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Abstract. This paper presents several industrial applications of ML in 
the context of their effort to solve the "KAML problem", i.e., the 
problem of merging knowledge acquisition and machine learning 
techniques. Case-based reasoning is a possible alternative to the problem 
of acquiring highly compiled expert knowledge, but it raises also many 
new problems that must be solved before really efficient 
implementations are available. 

1 Introduction 

There are many sides to the description of what an industrial application is. In a 
recent paper (Kodratoff, Graner, and Moustakis, 1994) we summarized some of the 
experience gained during the CEC project MLT in counseling a user on which of the 
many types of machine learning (ML) to use for his special application. In this 
presentation, we shall consider two of the main subfields of the ones that need merging 
for an industrial application, seemingly the richest in generating future research 
problems: validation of KBS, and merging of ML into a knowledge acquisition (KA) 
method. The first one is almost untouched by specialists in ML, while the second one 
led to much work, some of it will be reported in the rest of the paper. 

As just said, real-world applications require validation of the programs used. Let 
us speak briefly of what means validation in our context, and what ML can have to do 
with it. 

It seems that "validation" takes three different meanings in the context of KBS. 
All different types of knowledge originate from the expert's knowledge which is not 
directly accessible, thus the KA system helps the expert to gather his knowledge in the 
KA system knowledge level. In KADS' knowledge level, one finds the models, such as 
the model of tasks, the model of expertise etc. In the model of expertise, one finds 
knowledge about the strategies, the tasks, the inference, and the domain. All these 
kinds of knowledge are usually considered validated because they issue "directly" from 
the expert. This gives us a first kind of validation, by which an expert reconsiders his 
own knowledge at the knowledge level, and checks its validity. This is not enough in 
reality since experts do make mistakes from time to time, and even when they agree on 
the actions to take, they also often disagree on the reasons (that is, what knowledge to 
use) why these actions are to be taken. It is always good to compare such validated 
knowledge to the real world. The knowledge must thus be translated to the symbol 
level, i.e., a language into which programs can be written, to be checked against real 



applications. During this process, many mistakes are possible, and we have here need 
for a second kind of validation, the classical one in software engineering, that the 
knowledge level (the "specification") matches correctly the symbol level (the 
"algorithm"). During the verification process, the expert will find misbehaviors of the 
system, that will request some changes. This is the also known as the classical "trial 
and error" validation technique. Notice however the complication arising because 
transformations can be performed either at the symbol, or at the knowledge level. 

Validation can make use of ML techniques, for both incompleteness and 
incorrectness. The knowledge to be considered is threefold: the rules of expertise, a 
deeper kind of knowledge given by a semantic-net and a set of integrity constraints, and 
a set of examples. When anomalies are detected, the correction is performed according 
to sets of positive and negative examples of the concept to revise (Lounis, 1993a, 
1993b). Let us underline that very little, besides the cited work of Lounis, has been 
done in this direction. One can however consider that (Morik et al., 1994) have used 
MOBAL as a validation system in a medical application. They make use of the 
deductive abilities of MOBAL in order to find contradictions among the rules learned 
so far, and then solve by induction these contradictions. MOBAL is not a validation 
system but it presents so many functionalities that it can be also used in that way, and 
for this particular medical application, it seems it has been a very efficient way to use 
it. 

During the last year, there have been a good many workshops on industrial 
applications of ML, and on the merging of ML into a KA method. We will give a few 
examples of these applications in the following, What must be kept in mind, though, 
is that all real-real-world applications met very nicely the requirements of the KA + 
ML workshops, because they had to solve this problem in the first place. All 
considered what is the essential difference between an academic and an industrial work? 
The academic chooses the data in a repertory of such available data, while the industrial 
receives data from his users, often demanding ones. These repertories, at least in ML, 
tend to contain quite a variety of data of various levels of difficulty, but for all of 
them, the KA phase has been completed beforehand. Thus, the industrial is not only 
under pressure of his users, but he has also to count on them to perform the KA phase 
which is a crucial one as we all know. In the following, I will refer to this problem as 
to the KAML problem, with this mild joke that we indeed need camels to help us 
crossing the desert that expands between the fertile plains of industrial applications, 
and the nice oases of academic research. 

