
Incremental Learning of Control Knowledge
for Nonlinear Problem Solving

Daniel Borrajo 1 and Manuela Veloso ~

1 Carnegie Mellon University, School of Computer Science, Pittsburgh, USA,
o n leave from Universidad Politdcnica de Madrid, Facultad de Informs

Departamento de Inteligencia Artificial, Madrid, Spain
2 Carnegie Mellon University, Department of Computer Science,

Pittsburgh, PA 15213, USA

Abstract. In this paper we advocate a learning method where a deduc-
tive and an inductive strategies are combined to efficiently learn control
knowledge. The approach consists of initially bounding the explanation
to a predetermined set of problem solving features. Since there is n o

proof that the set is sufficient to capture the correct and complete ex-
planation for the decisions, the control rules acquired are then refined,
if and when applied incorrectly to new examples. The method is espe-
cially significant as it applies directly to nonlinear problem solving, where
the search space is complete. We present HAMLET, a system where we
implemented this learning method, within the context of the PaODIGY
architecture. HAMLET learns control rules for individual decisions corre-
sponding to new learning opportunities offered by the nonlinear problem
solver that go beyond the linear one. These opportunities involve, among
other issues, completeness, quality of plans, and opportunistic decision
making. Finally, we show empirical results illustrating HAMLET's learning
performance.

1 Introduct ion

Problem solving uses generalized operators describing the available.actions in a
task domain, to search for a solution to a problem by selecting, instantiating,
and chaining appropriate operators. Control knowledge can be added to the
planning procedure to guide the search improving the planning performance. It
has been the focus of attention of several researchers, present authors included,
to learn control knowledge, i.e., automate the acquisition process of these guiding
heuristics.

One approach to learning control knowledge from a problem solving trace
consists of generating explanations for the individual decisions made during the
search process. These explanations become control strategies that are used in
future situations to prune the search space [16]. There is also work done on
doing the generation of control rules without problem solving episodes, by stati-
cally looking at the domain description [8]. However, these strong deductive ap-
proaches invest a substantial explanation effort to produce correct control strate-
gies from a single problem solving trace. Alternatively, inductive approaches
acquire correct learned knowledge by observing a large set of examples [20, 26].

65

In this paper, we present HAMLET, 3 a system that learns control knowledge
incremental and inductively. HAMLET uses an initial deductive phase, where it
generates a bounded explanation of the problem solving episode. Upon experi-
encing each new problem solving episode, HAMLET refines its control knowledge
incrementally acquiring increasingly correct control knowledge.

The paper is organized in nine sections. Section 2 overviews the complete ar-
chitecture of HAMLET, and PRODIGY as the substrate problem solver. Section 3,.
4 and 5 discuss the three learning phases, namely the generation of the bounded
explanation from the problem solving search tree, the generalization of the rules
by induction, and the refinement strategy driven by encountered negative exam-
ples. Section 6 presents an example that illustrates the execution of the learning
algorithm on a problem from a logistics transportation domain. Section 7 shows
empirical results from different domains. Section 8 compares our approach with
previous related work. Finally section 9 draws conclusions.

2 Overv iew of the Arch i t ec tu re

HAMLET learns effectively control knowledge from a problem solving experience.
This work is developed within the nonlinear problem solver [22, 5] of the PRODIGY
architecture [6]. In this section we provide a description of PRODmY's nonlinear
planner and we also present HAMLET'S architectural components.

2.1 T h e S u b s t r a t e P r o b l e m Solver

The nonlinear problem solver in PRODIGY follows a means-ends analysis back-
ward chaining search procedure reasoning about multiple goals and multiple al-
ternative operators relevant to the goals. Figure 1 sketches the problem solver's
algorithm. The inputs to the procedure are the set of operators specifying the
task knowledge and a problem specified in terms of an initial configuration of
the world and a set of goals to be achieved.

