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Abstract.  In this paper we advocate a learning method where a deduc- 
tive and an inductive strategies are combined to efficiently learn control 
knowledge. The approach consists of initially bounding the explanation 
to a predetermined set of problem solving features. Since there is n o  

proof that the set is sufficient to capture the correct and complete ex- 
planation for the decisions, the control rules acquired are then refined, 
if and when applied incorrectly to new examples. The method is espe- 
cially significant as it applies directly to nonlinear problem solving, where 
the search space is complete. We present HAMLET, a system where we 
implemented this learning method, within the context of the PaODIGY 
architecture. HAMLET learns control rules for individual decisions corre- 
sponding to new learning opportunities offered by the nonlinear problem 
solver that go beyond the linear one. These opportunities involve, among 
other issues, completeness, quality of plans, and opportunistic decision 
making. Finally, we show empirical results illustrating HAMLET's learning 
performance. 

1 Introduct ion 

Problem solving uses generalized operators describing the available.actions in a 
task domain, to search for a solution to a problem by selecting, instantiating, 
and chaining appropriate operators. Control knowledge can be added to the 
planning procedure to guide the search improving the planning performance. It 
has been the focus of attention of several researchers, present authors included, 
to learn control knowledge, i.e., automate the acquisition process of these guiding 
heuristics. 

One approach to learning control knowledge from a problem solving trace 
consists of generating explanations for the individual decisions made during the 
search process. These explanations become control strategies that are used in 
future situations to prune the search space [16]. There is also work done on 
doing the generation of control rules without problem solving episodes, by stati- 
cally looking at the domain description [8]. However, these strong deductive ap- 
proaches invest a substantial explanation effort to produce correct control strate- 
gies from a single problem solving trace. Alternatively, inductive approaches 
acquire correct learned knowledge by observing a large set of examples [20, 26]. 
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In this paper, we present HAMLET, 3 a system that learns control knowledge 
incremental and inductively. HAMLET uses an initial deductive phase, where it 
generates a bounded explanation of the problem solving episode. Upon experi- 
encing each new problem solving episode, HAMLET refines its control knowledge 
incrementally acquiring increasingly correct control knowledge. 

The paper is organized in nine sections. Section 2 overviews the complete ar- 
chitecture of HAMLET, and PRODIGY as the substrate problem solver. Section 3,. 
4 and 5 discuss the three learning phases, namely the generation of the bounded 
explanation from the problem solving search tree, the generalization of the rules 
by induction, and the refinement strategy driven by encountered negative exam- 
ples. Section 6 presents an example that illustrates the execution of the learning 
algorithm on a problem from a logistics transportation domain. Section 7 shows 
empirical results from different domains. Section 8 compares our approach with 
previous related work. Finally section 9 draws conclusions. 

2 Overv iew of the  Arch i t ec tu re  

HAMLET learns effectively control knowledge from a problem solving experience. 
This work is developed within the nonlinear problem solver [22, 5] of the PRODIGY 
architecture [6]. In this section we provide a description of PRODmY's nonlinear 
planner and we also present HAMLET'S architectural components. 

2.1 T h e  S u b s t r a t e  P r o b l e m  Solver 

The nonlinear problem solver in PRODIGY follows a means-ends analysis back- 
ward chaining search procedure reasoning about multiple goals and multiple al- 
ternative operators relevant to the goals. Figure 1 sketches the problem solver's 
algorithm. The inputs to the procedure are the set of operators specifying the 
task knowledge and a problem specified in terms of an initial configuration of 
the world and a set of goals to be achieved. 

The planning reasoning cycle, as shown in Figure 1, involves several decision 
points, namely: the goal to select from the set of pending goals and subgoals 
(steps 2-4); the operator to choose to achieve a particular goal; the bindings to 
choose in order to instantiate the chosen operator (step 4 combines the opera- 
tor and bindings selection); apply an operator whose preconditions are satisfied 
(step 5) or continue subgoaling on a still unachieved goal (step 3-4). Dynamic 
goal selection from the set of pending goals enables the planner to interleave 
plans, exploiting common subgoals and addressing issues of resource contention. 
Search control knowledge may be applied at all the above decision points: which 
relevant operator to select from the possible available ones, which goal or sub- 
goal to address next, whether to reduce a new subgoal or to apply a previously 
selected operator whose preconditions are satisfied, or what objects in the state 
to use as bindings of the typed variables in the operators. Decisions at all these 

3 .HAMLET ~ stands for Heuristics Acquisition Method by Learning from sEarch Trees. 
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1. Check if the goal statement is true in the current state, or there is a reason 
to  s u s p e n d  the  current  search path. If yes,  then e i ther  return the  f inal plan or 
backtrack. 