As a coarse view, one can say that with respect to KAML, academics have 
produced one very interesting approach, known as knowledge refinement. On another 
hand, we personally dug five different ways of integrating ML and KA out of the 
solutions of the people that tackled real-world applications of ML. This paper is 
mainly devoted to the description of solutions to the KAML problem, together with 
the industrial applications that led to these solutions. We shall successively speak of 
the following: the knowledge refinement approach, how existing ML technique must 
be adapted to meet real life requirements, what kind of knowledge can be acquired from 
a human expert in order to obtain good ML results, why KA needs ML to enhance the 
rate of the acquisition, the problem if finding new representation schemes to meet 
experts' requirements, how to acquire compiled knowledge, and finally the promises 
and challenges of the CBR approach. 
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Fig. 1. The acquisition cycle in (Carmat & Vrain, 1988; Kodratoff & Vrain, 1993) 

2 K n o w l e d g e  r e f i n e m e n t  

We shall not give here any detailed description of the different revision techniques since 
they received already considerable acknowledgment in the academic community. We 
shall however give in section 2.3 a brief account of recent research on the topic, and 



recall some of the earlier work that we did on knowledge refinement roughly around 
1985, for an application to air-traffic control, and on DISCIPLE. 

2 . 1  Air  traf f i c  c o n t r o l  

Our work on air traffic control has been published first in 1988 (Cannat & Vrain, 
1988), and more recently under a more detailed form (Kodratoff & Vrain, 1993). Very 
simply put, we used a refinement cycle which makes explicit the role of the user, as 
indicated in figure 1 below. It includes the steps necessary to transform the knowledge 
given by the expert and the learned knowledge. The examples and the knowledge base 
given by the expert must be translated into a representation adapted to the 
generalization tool. In order to make the validation step easier, the learned knowledge 
must be translated back into a representation understandable by the expert. The 
importance and difficulty of these translation stages are generally underrated by 
academics, while they are the very condition at which an application can take place. In 
principle, the main difficulty comes from that humans do not understand easily 
relations in first order logic, even when their knowledge, being strongly relational, 
makes non-stop use of it (Kodratoff & Vrain, 1993). 

2 .2  DISCIPLE 

The main idea behind DISCIPLE (Kodratoff & Tecuci 1987a, 1987b), and behind more 
recent versions, APT (N6dellec, 1992; N6dellec and Causse, 1992) and Net-DISCIPLE 
(Tecuci 1993; Tecuci and Duff, 1994) is exactly the one of user-driven revision, with 
the idea that experts are better at checking solutions than building theories. DISCIPLE 
thus proposes a solution to a problem that will become a positive example if the user 
agrees with the solution, and a negative example if he disagrees. He then chooses 
among possible causes for his agreement or disagreement, and these causes are used to 
refine logically the existing rules, by adapting (i.e., generalizing or particularizing 
depending on the cases) the conditions of the rules to the positive and negative 
examples. This has been used in a bank application in order to help eliciting the 
knowledge of experts (N6dellec et al., 1994), but it also requests a patient user that 
accepts to "play" with the system in order to build the initial data base that can be 
quite extensive. 

2 . 3  S o m e  R e c e n t  R e s u l t s  - and  P r o b l e m s  

As implicitly said above, applications of ML systems show that the initial 
domain theory provided by the user and possibly completed by the ML system tends to 
be incomplete and incorrect. Furthermore, ML systems may add incorrect concept 
definitions they have learned from incorrect example descriptions or insufficient domain 
theory. This explains the increasing interest in automatically revising incorrect and 
incomplete domain theories. Some of the propositional systems are described in 
(Ginsberg, 1989; Ourston and Mooney, 1990; Craw and Sleeman, 1990; Cain, 1991; 
Towell, Shavlik, and Noordewier, 1991; Wilkins, 1991), and some of the In'st order 
revision systems are found in (Shapiro, 1983; Sammut and Banerji, 1986; Pazzani, 
1988; Muggleton and Buntine, 1988; Bergadano and Giordana, 1989; Duval, 1991; 
Wogulis, 1991; Richards and Mooney, 1991; Rouveirol, 1992; DeRaedt, 1992; 
N~dellec, 1992; N6dellec and Causse, 1992; Esposito et al., 1993; Morik et al., 1993; 
Feldman and N6dellec, 1994). 



The revision problem can be described as containing two problems, two phases, 
and two strategies. 

