10 15 20 25 0 5 10 15 20 25
Update Operations per Second Update Operations per Second
Fig. 7. Clustered Index Scan Fig. 8. Tuple Insert

NumBuf fers = 500,CacheFrac = 0%

activity is increased (and as query activity is correspondingly decreased). 12 Although the multiversion
indexing schemes are also influenced by this factor, the rapid rise in their query 1/O costs is primarily
due to a corresponding rise in the number of version pool accesses. These version pool accesses quickly
dominate the clustered index scan I/Q cost since versions are accessed randomly in the version pool (versus
sequentially in the main segment). To select 25,000 records clustered on about 850 data pages under the
DP scheme, for example, the average number of version pool 1/Os per query was approximately 54 at 4
UPS, rising to 280 at 10 UPS, and 1878 at 14 UPS.

The query I/O costs for the different multiversion indexing schemes did not differ much under this
workload; however, Al was not able to operate above 10 UPS due to its higher update cost (which we will
discuss shortly). One notable difference between the remaining schemes is that PI rises in cost relative to
DP and CH at an update arrival rate of about 14 UPS. This increase is primarily a result of having to
retrieve each individual tuple through the primary index (rather than being able to go directly to the data
from the clustered secondary index). This extra step does not add additional I/O cost at lower arrival

rates because the entire primary index is resident in the buffer pool; at higher update rates, however, the

12 At an arrival rate of 4 UPS (update operations per second), only about 8of the pages that were replaced by
query-requested pages in the buffer pool had to be cleaned before the query could be given the page frame, while
at 26 UPS nearly 50

22

primary index no longer fits in the buffer pool, as it contains entries for the larger number of transient
versions resulting from the higher update rate.

In this experiment there is not a significant difference between DP and CH in terms of the query I/0O
cost. This is because CH rarely required more than one version pool access to retrieve a particular version
(i-e., it very rarely had to retrieve a version that was not either the current version or the next most recent
version of a tuple). For example, at 14 UPS, where a slight difference is visible between the two schemes in
Figure 7, CH required a second version pool access to retrieve a given tuple less than 1Likewise, there is
not much of a difference between AI and the other multiversion indexing schemes over the range of update
arrival rates where Al is able to operate. On the surface this struck us as somewhat surprising, as the Al
scheme is supposed to help query performance by providing version addresses directly in the leaf pages of
the indices; this allows a query to read a version in the version pool without having to first read the data
page that it originated from. However, since the data pages of the relation are accessed sequentially in the
case of a clustered index scan, eliminating a few of what would have been repeated accesses to each data
page will not reduce the number of I/O operations. Thus, the Al scheme does not really help in the case of
clustered index scans. For essentially the same reason, having version addresses directly in the leaf pages
of the primary index in the PI scheme does not help here either.

We now turn our attention to the I/O cost for updates, beginning with the cost of insert operations
shown in Figure 8. The insert cost differences in this figure are largely due to variations in the index sizes
from scheme to scheme, which arise from their different polices on where version selection information is
located. The connection between I/Q cost and index size is that larger indices permit a small fraction of
the index pages to be cached in the buffer pool; thus, the buffer hit rate decreases as index size is increased.
Al which has the highest insert cost in Figure 8, includes VSTs in all of its indices; PI, which has the next
highest cost, includes them only in the primary index; DP and CH, which have the lowest insert cost of the
multiversion indexing schemes, do not include VSTs in any of the indices. Lastly, SV has the overall lowest
cost since its indices only store current versions (and thus have no timestamps either). Now we turn to the
cost of modifying a non-indexed attribute, shown in Figure 9. AI has the highest cost for this operation
since it has to install the address of a new tuple version in all of the indices. Moreover, AIl’s cost for this
operation will increase relative to the other indexing schemes as the number of indices on each relation
grows. PI must install the address of a new version in the primary index; however, the relevant leaf page

will already be pinned in the buffer pool since the primary index is used to locate the tuple being modified.

23

150 150000+

+8V -+ 8V
*DP o DP
®CH = CH
- Pl 4 PI
% Al AT
100- 100000+
] -4
E E
E =]
g 2
504 50000+

M

8 5 10 15 20 25 o5 3 10 15 20 25
Update Operations per Second Update Operations per Second
Fig.9. Modify Non-Index Attr Fig. 10. Clustered Index Scan
CacheFrac= 0% CacheFrac = 10%

NumBuffers = 500

13 DP, CH, and SV do not need to update any indices for this operation.

DP, CH, and PI have I/O costs which are closer to SV in Figure 9 than they were in the insert case;
this is because the costs of all four of these schemes are now dominated by the cost of accessing the target
data page. The hit rate for data pages does not vary much between the indexing schemes since the overall
number of data pages is large; however, the costs of the multiversion indexing schemes in Figure 9 do rise
somewhat at an update arrival rate of 14 UPS due to a decreased buffer hit rate on the primary index
(which is used to locate the tuples that are updated). As we mentioned previously, an increase in the

update rate leads to a decrease in buffer hits for index pages because the indices become larger.

