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Abst rac t .  This paper investigates the influence of knowledge represen- 
tation languages on the complexity of the learning process. However, the 
aim of the paper is not to give a state-of-the-art account of the involved 
issues, but to survey the underlying ideas. Then, references will be pro- 
vided only occasionally and all the specific quantitative results are left 
to the presentation. Finally, the paper is intentionally unbalanced, be- 
cause a larger space is given to those issues that are more novel or less 
investigated in the literature. 

1 I n t r o d u c t i o n  

A large variety of approaches (e.g., symbolic, connectionist, reinforcement-based, 
evolutionary), of methodologies (such as inductive, deductive, abductive, analog- 
ical, case-based) and of algorithms are currently available to address the problem 
of building learning machines. Even if these approaches have been able to offer 
solutions to some interesting real problems, a large scale application of automatic 
learning techniques to real life has still to come. A major problem against an 
easy scaling up is computational complexity. Given a problem, i.e., the specifi- 
cation of a task (e.g., classification, control), the nature of the target knowledge 
(for instance, expressible in propositional or predicate logic) and the description 
of the environment in which learning has to take place (availability of examples, 
background knowledge or teacher, presence of noise), first an approach has to 
be chosen and, then, a method compatible with the approach, eventually im- 
plemented in a specific algorithm, has to be selected. Obviously, the task, the 
target knowledge and the environment have all a relevant impact on the choice 
of suitable approaches and algorithms. The resulting global selection exhibits a 
complexity which delimits the maximum size of the solvable problems. However, 
the choices are usually not unique and more or less wide room is left for some 
kind of optimisation. We are interested here, in particular, in the trade-off be- 
tween reduction in the complexity of learning and quality of learned knowledge, 
due to issues of knowledge representation and reasoning. By complexity, we mean 
algorithmic complexity; complexity evaluated as minimum number of training 
examples is only handled as a parameter possibly affecting the preceding one. 
Problems of algorithm efficiency are not handled here and we will assume that  
the selected algorithm is as much optimised as possible. The nature of the target 
knowledge affects the amount  of computational resources needed in more than 
one way. The first one is through its very nature: for instance, hypotheses ex- 
pressed as first order logic formulf may have to be found in infinite search space; 
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moreover, some operations on them (e.g., matching), are inherently exponential 
[11]. Complex hypotheses (for instance, concepts with several modalities) may 
require an excessive number of training examples. On the other hand, reasoning 
mechanisms, used to learn, span a wide range of complexity, and not all of them 
are equally applicable to any type of target knowledge. A typical example, in 
this respect, is time- dependent knowledge, such as the one needed for describing 
the behaviour of a dynamical system. Among the several issues that arise in the 
analysis of the mentioned trade-off and in finding possible equilibrium points , 
we will concentrate here on the possible relationship between the type of formal- 
ism selected for representing the target knowledge and the means for reducing 
the amount of search for good hypotheses. When the solution of a learning prob- 
lem (i.e., a body of knowledge) is hidden inside a very large hypothesis space, 
the probability of finding it or, at least, a good approximation of it, may be 
very small, requiring thus a large amount of computational resources. We will 
consider here four ways of coping with this situation. 

- To reduce the size of the hypothesis space, 
- To focus the search toward a subspace of the hypothesis space, 
- To improve of the learning environment, 
- To increase the search exploration power. 

Each one of the four kinds of approaches may or may not be either applicable or 
effective, depending on the type of representation chosen for the target knowl- 
edge. The goal of this talk is precisely to investigate this dependency. For types 
of representation we intend a broad partition of representation formalisms, such 
as symbolic (e.g., rule sets, decision trees, logical formulf), connectionist (set of 
numerical parameters), bit- strings, exemplars or time-dependent functions. 

2 Size Reduction of the Hypothesis Space 

A first and obvious way of possibly easing the search for a hypothesis is to limit 
the size of the hypothesis space itself. This can be done (as usually it is) by 
imposing constraints on the target knowledge, aimed at limiting the expressive 
power of the representation language. This kind of restriction may prove effective 
in obtaining, for instance, polynomial learnability [as in the COLT approach], 
but, on the other hand, increases the probability of loosing the correct hypoth- 
esis, if this one cannot be represented in the reduced language. Still, we might 
want to obtain an approximate solution and to evaluate how good it is [5, 22]. 