2. Compute the set of pending goals ~, and the set of applicable operators .4. 
3. Choose a goal G from ~ or select an operator A from .4 that is directly applicable. 
4. If G has been chosen, then 

- expand goal G, i.e., get  the  set  O of relevant instantiated operators for the  
goal G, 

- choose an operator O from O, 
- go  to  s tep  1. 

5. If an operator A has been selected as directly applicable, then  
- apply A, 
- go to step 1. 

Fig. 1. A skeleton of PRODIGY's nonlinear problem solving algorithm. 

choices are taken based on user-given or learned control knowledge to guide the 
search and convert it into an intelligent commitment search strategy [22]. Control 
knowledge guides the search process and helps to prune the exponential search 
space. Previous work in the linear planner of PRODIGY uses explanation-based 
learning techniques [16] to extract from a problem solving trace the explanation 
chain responsible for a success or failure and compile search control rules there- 
from. Similar efforts within the linear planner of PRODIGY were done to learn 
control rules from partially evaluating the domain theory [8, 19]. 

The paper presents instead our on-going work in learning individual control 
rules for the nonlinear problem solver of PRODIGY [4]. We have identified sev- 
eral challenging problems in extending directly the previous explanation-based 
algorithms developed for the linear planner to the nonlinear one, since in non- 
linear planning we face learning opportunities, including issues of plan quality, 
and opportunistic decision making. Our work applies directly to nonlinear prob- 
lem solving which trivially encompasses linear problem solving. In our nonlinear 
problem solving framework, HAMLET learns control rules for individual decisions 
compiling the conditions under which the rules are to be transferred to individual 
decision steps in other problems. Alternative learning approaches in nonlinear 
planning include learning complete generalized plans as in [12], or developing 
a case-based learning method that provides cases as a form of global strategic 
knowledge [24], as discussed in the related work section. 

2.2  HAMLET's C o m p o n e n t s  

HAMLET has three main modules: the Bounded-Explanation learner, the Inducer 
and the Refiner. The Bounded-Explanation module learns control rules from the 
search tree. These rules are either over-specific or over-general, so they should be 
refined. The Induction module solves the problem of over-specificity by making 
them more general from more positive examples. The Refinement module attacks 
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the over-generality by finding situations in which the learned rules were used 
wrongly. HAMLET gradually learns and refines so that,  at the end, it converges 
to a concise set of correct control rules. 

Figure 2 shows HAMLET's modules connected to PRODIGY. Figure 3 presents 
the procedure schematically, where ST and ST' are search trees, L is the set of 
control rules, L' is the set of new control rules learned by the Bounded Expla- 
nation module, and L" is the set learned induced from L' and L. We explain in 
detail each one of HAMLET'S components in the next sections. 

Problem 

Domain 

Bounded 
Explanation 
Module 

ST ST' $ 

m-- PRODIGY 

n' 

,, ,, 

L 

m- 
ST ST' 

Induction 
Module 

~ L'' 
Ref inement  
Module 

Fig. 2. HAMLET's high level architecture. 

Let L refer to the set of learned control rules. 
Let ST refer to a search tree. 
Let P be a problem to be solved. 
Initially L is empty. 
For all P in training problems 

ST = Result of solving P without any rules. 
ST' = Result of solving P with current set of rules L. 
L' = Bounded-Explanation(ST, ST') 
L ' =  Induee(L,L') 
If needs-refinement-p(ST, ST') 
Then L=Refine(ST, ST',L") 

Fig. 3. A high level description of HAMLET's learning algorithm. 
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3 Bounded Explanation 

In this initial phase, HAMLET learns control rules directly by loosely explaining 
the problem solving search tree. The algorithm relies on three main parts: label- 
ing and credit assignment on the search tree; the actual generation of the control 
rules; and the generalization of the control rules. 

3.1 Labe l ing  t he  Search Tree  and  Cred i t  Ass ignment  

When solving a problem, the problem solver generates a search tree. The domain 
theory implicitly defines a subgoaling structure that links goals with the oper- 
ators that achieve those goals. In a linear planner, the search tree reproduces 
exactly this structure, since interleaving of goals and subgoals at different search 
spaces is not allowed. However, in nonlinear problem solving, there is a variety 
of different interleaved ways to traverse the subgoaling structure which are cap- 
tured in the search tree. This leads to a very large search space so that there is 
no tractable way to generate a correct explanation for the decisions made from 
a unique problem solving experience. 

The labeling algorithm of HAMLET traverses the search tree top-down to label 
first the leaf nodes.I t  assigns three kinds of labels to the leaf nodes: success, if it 
was a solution path; failure, if it was a failed path; and unknown, if the planner 
did not expand the node. After labeling the leaf nodes, it backs up the values up 
to the root of the search tree. Figure 4 summarizes this labeling strategy. The 
credit assignment is done at the same time as the labeling, and it consists of 
identifying the decisions for which learning will occur. 