5.2 Experiment 2: Effect of On-Page Caching

In this experiment we examine the effect on the results presented so far of introducing on-page version
caches that comprise 10scan queries with on-page caching. By comparing this figure to Figure 7, we can
see the benefit of the on-page caches on query performance. The presence of the caches reduces the number
of read operations in the version pool, and thus forestalls thrashing behavior.

13 PI’s cost dips slightly below that of SV in Figure 9 because the query retrievals though the primary index in PI
cause a larger fraction of its primary index pages to remain resident in the buffer pool.

24

Due to space limitations, we do not show the corresponding update costs here, but they can be sum-
marized as follows: The update costs for all of the multiversion indexing schemes are slightly lower with
on-page caches, as queries had lower I/O costs, and thus complete faster. When queries complete faster,
fewer transient versions must be indexed, resulting in turn in a higher buffer hit rate on index pages. A

drawback of on-page caching with the PI and Al schemes is the potential for increase in the cost of migrat-

150000 150
+SV -+8V
& DP DP
= CH #CH
4 PI - Pl
Al ¢ Al
100000+ 100
¥ @
E E
&= =
2 2
50000+ 50+
0 v y v v 0 v y y y
0 5 10 15 20 25 0 5 10 15 20 25
Update Operations per Second Update Operations per Second
Fig. 11. Clustered Index Scan Fig. 12. Tuple Insert

CacheFrac = 0%, NumBuffers = 800

ing a version to the version pool, as any index references to a version being migrated must be updated. In

this experiment, however, the benefits of on-page caching outweighed this additional cost.

5.3 Experiment 3: Effect of Buffer Pool Size

In this experiment, we increase NumBuf fers to 800 so that we may examine the effect of a larger buffer
pool size on the results obtained in Experiment 1. In Figure 11, we show the average I/O cost of clustered
index scan queries, and in Figure 12, we show the average I/O cost to insert a tuple into the database. We
omit the costs of the other update operations since they are very similar to the insert cost here. Comparing
Figure 12 to Figure 8, we see that the additional buffers significantly reduce the cost of insertions. They

also reduce the I/O cost differences between the various indexing schemes since the indices in all of the

25

indexing schemes fit entirely, or almost entirely, in the buffer pool. When the indices fit entirely in the
buffer pool, the differences in index size between the schemes affect only the main segment and version
pool hit rates; this is a secondary factor since the overall number of data pages and version pool pages is
relatively large.

Returning to Figure 11, we see that the increase in buffer pool size reduces the query I/O cost as
well. To some degree this is a result of increased buffer hits; however, it is primarily due to an increase
in the fraction of disk resources available to queries as a result of the lower update cost. With additional
disk resources, queries are able to make more progress in between the arrival of consecutive updates, and
fewer (expensive) version pool accesses are ultimately necessary for each query. Beyond approximately 16
UPS, however, all of the multiversion schemes still begin to thrash as a result of excessive version pool
accesses. It is only at this thrashing stage that we see significant differences in the I/O costs of the different
multiversion indexing schemes. (It is unlikely, however, that this would be an acceptable operating region
since the query costs are very high in all of the schemes; thus the differences there have limited significance).

To determine the robustness of these results, we also ran a set of simulations with only 400 pages
allocated to the buffer pool. Due to space limitations, we do not present those additional results here.
Briefly, those results showed that, as anticipated, the effects of reducing the buffer pool size mirror the
effects of increasing its size. In particular, doing so increased the cost of both the update and query scan
operations in all of the indexing schemes, and it accentuated the cost differences between the schemes.
Among the four alternatives, DP and CH delivered the best performance, while PI and Al delivered lower

performance.

5.4 Experiment 4: Unclustered Index Scan Queries

In the previous experiments, we explored tradeoffs between the indexing schemes under a query workload
consisting of clustered index scans. As we pointed out, the benefits of storing version selection information
with the indices (rather than with the data) are not significant for clustered index scans. To determine the
regions where Al and PI might excel, we now consider a query workload consisting of unclustered index
scans.

In designing this experiment, we explored a wide range of parameter values. We found that PI and
Al outperform DP and CH when three conditions are simultaneously satisfied: queries are relatively long-
running, the update rate is sufficiently high, and the buffer pool is sufficiently large. Having a high up-

date rate and long-running queries is necessary since version selection information in the indices helps

26

only if queries end up accessing a significant number of versions that have migrated to the version pool.