The two problems are the completeness problem: given a theory T, and an 
example E of the concept C, such that T does not recognize the positive example E of 
C as an example of C, build a theory T' that recognizes E, and the correctness problem: 
given a theory T and a negative example NE of the concept C, such that T recognizes 
the negative example E of C as an example of C, build a theory T' such that T' does 
not recognize NE. 

The two phases are the localization of the culprit clause and the refinement 
itself. 

The two strategies are the monotonic and the non-monotonic one. In the 
monotonic approach, the version space is reduced by eliminating inconsistent 
hypotheses for ever, while non monotonic algorithms may reconsider pruned 
hypotheses. One can find several examples of these two strategies in (N6dellec and 
Rouveirol, 1993) 

3 Adapt ing  ML to meet  real- l i fe  requirements .  

In a yet unpublished paper, (Schmalhofer et al., to appear) report a very thorough 
experience on solving the KAML problem for specific industrial needs. These authors 
report finding it necessary to adapt both conceptual clustering and explanation-based 
learning, by integrating expert consultation inside the ML algorithms. 
Also typical of this approach is (Esposito, Malerba, and Semeraro, 1993, 1994) which 
describes an application to document layout recognition in the context of a software 
environment for office automation distributed by Olivetti. These authors extended a 
star algorithm (Michalski, 1983) by a flexible matching algorithm, and used a data 
analysis discriminant system to speed up the star algorithm. 
More generally, it seems that a multistrategic approach is needed for many applications 
that work already quite well by using statistical methods, but that can be still enhanced 
when some more symbolic treatment is also performed. 

3.1 ML Solves KA Problems 

M1 can be used to solve KA problems in which the representation of knowledge is so 
complex that traditional KA becomes unbearable. 

Example 1. Fault detection in helicopter blades 
This application asked the authors (El Attar and Hamery, 1994) to deal with two 
different problems. First, detection an repair of faults of an helicopter blade is not only 
a technical process, but also a kind of judicial one, since the repairing person is 
responsible in case of an accident. The system must thus also give the best possible 
"argument" to explain why a given repair is suitable. The data being of a 
symbolic/numeric nature, the authors had to produce the rules that would combine 
these two natures in the way the best suited to the existing validation procedures. 
Secondly, one of the most important features to determine is a set of intervals into 
which detection and repair of faults takes place. These intervals were not immediately 
available from the experts, they had to be directly acquired from the examples, in such 
a way that the results were still understandable by (and agreeable to) the experts. 



Example 2. Learning on French justice system 
The problem met here is the classical one of the missing values, in its very special 
version where there are many "don't care" values that are not significant to the 
solution, as for instance, the values of the attribute "color of the feathers" for a 
mammal. One usually simply hies to cut the problem in pieces that avoid such kind 
of problems, but it appears that the existing (French) judicial knowledge is under such 
a form at present that one has to deal explicitly with this problem. Tree generating 
procedure cannot deal very well with this kind of problem, this is why (Venturini, 
1994) adapted genetic algorithms technique to rule generation. 

Example 3. refining rules for a production system (Terano and Muro, 1994). 
Once rules have been learned by in a classical way, it is always possible to consider 
that one can improve them by searching in the space of all possible rules, in the 
vicinity of the existing rules. Genetic Algorithms are obviously well-adapted to solve 
this kind of search problem since strong parents are already available. 

4 He lp ing  ML by some  addi t ional  k n o w l e d g e  

4.1 Biasing the ML mechanism with acquired knowledge 
It makes explicit which information is essential to decrease the cembinatorics of ML, 
and acquires this knowledge by elicitation. 

Example 4. Learning to design VLSI. 
Learning the most specific generalization form a set of examples is one of the basic 
problems of ML since it is of the best ways to reduce the complexity of the set of 
examples, while keeping their common properties. At the zeroth order, this problem is 
relatively trivial since it amounts to Michalski's "dropping rule" (Michalski, 1983), 
together with some of his "climbing hierarchies" rule when the dropping is done 
cleverly. In first order representations (actually, we speak here of relational 
representations making use of universally quantified variables), however, this problem 
becomes quickly very difficult (Kodratoff and Ganascia, 1986) because each subpart of 
an object can be bound to any other subpart of another object, thus leading to a 
combinatorial explosion. Some work has been done to deal with this complexity, as 
by using Bisson's distance measure, for instance (Kodratoff and Bisson, 1992). 
Application to VLSI design requires a relational representation (Hermann and 
Beckmann, !994) since it must represent the bindings of the different parts of the 
circuit. These authors present an original solution making use of the user's knowledge 
of what parts can be possibly bound to other parts. This is a knowledge which is well- 
known by the experts, but which is not acquired classically in KA systems because 
they perform no learning and do not need this information. In other words, it is very 
clear here that a new kind of knowledge has to be acquired because of the learning 
component. 