At each decision choice to be learned, HAMLET has access to information 
on the problem state and meta-level planning state, which is explicitly main- 
tained in the search tree structure. Examples of meta-level knowledge at each 
nodel available to the learning procedures, include the goals that had not been 
achieved, the goal the planner is working on, and in general the alternatives 
known to have failed or succeeded. This information is used by the generation 
module to create the pre- and post-conditions of the control rules. 

The parameter eagerp controls the situations from which control rules are 
generated. If eagerp is true, HAMLET will learn a select rule, 4 whenever a node 
has a success child. If eagerp is false, HAMLET follows a conservative learning 
mode. A rule is then learned only if all of its children are labeled success or 
failure and there is at least one child labeled failure. These two different modes 
correspond to different levels of learning eagerness. 

The parameter optimal-learning-p allows to learn only from the best solution 
found, 5 where we can incorporate different quality criteria. If optimal-learning-p 
is  t~e, HAMLET delays learning until it traverses the complete tree and finds 

A select rule, when applied, selects an alternative and rejects all others for which 
there  is not  a select control rule. 

5 We consider currently best as shortest solution and less number of nodes. We will 
extend this criterium according to the results of [18]. 
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,rocedure LABEL (node eagerp) 

for all successors of node do 

LABEL (successor eagerp) 

case of 

null(successors): 

case of 

solution-path: label node as success. 

failed-path: label node as failure. 

untried: label node as unknown. 

there is at least one unknown successor: 

if eagerp AND there are success children 

then if optimal-learning-p 

then store the "best" successor 

else LEARN the "best" successor 

label node as success 

else label node as unknown. 

there are only success and failure: 

if optimal-learning-p 

then store the "best" successor 

else LEARN the "best" successor 

label node as success. 

there are only failures 

label node as failure. 

there are only successes 

label node as success. 

Fig. 4. A skeleton of the labeling and credit assignment algorithm 

the best solution. In that case, after labeling, it descends only through the best 
solution path, learning from every decision according to the selected level of 
eagerness. 

This algorithm builds upon some early previous work on learning and prob- 
lem solving, including [14, 17]. We extend these pioneering methods in several 
dimensions, as discussed in section 8. 

3.2 G e n e r a t i o n  of  Cont ro l  Rules  

HAMLET proceeds to generate each control rule by acquiring its corresponding 
pre- and postconditions. The preconditions of the control rule need to establish 
the relevant conditions under which the decision was made and also define the 
situations under which the rule can be re-applied. The appropriate set of features 
that we consider in our bounded explanation technique has evolved from previous 
work of the first author [3]. Although there is no guarantee that this set of 
features is a sufficient set, there have been a number of iterations in the design of 
the set, to generate our confidence on it. Furthermore the empirical experiments 
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confirm that the set is appropriate and the induction and refinement phases 
increase its application efficiency. 

HAMLET learns four kinds of control rules: select a goal from the set of pend- 
ing goals, select an operator to achieve a goal, select bindings for the chosen 
operators, and decide whether to apply an operator when its preconditions are 
met in the current state of the search, or continue subgoaling selecting a goal 
from the set of unachieved goals. Each rule corresponds to a generalized tar- 
get concept. The target concepts are each one of the possible decisions to be 
made attached to some of the preconditions required to make them. For in- 
stance, for an operator decision, a target concept might be select operator <op> 
to achieve the goal <goal>. The number of target concepts of a given domain 
is 0 § P -t- 20 ~~ p(Oi), where O is the total number of operator schemas 
in the domain, P is the number of predicates of the domain, and p(Oi) is the 
number of postconditions of the operator Oi.S HAMLET generates a set of rules 
for each target concept, each one with a conjunctive set of preconditions. This 
representation can be viewed as the disjunction of conjunctive rules, as we can 
learn several rules for the same target concept. This is equivalent, therefore, to 
learning a DNF description of the target concept. 

Each kind of control rule has a template for describing its preconditions. 
The templates share a set of common features for all kinds of control rules, but 
each one has certain local features. Examples of common features, which become 
meta-predicates of the control language, are: 

- True-in-state <assertion>: tests whether the <assertion> is true in the cur- 
rent state of the search for the solution. 

- Other-goals <list of goals>: test whether any of the goals in the <list of 
goals> is a pending goal in the current node of the search tree. 

- Prior-goal <goal>: tests whether <goal> is the first goal of the conceptual 
path of the node the planner is in. 

Similarly, examples of the other features are: 

- Current-goal <goal>: tests whether the <goal> is the one that the planner 
is trying to achieve. 

- Candidate-applicable-op <operator>: tests whether the <operator> is ap- 
plicable in the current state. 