An important dichotomy, in this respect, is propositional (~attribute- value~ 
pairs descriptions) versus First Order Logic (relational) representation languages. 
Using a FOL language, many problems, such as, for instance, matching or test- 
ing for subsumption, become computationally intractable and even the very 
notion of generality may acquire more than one meaning [20, 1, 2]. As a con- 
sequence, more strict restrictions have to be imposed on the language syntax 
(e.g., determinate literals) or semantics (e.g., only one-to-one variable-constant 
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unification), in order to keep computational complexity acceptable. It is not sur- 
prising, then, that relational target knowledge has not been considered, until 
recently, in connectionist and evolutionary approaches and that the problem of 
defining an adequate metrics between structured exemplars or descriptions is 
still an unsolved problem. 

There are at least two possible ways of coping with the problem of language 
expressiveness: one is constructive learning, i.e., a dynamic definition of the hy- 
pothesis language, according to the needs emerging during learning. Constructive 
induction has been mostly addressed in symbolic approaches, even though some 
kinds of ANN may be considered as being able to perform it, as well, by dy- 
namically changing their structure and not only their weights. Another way of 
handling the problem is to use representation languages at different levels of 
details (a fundamental aspect of the human thought), i.e., to use abstraction. 
Abstraction has been mainly used in problem solving [19], and only recently the 
ML community started to pay attention to this mechanism [6, 12, 7]. Notwith- 
standing the multiple definitions of abstraction, all their proposers agree on the 
intuitive meaning of abstraction as a mechanism to build up a simpler represen- 
tation scheme than  the one in which the problem at hand has been originally 
formulated. 

Abstraction, dealing with transformations between representation spaces, of- 
fers a new perspective to learning, in that it addresses the fundamental dilemmas 
involving knowledge simplicity, meaningfulness, predictivity and task-dependency. 
In learning, abstraction has to be distinguished from generalisation (even though 
some authors have used the two terms as synonyms) and is in no way intended as 
an alternative mechanism to it; on the contrary, generalisation and abstraction 
have complementary properties and goals. Generalisation has been, and remains, 
the basic mechanism for searching hypotheses, whereas abstraction provides a 
mechanism for representing these hypotheses on a hierarchy of levels. In other 
words, abstraction is basically an organisational mechanism, which imposes an 
internal structure to the world, in such a way that a meaning can be easily asso- 
ciated to the component parts of the structure, reducing thus the cognitive effort 
for handling the world representation. As an example, it is much more difficult 
to associate the concept of a table to the thousands of pixels in a table picture 
rather than to a structure composed by some interrelated legs and top. 

Then, a useful notion of abstraction in learning is one that preserves both the 
more-general-than relation and the extensional properties of concepts (i.e., their 
coverage) across hierarchical levels of representation spaces. This amounts to 
the fact that any hypothesis, generated inside any representation space (usually 
through a generalisation/specialisation process), is guaranteed to be extension- 
ally equivalent to the same hypothesis represented in any other more or less 
abstract space. In other words, generalisation deals with the extensional aspect 
of concepts, whereas abstraction deals with the intensional one. We can sum- 
marise by saying that abstraction has to do with suitably representing hypothe- 
ses, generalisation with finding hypotheses. We do not want that uncontrolled 
generalisation occurs only as a side-effect of knowledge representation changes 
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of the same hypothesis. This point appears even more clearly if we have to 
translate, from one level to another, also a domain theory, which should be kept 
semantically equivalent. 