4.2 The ML mechanism is impossible without manually acquired 
knowledge 

ML requirements make it necessary to ask more information, or a new kind of 
information to the expert. 



Example 5. Prediction of cylinder banding 
In the printing industry, banding is a nuisance known for long. In his ICML 
presentation, Bob Evans (Evans and Fisher, 1993) signaled that the usual approach is 
to understand the causes of banding, and failed. In that sense, usual causal KA has been 
failing to solve this problem. Driven by the requirements of his induction algorithm, 
Evans promoted a new approach, a more pragmatic one, by which he proposes to find 
only conditions at which banding will appear. He reported having many difficulties 
having the specialists answering his "trivial" questions, until unexpected features 
appeared in the prediction for banding, and were confLrrned by experience. 

5 Adapting KA to meet real.life requirements 

Example 6. EBL learning of operational rules in the Pilot Assistant 
Honeywell has developed a pilot's associate that contains as much as possible of the 
knowledge relative the military piloting skills. This system contains six 
interconnected large expert systems. Each of them needs continuous maintenance since 
the methods for fight and counter-fight are constantly evolving, and maintenance must 
be done by a varying set of experts. These constraints make it necessary to have a kind 
of global knowledge repository of easily understandable and maintainable knowledge, 
from which it will be translated into the language of each expert system. This top 
knowledge is gathered in a systematic way by means of an EBL component. Domain 
knowledge is acquired in a classical way, it is then transformed into a standard 
representation by means of one example, and of a criterion of operationality (Miller 
and Levi, 1994). 
In this very case, one can see than ML became a new way of gathering expert 
knowledge by merging theoretical knowledge and examples. 

Example 7. Road and train traffic control 
The problem of transportation engineering makes use of complex mathematical models 
that limit their practical interest, especially in case of rapid changes. The introduction 
of a ML component, together with the difficulties due to the domain complexity forced 
(Arciszewski et al., 1994) to develop an original KA process. In short, one has to 
make a careful decision on which simplifications to the real-world problem will lead to 
a model which still realistic and with which one can still work. 

6 Develop new representations to allow experts to express 
their knowledge 

Example 8. Improving manufacturing processes (Riddle, Segal, and Etzioni, 1994) 
The Boeing company decided to use ML in order to improve some of its manufacturing 
processes. There are many problems to solve prior to applying the induction 
mechanism, and they are all more or less of a KA nature. These authors find five 
problems to address to begin with, and we shall point at two of them here. 

Choosing instances: what do we exactly call an example of behavior we are 
going to learn from? In the case of manufacturing, is an instance a set of alarms with 
the associated events, the history of a rejection of manufactured part, etc.? This a "pure 
KA" problem which is no addressed by classical KA, and that must be solved for 
KAML. 

Finding relevant attributes. Thus problem is better known than the former one, 
and it is indeed addressed by KA techniques. Unfortunately, humans are much better 
than machines to deal with irrelevant attributes, and application of subsequent ML 
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techniques request more attention to the problem of irrelevant attributes than it is usual 
in KA. 
Particularly for the first of these problems, one thus notices that new KA methods 
must be developed in order to represent the information necessary to the ML 
algorithms. 

Example 9. KAML for decision under constraints 
We participate in the development of a part of a decision making assistant in which we 
are in charge of the most "interpretative" part, by which want the plans of the enemy 
are recognized, and its intentions accordingly interpreted (Bar~s et al., 1994). The way 
humans handle this problem is by merging three kinds of different knowledge, general 
principles of tactics, intelligence information, and the doctrine of both sides. In order 
to merge these three kinds of information in a retrievable form, we had to develop a 
special knowledge representation framework, inspired from Schank's XPs (Schank, 
1986; Schank and Kass, 1990), in which a special part is devoted to the slow 
emergence of a plan when some partial information confLrms its activation. 