The preconditions of the control rules are created using the information on 
the state and the meta~level state linked to the corresponding decision node in 
the search tree. The postconditions are the decisions to be made, such as (se- 
lect operator unstack), or (selecl~ goal  (on  <x> <y>) )J  See section 6 for an 

e This number is t h e  s u m  o f  t h e  n u m b e r  o f  target concepts for each kind of learned 
control rule. For instance, the select operator kind of control rule has two variables: 
the operator, and a goal that can be achieved by that operator. Therefore, in this 
case, the number of target concepts for that kind is 0 )"~~ p(Oi). 

7 Variables are represented in brackets. 
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example of a learned control rule. After the rule has been created, it is parame- 
terized, imposing the condition that two variables cannot be bound to the same 
value. After the induction phase, the rule is checked against the possible negative 
examples of the target concept. At the beginning, the set of negative examples for 
each target concept is empty. Section 5 explains the refinement module includ- 
ing how to identify negative examples. Section 6 shows an illustrative example 
of the learning process. 

Figure 5 shows an example of a learned control rule in the blocksworld do- 
main [10] learned after PRODIGY solves the Sussman's anomaly [21]. The control 
rule allows the problem solver to select the goal of holding a block, block1, over 
the goal of having another block, block3, on top of block1, given that there are 
three blocks on the table, and the goal of holding block1 was created as a subgoal 
of the goal of having bloc~l on top of another block, block2. This control rule 
allows PRODIGY later to solve similar nonlinear problems more efficiently than 
before the rule is learned. 

(control-rule SELECT-ON-1 
( i f  ((candidate-goal (HOLDING <BLOCKI>)) 

(prior-goal (ON <BLOCK1> <BLOCK2>)) 
(true-in-state (ON-TABLE <BLOCK1>)) 
(true-in-state (ON-TABLE <BLOCK2>)) 
(true-in-state (ON-TABLE <BLOCK3>)) 
(other-goals ((ON <BLOCK3> <BLOCKI>))))> 

(then SELECT GOALS (HOLDING <BLOCK1>))) 

Fig. 5. Rule ~arned in the blockswoddfor selecting the goM holdingover the goM on 
forinter~fing block configurations. 

4 Induc t ive  Genera l i za t ion  

The rules generated by the bounded explanation method may be over-specific, 
as also analyzed in [9]. Particularly, the rules may be over-specific in the aspects 
explained below. The more over-specific the rules are the lower the transfer to 
other problems, s We follow up the deductive phase with a generalization algo- 
rithm that inductively modifies the rules based on new examples, reducing the 
set of preconditions. The rules may become over-general but their transfer poten- 
tim increases. We have devised ways of inducing over the following aspects of the 
learned knowledge, that practically cover all the features in the preconditions. 

- State: Most of the rules are over-specific because they keep many irrelevant 
features from the state. 

s Note that in order to apply a control rule, we require that the rule totally matches 
a decision making situation, i.e., all the preconditions need to be satisfied. 
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- Subgoaling structure: By relaxing the subgoaling links, for example as cap- 
tured by the prior-goal meta-predicate, since the same goal can be generated 
as a subgoal of many different goals (see section 3). 

- Interacting goals: Identifying the correct subset of the set of pending goals 
that affect a particular decision extending the learning scope also to quality 
decisions. 

- Type hierarchy: The generalization level to which the variables in the control 
rules belong considering the ontological type hierarchy that is available in 
the nonlinear version of PRODIGY. 

- Operator types: Further learning from an operator hierarchy to enlarge the 
scope of the generalization procedure. 

The inductive component of HAMLET currently considers the following in- 
ductive operators relative to one or more of the above aspects: 

- Preserve main preconditions: HAMLET is able to remove "unimportant" pre- 
conditions that are found not to affect the validity of the control rule. It keeps 
the main preconditions, i.e., the preconditions that have.variables directly 
related to the learned decision. 

- Delete rules that subsume others: A rule subsumes another rule of the same 
target concept if there is a substitution thai makes its preconditions a su- 
perset of the other. 

- Intersection of preconditions: From two rules, R1 and R2 of the same tar- 
get concept, create a new rule with preconditions the intersection of the 
preconditions of R1 and R2 (when the intersection is not empty). 

- Refinement of subgoaling dependencies: If there are two rules, R1 and R2 
sharing some preconditions, but their prior goals are different, they are 
merged into a new rule that tests for the presence of any of the prior goals 
of the two rules. 

- Refinement of goal dependencies: Similar to the previous one, but, in this 
case, it refers to the meta predicate other-goals. 

- Relaxing the subgoaling dependency: If there is no evidence that the prior 
goal is needed, it gets deleted until needed. 

- Find common superclass: When two rules can be unified by two variables 
that belong to subclasses of a common class (except for the root class), this 
operator generalizes the variables to the common class. We implemented 
previously a variation of this technique applied to the parameterization pro- 
cedure of a single rule [2]. 