A semantic abstraction, preserving concept extension, is somewhat in con- 
trast with most definitions proposed in AI. On the other hand, it is well on the 
line of the Abstract Data Types theory, used since a long time, for instance, in 
structured programming, in program specification and analysis and as a basic 
concept of object-oriented languages. The property of being at constant infor- 
mation is fundamental for this kind of abstraction: in fact, the semantics of a 
program shall be exactly the same, whatever the level of details used to describe 
the program may be. On the other hand, the abstract data types theory has a 
feature which is absent from the abstraction used so far in AI. This last, in fact, 
has been only concerned with changes in the language predicate set, whereas the 
first one builds up objects (i.e., the data types), defined in terms of properties 
and interactions with the external world and other objects; each object has to be 
addressed as a whole, disregarding its internal structure and actual implemen- 
tation. The process of building up compound conceptual objects, synthesising 
groups of elementary pieces of information available in the ground world, and, 
then, hindering their internal structure in the abstract world, is the central core 
of the abstraction mechanism in learning. It has been frequently used in pattern 
recognition, especially in image analysis. 

For these reasons, not only new predicates [17], but also new terms as com- 
pound objects have to be invented [7]. Building up new data types, representing 
intermediate concepts useful to describe higher-level ones, is the key both for 
obtaining meaningful, human-like concept representations and for reducing the 
combinatorial complexity of the learning process. Results in this sense have al- 
ready been reported. The introduction of term abstraction is a key difference 
between the notion of abstraction sketched here and constructive induction, as 
it is handled, for instance, in ILP [16]. It is possible to quantitatively evaluate 
the reduction in search and matching obtained by introducing new compound 
terms both in the hypothesis language and in the (possibly available) domain 
theory. 

Even though abstraction can be usefully applied to propositional languages 
to compact knowledge bases, its major role emerges in first order languages, 
exactly because of the strong impact on complexity due to the definition of 
composite objects. An interesting question is whether abstraction can play a role 
in connectionist approaches, by associating an individuality to specific subnets, 
in such a way that ~ney could be used as building blocks to construct larger 
networks. And, if yes, whether this internal structuration spontaneously emerges 
as a consequence of increasing the size of the networks. If this would be the 
case, we could assist to the natural creation of symbols from the subsymbolic 
representation level for the sake of saving cognitive efforts. 
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3 F o c u s i n g  t h e  S e a r c h  t o w a r d  H y p o t h e s i s  S u b s p a c e s  

A very effective way of focusing the search in a space of hypotheses is to use 
a-priori knowledge, which limits the search to that subset of hypotheses that can 
be explained by the theory itself. This line of reasoning, started with the EBL 
methodology, has led, more recently, to the multistrategy approach, attempting 
to control complexity by using more sophisticated learning system, including 
different reasoning mechanisms, with the aim of better exploiting the variety of 
avai lable  a- priori information [13, 14, 4, 21]. Central to this kind of approach 
is the notion of explanation , connected, in turn, with the nature of the used 
knowledge and the reasoning mechanism performed to obtain it: inductive, de- 
ductive, abductive or analogical. Attempts have been done to characterise the 
nature of a hypothesis obtained with these methods, trying to clarify, at the 
same time, the philosophical foundations of learning [13]. In particular, a precise 
definition of the inductive/abductive nature of a hypothesis has been suggested 
[2]. This definition tries to capture the intuitive feeling that the only support of 
an inductive explanation is a supposed similarity between unobserved individu- 
als and observed ones. In other word, an inductive hypothesis allows the validity 
of properties, observed on a set of individuals, to be extended to unobserved 
individuals, whereas an abductive one allows unobserved properties to be ap- 
plied to observed individuals. Hence, the generation of an inductive hypothesis 
does not need a theory relating each'other properties, whereas the generation 
of an abductive hypothesis does. The distinction between inductive and abduc- 
tive hypotheses strictly parallels the dichotomy extension vs. intention. In fact, 
inductive hypotheses are related to (concept) extensions, whereas abductive hy- 
potheses are related to (individual) intensions. 