7 Use ML to acquire knowledge usually compiled by 
experts  

7.1 Acquiring perceptual chunks 

Example 9. Solving geometry problems. 
This is a difficult application, if not an industrial one. In many cases, finding an 
elegant solutions depends on finding the correct "perceptual chunk" that triggers a 
particularly efficient strategy. This is a problem similar to acquiring search control 
knowledge as addressed by PRODIGY (Minton et al., 1989). The work of (Suwa and 
Motoda, 1994) however addresses the particular problem of gathering chunks of a 
perceptual nature for problem solving in such a way that their preconditions are easy to 
detect and discriminant. Besides, these chunk may well act as simple hints that drive 
the solution in the good direction, without reaching the desired goal directly. In 
general, experts are unable to provide directly such perceptual information. PCLEARN 
learns them by analyzing success proof trees, and selecting the objects that are 
recognizable to its recognition rules to build a chunk of them. 

7.2 Acquire plan abstractions 

In (Schmalhofer and Tschaitschian, 1993; Schmalhofer et al., to appear), the authors 
describe a methodology (which makes use of a user-controlled conceptual clustering 
and explanation-based learning, as already noticed) for acquiring production plans in 
mechanical engineering. The experts obviously are able to provide concrete plans on 
how to solve a specific problem, but the mentioned system can be viewed as helping 
them to generate also abstract plans that make their experience easier to apply to new 
problems. 

7.3 Hopes raised by CBR 

Guy Boy (1987, 1991) shows with some detail how becoming an expert is transferring 
causal knowledge to the recognition of situations in which an immediate solution is 
available. In other words, a beginner solves the problems with deep domain 
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knowledge, while the expert is able to recognize the situations where a solution is 
available without the need of a complex reasoning. CBR does mimic this attitude, and 
should be thus explored also as a good way of representing very compiled expert 
knowledge. 

8 C B R  so lut ions  and  p r o b l e m s  

The goal of CBR is efficient reuse of knowledge, NOT the building of causal theories. 
This statement stresses the difference between classical Data Base (DB) approaches, and 
this new way to deal with shallower information. It tells to users wanting to build or 
to express causal theories that they have better to make use of classical DB, not of 
CBR. The negative side effect of deep causal theories is that it transforms the story of 
the case so much that the user no longer recognizes the case. On the contrary, CBR 
has indeed the negative effect that the causal theory is kept implicit throughout the 
reasoning process, but the positive one that the story of the case is easy to recognize. 
In other words, taking into account shallow information has the positive features of 
being fast and easy to understand for user, and the negative one of failing when a deep 
model is actually needed. We shall see how more interrogation of the user can gather 
extra-knowledge which will be used in order to represent deep knowledge, in another 
way than the classical one. 
In practice, as we suppose each reader knows, CBR works by extracting from the base 
of cases the cases whose description are the nearest to the description of the target, then 
use the solution of these nearest cases to find a solution for the target. This is very 
similar to rules by the substitution (description --> condition, solution --> action), but 
as opposed to rules, there is no explicit causal link between the descriptions and the 
solutions. For example, a case of an plane accident can well contain the color of the 
eyes of the pilot, or any other spurious information. 

8.1 Knowledge acquisition issues 

A first obvious problem is the definition of the knowledge representation of the cases 
themselves. A case contains all the information necessary to be able to recompose 
what has been happening in the external world. For aircraft incidents, for example, one 
could define a case by the information necessary to rerun the incident on a simulator. 
As one can see, a "case", as opposed to the more traditional knowledge representation 
systems, is never defined in general, it depends on the application it describes. This 
relaxation on the constraints will request that some extra knowledge is asked to the 
domain expert, as we shall see in the following. 
The domain expert, as is almost always the case of AI oriented applications, is 
requested to build an ontology of his application domain: What are the features of the 
domain, when are they significant, what are the semantics of these features, what are 
their domain of values, what are the relations among features (i.e., organizing the 
knowledge of the domain). 
In order to define an efficient similarity measure, the knowledge acquisition process 
must include, besides the "plain" field knowledge, seven types of knowledge, particular 
to CBR. It is interesting to identify those types in order to avoid bad surprises in 
applications. They are: 

a - the similarity measure itself, 
b - rules possibly included in the similarity measure. These rules can be of two 
kinds 
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bl  - domain theory (used for instance to saturate the description of a 
case) 
b2 - rules allowing to compute local similarity measures 

c - integrity constraints of the field, 
d - domains of significance of the features, 
e - contexts in which a given similarity measure is efficient, being understood 

that in most cases, a similarity measure is efficient when it uses significant features 
(see d above). 

f - transfer functions for translating the solutions of the base into the possible 
ones of the target. 

g - constraints relative to the application of the cases in order to avoid absurd 
solutions. 