HAMLET tries to find an intersection of two rules using all these operators. If 
it finds a correct intersection that does not cover any previous negative example, 
a new rule is created, and the two previous ones are deleted. However HAMLET 
can backtrack to that learning point, and try an alternative way of intersecting 
the rules. This should not be considered as plain backtracking. When HAMLET 

"backtracks" to that point, it accumulated more information than when the 
alternative was generated, since it has found a new negative example, and it 



73 

can now do better generalizations. The inductive phase significantly improves 
the transfer potential of the rules as it generalizes their application conditions. 
The inductive operators are triggered by positive examples, but also take into 
account the negative examples found so far as we describe in the next section. 

5 R e f i n e m e n t  

After the two previous learning phases, H A M L E T  may have produced over-general 
rules in special situations (due to the inductive operators, e.g., intersection). An 
over-generM rule is beneficial for our inductive learning strategy as it may provide 
negative examples of its application. There are two main issues to be addressed: 
how to detect a negative example, and how to refine the learned knowledge 
according to it (making the rule more specific). 

A negative example for H A M L E T  is a situation in which a control rule 
was applied, and the resulting decision led to either a failure (instead 
of the expected success), or a worse solution than the best one for that 
decision. 

Once identified a negative example for a certain rule, the negative example 
is processed against all the current rules for the same target concept. Figure 6 
shortly describes the procedures used for the refinement. 

In a nutshell, the refinement module will try to relax the effect of the induc- 
tive operators by adding the tests removed in the inductive steps. The goal is to 
find a larger set of literals that covers the positive examples, but not the negative 
examples. It first checks the type of the control rule. The types are deduced, in- 
duced, and refined. Deduced are the rules generated by the Bounded-Explanation 
module. Induced are the ones that were generated by inducing from two rules. 
Refined are the ones generated by refining an existing rule, because it covered 
negative examples. The procedure add.new-preconds (not shown) does the fol- 
lowing: for each precondition of the whole rule, having in mind even the ones 
that were not main preconditions, adds that precondition to the preconditions, 
and tests whether it covers the negative examples or not. If not, then returns the 
new preconditions. The procedure find-new-intersection (not shown) searches for 
other bindings of the variables of the rules from where it generated the rule, so 
that the new bindings substituted on the preconditions of one of those rules do 
not cover the negative examples. 

One of the key things of any inductive method is to capture the right features 
in the learned description of a concept. In respect to this issue, the current 
version of H A M L E T  gets rid of irrelevant features if it learns positive examples of 
a target concept that do not have those features in common, or it finds negative 
examples of the target concept where those features are also present. In those 
cases, the eager inductive and refinement modules will remove these features. 
To speed up the convergence of the learning, we are currently introducing more 
informed elaborated ways of removing and adding features from the description 
of the target concept, such as information gain measures, similarly to [20]. These 
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~rocedure refine-rule (rule) 
if covers-neEative-examples-p(rule) 

then 
if type(rule)=deduced 

then refine-deduced-rule(rule) 
else for all rulel in rules(target-concept(rule)) 

refine-induced-rule(rulel) 
else if deletedp(rule) 

then undelete-rule(rule) 

rocedure refine-deduced-rule (rule) 
preconditions=add-new-preconds(rule) 
if preconditions 

then create-rule(preconditions,postconditions(rule)) 
delete-rule(rule) 

,rocedure refine-induced-rule (rule) 
rule l=originat ing-rule I (rule) 
rul e2=originat ing-rule2 (rule) 
precondit ions--f ind-ne.-int ersect ion (rule I ,rule2) 
if preconditions 

then create-rule(preconditions ,postconditions(rule) ) 
else refine-rule(rule I) 

ref ine-rule (rule2) 
delet e-rule (rule) 

Fig. 6. High level description of the algorithm for the refinement of control rules. 

methods have been tested on an analysis of a complete set of examples, and we 
are now exploring extending them to our incremental learning procedures. 

The hill climbing performance of our global learning algorithm will approach 
the ultimately correct control knowledge by converging gradually closer from 
'both over-specific and over-general rule sets. Our learning algorithm reasons 
a b o u t  and converges from points in the generalization space as it is prohibitively 
costly to maintain both the specific and general sets as in the version space 
method [17]. 

6 Illustrative Example 

We show now an example of the learning method applied to a logistics domain 
where we illustrate the phases of the generation of the control rules and their 
inductive refinement. 9 In this domain, packages are to be moved among different 
cities. Packages are carried within the same city in trucks and across cities in 

9 This domMn was first introduced in [23]. 
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airplanes. At each city, there are several locations, e.g. post offices and airports. 
This transportation domain represents a considerable scale up in length of the 
solution, size of the search space, and other difficult learning issues, such as non- 
linearity, un-optimality of solutions, and a large number of planning alternatives. 