It can also be shown, both theoretically and experimentally, that the use of an 
abstract causal model of the domain, in connection with abductive reasoning, has 
the advantage of strongly reducing both the search in the hypothesis space and 
the required number of examples, keeping at the same time high the probability 
of finding a good hypothesis. The reason of the potentially limited complexity of 
abducing first causes, in comparison with a deductive approach, mostly resides 
in the possibility of making assumptions about the state of the world and in 
the  possibility of using the abstract predicates occurring in the casual model to 
produce a skeleton of the target knowledge, to which surface details can be added 
later [23]. Another interesting debate, related to the nature of knowledge and 
the mechanisms to use it, is that between analogy [26] and case-based reasoning. 
In fact, the notion of analogy still deserves further clarification. 

A-priori knowledge has also been used to help the designer in the definition 
of an ANN structure, obtaining interesting results toward the integration of 
symbolic and subsymbolic learning techniques [24]. 

4 I m p r o v e m e n t  o f  t h e  L e a r n i n g  P r o c e s s  

Another way to cope with complexity is to try to exploit at the best the already 
available sources of information, i.e., to improve the learning process instead of 
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improving the learning algorithm or increasing the number of training examples, 
This means that we can try to exploit the possible presence of a teacher (human 
or environmental) and this can be done in at least two ways: developing systems 
that interact with a human expert, seeking for his/her advise especially during 
the revision task [15], or to carefully select the order in which information (typi- 
cally examples) are presented to the system, in order to strictly guide and speed 
up the hypothesis formation process. 

Example ordering has receiving increasing attention [3], in the framework 
of incremental learning and dependency upon the presentation order of the ex- 
amples is a matter of controversy. On one hand, order independence could be 
desirable, because training examples can be chosen more freely, there is no need 
of backtracking and there is a smaller danger of overfitting. On the other hand, 
we experience, in human learning, that a suitable presentation order of selected 
examples can help the learner to quickly focus on the important aspects of the 
matter, generating thus a robust kernel of knowledge, to which border cases and 
exceptions can be easily added later. However, performed experiments and theo- 
retical computations (using Gold's paradigm) show that the number of training 
examples required to attain the same level of performance can be drastically 
reduced by taking order effects into accounts [181 . 

The study of order effects are particularly relevant in ANN, in connection 
with the problem of forgetting. 

5 I n c r e a s e  o f  t h e  S e a r c h  E x p l o r a t i o n  P o w e r  

If we do not have suffcient a-priori knowledge and help, then we have to rely 
on search. To this aim, genetic algorithms offer a powerful, domain-independent 
method: they have been first used in machine learning associated to Holland's 
classifier model, but have also been exploited in other frameworks, for instance, 
to train neural nets instead of the classical back propagation algorithm. 

Recently, also the symbolic machine learning approach took advantage of 
genetic algorithms for concept induction in propositional calculus [25]. From 
these first experiments, genetic algorithms proved to be an appealing alterna- 
tive to classical search algorithms, because of their exploration power and their 
suitability to exploit massive parallelism. 

Recently, the extension of the genetic search to concept descriptions in First 
Order Logic [8, 9] greatly extended the potential of this approach. Moreover, 
it has been possible to extend the method to learn disjunctive concepts, by 
proposing a new model of evolution under the selection operator. A theoretical 
study, involving the determination of the system's asymptotic behaviour, has 
shown that the new model leads to an equilibrium state between the alternative 
disjuncts, which, hence, will not disappear, if the population is sufficiently large. 
Realistic bounds for the cardinality of the population have been derived. With 
the same technique, also the classical model of selection and the one of Goldberg's 
sharing functions method have been analysed. The results are that in the classical 
model only the best disjunct will survive, however large the population is. The 
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sharing functions also show a non trivial equilibrium point, but only under given 
conditions. Moreover, the evaluation of the shared fitness is quadratic with the 
cardinality of the population, whereas the same evaluation in the new model 
is only linear. An extensive experimentation confirms the theoretical results. 
These results are compared with those asymptotically obtainable from symbolic 
learning algorithms (such as FOIL) and ANN [10]. Comments on the impact of 
parallelism will also be done. 

6 Conclusions 

The talk will give a comparison among techniques usable to reduce the com- 
putat ional  complexity of the learning process (intended in a broad sense), in 
connection with their suitability in dependence of the representation formalism 
used for the target  knowledge. Quantitat ive results are given, where appropriate 
and possible. 
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