We shall give more detail on all these points below, recalling f'trst that the similarity 
measure is often a simple syntactic measure of the type Hamming measure, as used in 
Data Analysis. Using such a simple measure is problematic since retrieving a good 
case is essential to CBR, and since cases contain shallow knowledge: a simple measure 
will tend to recognize shallow similarities of limited interest. The above special 
requirements represent the extra knowledge necessary to keep available the story of the 
case. In other words, they constitute the form deep knowledge takes in CBR: it is a 
very unusual form, certainly a non-causal one. 

8 . 2  Ver i f i ca t ion  and va l idat ion  

By its principle, CBR gathers information coming directly from the user, to be used 
directly by him. It is thus always possible that incorrect information is provided. A 
controller of some sort is necessary in order to verify the cases. In the context of CBR, 
validation has several meanings. 

a - One must verify the coherency of  the information contained in the 
descriptions of the cases. A pilot may, for instance, inverse in time the sequence of 
events, all in good faith. When shown a simulation, he will willingly acknowledge his 
error. 

b - One must validate the solution proposed by the expert. Some solutions, 
considered as satisfactory by a given expert, will be validated also by an expert of 
"higher level", and used in order to give future advice on how to behave in a similar 
situation. Some other solutions will be considered as unsatisfactory by the expert of 
"higher level", and used in order to give future advice on how not to behave in a 
similar situation. 

c - One must validate the whole system, by performing systematic studies of its 
application to yet "unknown" cases. 

8 . 3  M o r e  on the s imi lar i ty  measure  

It is used to retrieve cases similar to the target case; it computes the distance between 
the descriptions of the target case, and the descriptions of the base cases, preferably 
giving more importance to more significant features. 
It may be completed by a rule-based choice: similarity measure is used to select the k 
nearest cases, and rules choose among them which are the best. This leads to complex 
similarity measures that are not simply the computation of a distance but also take 
into account rules and/or integrity constraints in order to optimize the choice. 
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It may be necessary to def'me even more complex measures by taking into account the 
consequences of the proposed solutions (see an example below in section 8.4). 
One further point is that a given measure is usually not valid on the whole set of 
examples, it is necessary to set up sub-domains, or regions, and a similarity measure 
valid for each region. In satellite diagnostic, ESA contractors developed such a context 
sensitive similarity measure. Another solution can be performing an initial clustering 
leading to an organization of the base, giving in turn an initial evaluation of the 
possible regions. Defining these regions can be also seen as part of the interrogation of 
the expert. Notice how different from classical requests is knowledge elicitation in the 
context of CBR. 

8.4 Transfer  of  base solut ion to target  

There at least three ways to transfer the base solution to the target. 
- No transfer procedure is necessary because the cases are directly submitted to 

user. 
- A trivial transfer: the solution of the base is applied to the target with no 

change. This is quite dangerous and can lead to very absurd solutions, like proposing 
to a ship to "go down" because it has been a good solution for a plane. 

- A real transfer which implies the existence of a pattern matching and of a 
transfer function. When a base case similar to the target case has been retrieved, its 
solution cannot be usually applied straightforwardly to the target, some 
transformations must be done in order to adapt the solution to the descriptions of the 
target. This transformation is obviously obtained as follows. 

Compute the set of substitutions unifying the descriptions of the target 
with those of the base (they are called "replacements" when a constant is 
replaced by a constant). Apply the substitutions or replacements found in 
the descriptions to the solution of the base, this gives the solution of the 
target. 