Furthermore, the buffer pool must be large enough so that the version selection information added to the

150
~+8V
300000+ *DP
#CH
Pl
»* Al
100
200000
g g
E &
= g
50+
100000
% 5 10 15 0% 5 10 15
Average Query Selectivity Average Query Selectivity
Fig. 13. Unclustered Index Scan Fig. 14. Tuple Insert

Arrival Rate = 20/sec. CacheFrac = 0%, NumBuf fers = 1000

indices in PI and AI does not cause the index page buffer hit rate to degrade; otherwise, query performance
is seriously impaired because the update transactions require a larger share of the disk resources.

Figures 13 and 14 illustrate a situation where PI and Al indeed outperform the other multiversion
indexing schemes. In contrast to the previous figures, we fix the update arrival rate at 20 per second here,
and we show I/O cost as a function of the average query selectivity. We vary the selectivity up to 16pays
to switch to a full file scan for selectivities above a few percent. We do this to model a situation where
a long-running query accesses data through a secondary index (e.g., this might arise in a real application
if a long-running query issues multiple SQL statements, the last of which generates an unclustered index
scan). Lastly, we use a buffer pool size of 1000 pages here. Figure 13 shows the average I/O cost of an
unclustered index scans, and Figure 14 shows the average I/O cost to insert a tuple in the database.

In Figure 13, the unclustered index scan cost rises as expected as the query selectivity is increased.
Among the multiversion indexing schemes, DP and CH now have the highest scan costs since they must

first access a data page before being able to retrieve a tuple version that has been migrated to the version

27

pool.

In Figure 14, we show the corresponding insert cost. We do not show the costs of the other update
operations since they were again similar to the insert case. The curves in Figure 14 are flat and close together
since the large buffer pool is able to keep the index pages cached. As we pointed out in Experiment 3, when
the buffer pool is made sufficiently large, the I/O cost of updates is limited mainly to the cost of accessing

data pages, and the data page hit rates do not vary much between the schemes.

5.5 Discussion

In this section, we have presented the results of four experiments comparing the query and update trans-
action I/O costs of the alternative indexing schemes. One goal of these experiments was to determine the
conditions under which placing version selection information in the indices reduces query I/O cost. On the
positive side, such information can be used by a query to directly access a tuple version from its leaf index
entry without having to go through one or more intermediate pages. However, placing the version selection
information in the indices causes them to grow larger. Moreover, it became apparent from our experiments
that increasing the size of the indices can have a large negative impact on update transaction I/O cost
since it reduces the buffer hit rate on index pages.

In the first three experiments, queries executed clustered index scans. As we explained in Section 5.1,
having version selection information in the indices cannot benefit clustered index scans, so DP and CH
were superior to Al and PI in these experiments. DP showed a somewhat lower query 1/0O cost than CH;
however, this was seen only when queries began to thrash. In the fourth experiment, queries executed
unclustered index scans. Our results showed that unless the buffer pool is large enough to hold all of the
index pages, DP and CH still outperform PI and Al Only when the buffer pool is large enough to absorb
the additional version selection information in the indices, and when queries are sufficiently long-running
to benefit from this information (i.e., they require many prior versions), do PI and Al exhibit a lower
unclustered scan I/O cost than DP and CH.

In the experiments that were covered in this section, we did not vary parameters such as index key size
or the relative mix of update operations (i.e., Pinsert, Paetete, and Prodi 7y)- We have run some additional
experiments that varied these parameters, but they did not reveal any significant changes in the qualitative

results.

28

6 CONCLUSIONS

In this paper, we have compared four basic schemes for extending single-version indexing structures to
handle multiversion data. Although B+ trees were used to illustrate the schemes, they can all be combined
with any existing database index structure. The resulting multiversion indexing schemes differ in where
version selection information is located. In the Al scheme, version selection information is placed in all of
the indices, whereas in the PI approach, the information is placed only in the primary index. In contrast,
the DP and CH approaches place version selection information with the data instead. DP and CH differ in
that DP maintains a table to locate all of the versions of a tuple, while CH chains the versions in reverse
chronological order.

We conducted a simulation study of the alternative multiversion indexing schemes, and we analyzed
the results of this study. Despite having the advantage of direct references from index entries to individual
versions, we found that the PI and AI schemes have the same or higher I/O costs for queries when the buffer
pool is not large enough to hold all of the index pages. This is because the version selection information
in the index entries consumes critical buffer pool space, thus lowering the buffer pool hit rate. As a result,
the I/O cost for update transactions under PI and Al is higher than DP and CH under these conditions
as well. Only when the buffer pool is large enough to hold all of the index pages do the benefits of placing
version selection information in the indices begin to appear in terms of lower query I/Q cost; however,
these benefits apply only to unclustered index scan queries. Lastly, we saw that the I/O cost for queries
under DP was somewhat lower than under CH, but only when queries began to thrash. These results
indicate that DP is the version indexing approach of choice, with CH being a close second; PI and Al are

not recommended due to their relatively poor performance under most conditions.