Consider the following problem solving situation illustrated in Figure 7. There 
are two cities, city1 and city~, with one post-office each, respectively post-office1 
and post-office2, and with one airport each, namely airport1 and airport~. Ini- 
tially, at post-office1, there are two objects, object1 and object3, and two trucks, 
truck1 and truck3. At airport1 there is an airplane, airplane1, and another object, 
object2. At city~, there is only one truck, truck2, at the city airport, airpovtE 
There are two goals: object1 must be at post-office~, and airplane1 at airport2. 
This problem is interesting because both the object and the airplane need to 
be moved to a different city. HAMLET will learn, among other things, that  the 
object should be loaded into the airplane (or any other needed carrier) before 
the airplane moves. 

The optimal solution to this problem is the following sequence of steps: 

- (load-truck object1 truck1 post-office1), 
- (drive-truck truck1 post-office1 airpo~l), 
- (unload-truck objectl truck1 airport1), 
- (load-airplane object1 airplane1 airport1), 
- (fly-airplane airplane1 airport1 airport2), 
- (unload-airplane objectl airplane1 airport2), 
- (load-truck object1 truck2 airport2), 
- (drive-truck truck2 airport2 post-office2), 
- (unload-truck objectl truck2 post-office2). 

Cityl 
Post O f f i c e l ~  

l~Obl ~trl I iAi:p~ 

Cityl 
Post O f f i c e l ~ ~ ' ~  

City2 
Post O f f i c e ~  

Initial State 
City2 

Post O f ~  

Goal Statement 

Fig. 7. An illustrative example - initial state and goal statement 
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Notice that although in this example, the optimal plan corresponds to this 
unique linearization, in general the learning procedure can reason about a partially- 
ordered dependency network of the plan steps. 

HAMLET labels and assigns credit to decisions made in the search tree gener- 
ated by PRODmY. The rule in Figure 8 is learned at one of the decisions made, 
namely when PRODmY finds that it should delay moving the carriers until the 
object is loaded. 1~ The rule says that the planner should plan first to achieve 
(inside-truck object1 truck1) before moving the carriers, including truck1 and 
airplane1. This is a very effective control rule, since if the problem solver works 
first on any of the other two goals, it will arrive to an un-optimal solution, where 
carriers would have to do trips not needed. 

(control-rule SELECT-INSIDE-TRUCK-1 
(if ((target-goal (INSIDE-TRUCK <OBJECT1> <TRUCK1>)) 

(prior-goal (AT-OBJ <OBJECT1> <POST-OFFICE2>)) ** 
(true-in-state (AT-TRUCK <TRUCK1> <POST-OFFICE1>)) 
(true-in-state 
(true-in-state 
(true-in-state 
(true-in-state 
(true-in-state 
(true-in-state 
(true-in-state 

(AT-TRUCK <TRUCK2> <AIRPORT2>)) 
(AT-TRUCK <TRUCK3> <POST-OFFICE1>)) * 
(AT-AIRPLANE <AIRPLANEI> <AIRPORT1>)) 
(AT-OBJ <OBJECT1> <POST-OFFICE1>)) 
(AT-OBJ <OBJECT2> <AIRPORT1>)) 
(AT-OBJ <OBJECT3> <POST-OFFICEI>)), 
(SAME-CITY <AIRPORT1> <POST-OFFICE1>)) 

(true-in-state (SAME-CITY <AIRPORT2> <POST-OFFICE2>)) 
(other-goals ((AT-TRUCK <TRUCK1> <AIRPORT1>) 

(AT-AIRPLANE<AIRPLANE1> <AIRPORT2>))))) 
(then SELECT GOALS (INSIDE-TRUCK <OBJECTI> <TRUCKI>))) 

Fig. 8. Ru~ learned byHAMLETafter app~ing the Bounded-Explanation. 

This example, though simple, 11 shows a learning opportunity that is needed 
in order to deal with new problems effectively and with quality. This learning 
possibility is not'encountered by a linear problem solver who handles multiple 
goals independently. It would also not be compiled as a local choice by other 
learning methods applied to nonlinear planning [12, 23]. 

The preconditions are the initial bounded explanation of the problem solving 
decision. This rule is over-specific, since, among other things, it records the posi- 
tions of other trucks available and another object present at the post office, which 
turn out to be irrelevant features for this instantiated target concept. The opera- 
tor Preserve Main Preconditions removes the preconditions that we marked with % 

10 For simplicity we use the same names for the instances in the problem and the 
variables in the rule. Note however that the names in the rules refer to general 
variables. 

11 In our extensive empirical tests we ran problems of much greater complexity. Sec- 
tion 7 shows the results of some of these tests. 
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a star (*) in the description above. Note that  there are still irrelevant features 
kept, such as truck~ and object2, because they are at a location directly related 
to the goals rejected in the decision, namely airporl~. The  operator  Relaxing 
the Subgoaling Dependency removes the precondition on the prior-goal tha t  we 
marked with a double star (**). 