This operation is obviously always necessary in order to avoid trivial mistakes in the 
target solution. It can be made to comprise some deep knowledge by recording transfer 
functions associated to some replacements. For instance, suppose that the case base is 
relative to cars, and that the solution recommends to slow down to some speed in 
some descriptions. Suppose that the target case is relative to mopeds, then one must 
replace car by moped in the target solution, and one must also say that such a 
replacement must be associated to a function linking the changes in speeds of cars to 
the changes in speeds of mopeds. This function obviously expresses deep knowledge 
about driving cars and mopeds. It is clear that all these functions compress the 
information much less than a formal theory of the speeds for each vehicle. It is very 
useful when such a theory is not known, and when partial knowledge only is available. 
In order to transfer a solution to the target, two different kinds of rules can be used. 
The first kind is of the form 
IF (in descriptions) A --> B 
THEN (in solution) A --> B AND C --> D 
where the added part C --> D expresses the changes due to the substitution A --> B. 
For instance, such a rule can be: 
IF (in descriptions) woman --> man 
THEN (in solution) woman --> man AND pregnant --> future father 

The second kind is relative to the transfer of parameters in functions appearing in the 
solution. It has the form: 
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Knowing that the substitutions (x/x', and y/y') occur between base and target, 
IF (in base) parameter x is in description, and parameter y is in 

solution and y = f(x) 
THEN (in target) parameter x' is in description, and parameter y' is in 

solution then y' -- f(x') 
This adaptation may happen to lead to absurd conclusion, this is why, one must 

define conditions on the limits of the changes to bring into a solution when 
transferring from base to target. For example, suppose that the base contains a slow 
growth process to happen in conditions X, and the target contains a very rapid growth 
process to happen in exactly same conditions X, then one can apply a transfer rule of 
the form 
IF (in descriptions) slow --> fast 
THEN (in solution) increase speed of measurements. 
Nevertheless, this rule must be restricted by the condition that if the recommended 
speed becomes higher than what any kind of material can stand then this base case 
must be ruled out how high the similarity might be. 
All these rules are difficult to build, and they are necessary each time causality is not 
implicitly taken into account in the shallow representation. 

8 . 5  A c o n c l u s i o n  o n  u s i n g  C B R  

It is quite usual to consider that the predictive power o f  Science comes from the 
building of causal theory allowing to explain successions of events. This attitude leads 
to discard many non-causal facts thus looked upon as spurious. In some cases, as for 
examples bases of air-traffic incidents, this leads to forget circumstances linked to the 
"story" of the events, as they have been lived by the expert. Retrieval of past cases 
becomes tedious for the expert. More generally, we would like to point at the new 
attitude of accepting in some conditions to rely on shallow, non-causal knowledge, 
either because it is important, or because causal knowledge seems to evade the 
scientist's efforts. In other words, the link between predictability and causality is no 
longer deemed compulsory, but simply desirable. Predictability itself is achieved 
through the recognition of a conjunction of values of shallow features. 

CBR involves such a non-causal knowledge acquisition. The price to pay for 
this attitude is obvious. It may well happen that cases superficially very near to each 
other are actually very different. There are two solutions to this problem. The most 
obvious one is to use hybrid systems that stick to a causal model as far as possible, 
and switch to CBR when failing on a problem (or the reverse: Do CBR, and check if 
the causal model validates the findings of CBR). One should notice however that this 
is not suitable when the shallow knowledge is really needed. This is why we would 
like to explore here the second solution which is to stay in the CBR framework, but to 
improve it so as to take into account, in a new way, the deep knowledge" 

- define domains of significant features in order to know in which context which 
features should be used to compute the similarity, 

- define domains of similarity measures in order to know in which context 
which similarity measure should be used, 

- use classical CBR to select a few cases that might be useful, and select among 
them those that are really to be used by 

- ruling out those that violate known integrity constraints, 
- rule out those cases that are not confirmed by given rules that might 

have another form than integrity constraints 
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- checking the consequences of the choice of a case, i.e., select according 
to the applicability of the cases, 

- refine the application of the case. 
To conclude, it will be often the case that CBR is more efficient than a causal model, 
especially when the formalization of the field is still incomplete. In order to increase 
its efficiency, it may be necessary to collect supplementary knowledge which is very 
different from the one normally considered as causal by scientists. 

9 Final Conclusion 

As a first conclusion, we would like to stress that our experience tells us that ML is 
not an easy solution for KA, but that the solution of the KAML problem goes 
through improvement of both KA and ML, thus it still needs much research work. 
Industrial applications are playing the role of pointer to academic research to problems 
that are somewhat underestimated nowadays. 
We presented here some examples of seven solutions to the problems of integrating 
ML and KA, there might be more problems and more solutions that we did not meet 
yet. 
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