References

1. Agrawal, D., A. Bernstein, P. Gupta and S. Sengupta, “Distributed Multiversion Optimistic Concurrency
Control with Reduced Rollback,” Journal of Distributed Computing, Springer-Verlag, 2(1), January 1987.

2. Agrawal, D. and S. Sengupta, “Modular Synchronization in Multiversion Databases: Version Control and
Concurrency Control,” Proc. 1989 SIGMOD Conference, 1989.

3. Bayer, R. and M. Schkolnick, “Concurrency of Operations on B-trees,” Acta Informatica, September 1977.

4. Bayer, R. and E. M. McCreight, “Organization and Maintenance of Large Ordered Indicies,” Acta Informatica,
Volume 1, Number 3, 1972.

5. Bayer, et al., “Parallelism and Recovery in Database Systems,” ACM Trans. on Database Sys., 5(2), June
1980.

6. Bober, P. and M. Carey, “On Mixing Queries and Transactions via Multiversion Locking,” Proc. of the Eighth
IEEE Data Engineering Conf., 1992.

29

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

Bober, P. and M. Carey, “Multiversion Query Locking,” Proc. of the Eighteenth International Conference on
Very Large Databases, 1992.

Bober, P. and M. Carey, Indexing Alternatives for Multiversion Locking, Tech. Report #1184, University of
Wisconsin—Madison, November 1993.

Carey, M. J., Modeling and Evaluation of Database Concurrency Control Algorithms, Ph.D. Thesis, Comp.
Sci., U. of California, Berkeley, 1983.

Chan, A., S. Fox, W. Lin, A. Nori, and Ries, D., “The Implementation of an Integrated Concurrency Control
and Recovery Scheme,” Proc. 1982 ACM SIGMOD Conf., 1982.

Chan, A., and R. Gray, “Implementing Distributed Read-Only Transactions,” IEEE Trans. on Software Fng.,
SE-11(2), Feb 1985.

DuBourdieu, D., “Implementation of Distributed Transactions,” Proc. 6th Berkeley Workshop on Distributed
Data Management and Computer Networks, 1982,

Easton, M., “Key-Sequence Data Sets on Indelible Storage,” IBM Journal of Research and Development, May
1986.

Eswaran, K., J. Gray, R. Lorie, I. Traiger, “The Notions of Consistency and Predicate Locks in a Database
System,” CACM 19(11), 1976.

Gray, J., “Notes on Database Operating Systems,” in Operating Systems: An Advanced Course, Springer-
Verlag, 1979.

Haas, L., “Starburst Mid-Flight: As the Dust Clears,” IEEE Transactions on Knowledge and Data Fngineering,
2(1), March 1990.

Joshi, Ashok, Personal Communication.

Kolovson, C. and M. Stonebraker, “Indexing Techniques for Multiversion Databases,” Proc. of the F ifth IEEE
Int’l Conf. on Data Engineering, 1989.

Lai, M. and K. Wilkinson, “Distributed Transaction Management in Jasmin,” Proc. of 10th International
Conference on Very Large Database Systems, 1984.

Lomet, D. and B. Salzberg, “Access Methods for Multiversion Data,” Proc. 1989 ACM SIGMOD Conf., 1989.
Lehman, P. and S. Yao, “Efficient Locking for Concurrent Operations on B-trees,” ACM Transactions on
Database Systems, 6(4), December 1981.

Mohan, C., H. Pirahesh, and R. Lorie, “Efficient and Flexible Methods for Transient Versioning of Records to
Avoid Locking by Read-Only Transactions,” Proc. 1992 ACM SIGMOD Conf., 1992.

Raghavan, A., and T.K. Rengarajan, “Database Availability for Transaction Processing,” Digital Technical
Journal 3(1), Winter 1991.

Reed, D., “Implementing Atomic Actions on Decentralized Data,” ACM Transactions on Computer Systems,
1(1), February 1983.

Robinson, J., Design of Concurrency Controls for Transaction Processing Systems, Ph.D. Thesis, Comp. Sci.
Tech. Rep. No. CMU-CS-82-114, 1982.

Silberschatz, A. “A Multi-Version Concurrency Control Scheme With No Rollbacks,” ACM-SIGA CT-SIGOPS
Symposium on Principles of Distributed Computing, August 1982.

Stearns, R. and D. Rosenkrantz, “Distributed Database Concurrency Control Using Before-Values,” Proc. of
the 1981 ACM SIGMOD Conf., 1981.

Stonebraker, M., “The Design of the Postgres Storage System,” Proc. Thirteenth International Conference on
Very Large Database Systems, 1987.

30