Now suppose that  we encounter a new problem where the goal is the same 
but  there are no additional trucks or objects, and there is an additional airplane. 
Figure 9 shows a rule that  HAMLET would learn in this case, after applying the 
same operators as before. 

(control-rule SELECT-INSIDE-TRUCK-2 
(if ((target-goal (INSIDE-TRUCK <OBJECT1> <TRUCK1>)) 

(true-in-state (AT-TRUCK <TRUCK1> <POST-OFFICEI>)) 
(true-in-state (AT-AIRPLANE <AIRPLANE1> <AIRPORT1>)) 
(true-in-state (AT-AIRPLANE <AIRPLANE2> <AIRPORT1>))* 
(true-in-state (AT-OBJ <OBJECT1> <POST-OFFICE1>)) 
(true-ln-state (SAME-CITY <AIRPORTI> <POST-OFFICE1>)) 
(other-goals ((AT-TRUCK <TRUCKI> <AIRPORT1>))))) 

(then SELECT GOALS (INSIDE-TRUCK <OBJECTI> <TRUCK1>))) 

Fig. 9. Ru~ learned by HAMLET in a second problem. It wiUh~p HAMLET generalize 
the rulein Figure 8. 

The inductive method combines these rules with the operator  Intersection 
of Preconditions, as they refer to the same decision. It also merges the goals in 
the other-goals meta-predicate. HAMLET generates a new rule, which consists of 
the intersection of the rules, being , therefore, more general than the initial two 
rules. Figure 10 shows the resulting rule. 

( c on t r o l - r u l e  SELECT-INSIDE-TRUCK-3 
( i f  ( ( t a rge t -goa l  (INSIDE-TRUCK <OBJECT1> <TRUCK1>)) 

( t r u e - i n - s t a t e  (AT-TRUCK <TRUCK1> <POST-OFFICE1>)) 
( t r u e - i n - s t a t e  (AT-AIRPLANE <AIRPLANE1> <AIRPORTI>)) 
( t r u e - i n - s t a t e  (AT-OBJ <OBJECT1> <POST-OFFICE1>)) 
( t r u e - i n - s t a t e  (SAME-CITY <AIRPORT1> <POST-OFFICE1>)) 
(o ther -goals  ((AT-TRUCK <TRUCK1> <AIRPORT1>) 

(AT-AIRPLANE <AIRPLANE1> <AIRPORT2>))))) 
( then SELECT GOALS (INSIDE-TRUCK <OBJECT1> <TRUCK2>))) 

Fig. 10. Rule induced ~omthe  rules in Figures 8 and 9. 

The induced rule is "almost" fully correct and it becomes "completely" cor- 
rect after a couple of more training situations. Irrelevant features are removed 
with more positive examples, while important  features are captured by the re- 
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finement with negative examples. HAMLET proceeds in this hill-climbing way 
searching the hypotheses space converging to the set of correct rules. 12 It in- 
duces and generalizes upon experiencing positive examples and it refines the 
learned control rules, when negative examples are found. 

7 E m p i r i c a l  R e s u l t s  

We have been performing extensive empirical experiments in several domains. 
We report here results from the logistics transportation domain [23] and the 
blocksworld domain (where we experience nonlinear learning situations, similar 
to the Sussman's anomaly [21]). The results illustrate our main claims about the 
effectiveness of the combined deductive and inductive methods. The nonlinear 
version of PRODIGY we are using has embedded several domain-independent 
search heuristics [1]. Therefore, the substrate problem solver has some underlying 
"intelligence" that makes it difficult for a learning mechanism to outperform it 
by large. However, as we will show, HAMLET is able to perform considerably 
better. 

In the blocksworld, we used a set of 100 problems randomly generated from 
which HAMLET learns the control rules. It learned 14 control rules. These rules 
were applied to a test set of 200 randomly generated problems. We varied the 
time bound given to PRODIGY to solve the problems from 100 to 300 seconds ob- 
taining similar results for the different time bounds. Figure 11 shows the results 
obtained with 100 seconds of time bound. The unsolved problems are accounted 
for in the running time by a term equal to the running time bound. 

In the logistics domain, we performed a training phase of 350 problems, 300 
one-goal problems and 50 two-goal problems. We used the resulting learned 22 
control rules in testing with three test sets of different complexity in terms of 
initial state and number of goals. We again varied the time bounds, from 150 to 
300 seconds, obtaining similar results to the ones shown in Figure 11 for a time 
of bound of 150 seconds. 

Number Unsolved problems Running time (sec) Nodes explored 
Domain of Problems without with without with without I with 

per Test Set rules rules rules rules rules t rules 

Blocksworld 200 [I 43 I 19 H 5402 I 2872 U 34065 ] 9513 
Logistics 300 II 57 I 25 II 9890 [ 5615 ]] 1344317798 

Fig. 11. Table that reflects the performance of HAMLET in two different domains: 
blocksworld and a logistics transportation domain. 

12 Since it is an incremental inductive system, the performance of HAMLET depends on 
the order of the examples given. 
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The main conclusion from the table is that the number of unsolved problems 
drops from 21.5% to 9.5% in the blocksworld, and from i9% to 8.3% in the 
logistics. This corresponds to a considerable increase in the solvability horizon of 
the problem solver when using the rules. Also, since the matcher for the control 
rules is not using any optimum retrieving and organization algorithm [7], the 
time spent matching the rules represents the usual utility problem. The results 
shown in the table are especially relevant as the use of the learned set of rules 
outperformed the base-level problem solver even with the rudimentary marcher. 

8 Re la t ed  Work  

There are several dimensions along which we can compare this work with pre- 
vious approaches, including the representation, the granularity, the correctness 
of the control knowledge, and the essence of the substrate problem solving algo- 
rithm. 

With respect to the representation, control guidance to prune the problem 
solving search space has been introduced as additional preconditions of the oper- 
ators of the domain in simple one-goal planning situations, such as in [14, 17]. In 
our framework, control knowledge is explicitly distinct from the set o f  operators 
describing the domain knowledge because it introduces knowledge about the var- 
ious problem solving decisions, such as selecting which goal/subgoal to address 
next, which operator to apply, what bindings to select for the operator or where 
to backtrack in case of failure. This clear division between the declarative domain 
knowledge, i.e., the operators, and the more procedural control knowledge sim- 
plifies both the initial specification of a domain and the automated acquisition, 
i.e., the learning of the control knowledge. 

Learned control knowledge can be local or global. Local control knowledge 
is used on each decision of a problem solver, while global knowledge guides the 
problem solver strategy as a whole. [23] develops a case-based learning method 
for PRODIGY that consists of storing individual complete problems solved to 
guide the planner when solving similar new problems. The guiding similar plans 
provide global control knowledge in the sense that they consist of a chain of 
decisions. Other examples of learning global knowledge although with different 
granularities are [10, 11, 12, 13, 25]. These systems learn macro-operators or 
complete generalized plans HAMLET, however, learns local control rules that ap- 
ply independently to individual decision steps with greater potential for transfer. 
We are already studying the integration of the two kinds of strategic knowledge, 
since we believe they have complementary benefits to the problem solver. 

Previous work has usually learned control knowledge on simple problem 
solvers such as linear planners with no more than one goal [8, 14, 15, 16, 17, 
19, 26]. In this kind of problem solver the underlying complexity of interleaving 
goals at different levels of the search does not exist, so the learning methods lack 
these learning opportunities. Other new learning opportunities not present in 
linear problem solving, consist of opportunistic operator choices driven by other 
planning goals. In our case, the nonlinear planner introduces this factor of corn- 
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plexity and the learning task becomes more challenging, due to having to find 
the right language for describing the hypotheses among other things. Also, the 
kinds of domalus/problems we use are more complex than the previously studied 
ones, except in [23]. There is no immediately clear way to directly compare our 
results to other systems that learn local control rules, because none applies to 
nonlinear problem solving. 

Another difference can be found in the way positive and negative instances 
are presented to the system. Systems like [15, 20, 26] are one-step learning algo- 
rithms in that they work on all examples at one time. However, HAMLET learns 
incrementally the control knowledge. 

Usually, rules produced by learning methods are worse than the ones pro- 
duced by the experts. However, learning methods produce those control rules 
much faster than the experts, since the acquisition of control knowledge is much 
harder than the acquisition of domain knowledge. We believe that one could get 
better results if one could present the learned rules to the expert and he or she 
could refine them to make them more accurate. Then, the issue of clarity of the 
rules is a major point and HAMLET'S rules are very easy to read and require very 
little effort to debug or refine. 

9 C o n c l u s i o n s  

The approach we have presented addresses a new speedup learning strategy to ef- 
ficiently acquire control knowledge for improving the performance of a nonlinear 
problem solver. We proposed a solution where we combine a bounded deduc- 
tive explanation method with an inductive technique. In this case, the tradeoff 
between the accuracy of the learned control knowledge, and the learning effort 
required is addressed by bounding the learning step with a fixed set of tests 
that have been manually adapted from the experience of the authors. Upon ex- 
periencing new problem solving episodes, HAMLET refines its control knowledge 
incrementally acquiring increasingly correct control knowledge. Therefore, HAM- 
LET combines analytical-based learning, using the problem solving search tree, 
and induction-based learning, refining and generalizing the control rules from 
examples. We showed empirical results that demonstrate the improvement that 
this learning strategy provides to PRODIGY'S nonlinear problem. 
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