The planning reasoning cycle, as shown in Figure 1, involves several decision
points, namely: the goal to select from the set of pending goals and subgoals
(steps 2-4); the operator to choose to achieve a particular goal; the bindings to
choose in order to instantiate the chosen operator (step 4 combines the opera-
tor and bindings selection); apply an operator whose preconditions are satisfied
(step 5) or continue subgoaling on a still unachieved goal (step 3-4). Dynamic
goal selection from the set of pending goals enables the planner to interleave
plans, exploiting common subgoals and addressing issues of resource contention.
Search control knowledge may be applied at all the above decision points: which
relevant operator to select from the possible available ones, which goal or sub-
goal to address next, whether to reduce a new subgoal or to apply a previously
selected operator whose preconditions are satisfied, or what objects in the state
to use as bindings of the typed variables in the operators. Decisions at all these

3 .HAMLET ~ stands for Heuristics Acquisition Method by Learning from sEarch Trees.

66

1. Check if the goal statement is true in the current state, or there is a reason
to s u s p e n d the current search path. If yes, then e i ther return the f inal plan or
backtrack.

2. Compute the set of pending goals ~, and the set of applicable operators .4.
3. Choose a goal G from ~ or select an operator A from .4 that is directly applicable.
4. If G has been chosen, then

- expand goal G, i.e., get the set O of relevant instantiated operators for the
goal G,

- choose an operator O from O,
- go to s tep 1.

5. If an operator A has been selected as directly applicable, then
- apply A,
- go to step 1.

Fig. 1. A skeleton of PRODIGY's nonlinear problem solving algorithm.

choices are taken based on user-given or learned control knowledge to guide the
search and convert it into an intelligent commitment search strategy [22]. Control
knowledge guides the search process and helps to prune the exponential search
space. Previous work in the linear planner of PRODIGY uses explanation-based
learning techniques [16] to extract from a problem solving trace the explanation
chain responsible for a success or failure and compile search control rules there-
from. Similar efforts within the linear planner of PRODIGY were done to learn
control rules from partially evaluating the domain theory [8, 19].

The paper presents instead our on-going work in learning individual control
rules for the nonlinear problem solver of PRODIGY [4]. We have identified sev-
eral challenging problems in extending directly the previous explanation-based
algorithms developed for the linear planner to the nonlinear one, since in non-
linear planning we face learning opportunities, including issues of plan quality,
and opportunistic decision making. Our work applies directly to nonlinear prob-
lem solving which trivially encompasses linear problem solving. In our nonlinear
problem solving framework, HAMLET learns control rules for individual decisions
compiling the conditions under which the rules are to be transferred to individual
decision steps in other problems. Alternative learning approaches in nonlinear
planning include learning complete generalized plans as in [12], or developing
a case-based learning method that provides cases as a form of global strategic
knowledge [24], as discussed in the related work section.

2.2 HAMLET's C o m p o n e n t s

HAMLET has three main modules: the Bounded-Explanation learner, the Inducer
and the Refiner. The Bounded-Explanation module learns control rules from the
search tree. These rules are either over-specific or over-general, so they should be
refined. The Induction module solves the problem of over-specificity by making
them more general from more positive examples. The Refinement module attacks

67

the over-generality by finding situations in which the learned rules were used
wrongly. HAMLET gradually learns and refines so that, at the end, it converges
to a concise set of correct control rules.

Figure 2 shows HAMLET's modules connected to PRODIGY. Figure 3 presents
the procedure schematically, where ST and ST' are search trees, L is the set of
control rules, L' is the set of new control rules learned by the Bounded Expla-
nation module, and L" is the set learned induced from L' and L. We explain in
detail each one of HAMLET'S components in the next sections.

Problem

Domain

Bounded
Explanation
Module

ST ST' $

m-- PRODIGY

n'

,, ,,

L

m-
ST ST'

Induction
Module

~ L''
Ref inement
Module

Fig. 2. HAMLET's high level architecture.

Let L refer to the set of learned control rules.
Let ST refer to a search tree.
Let P be a problem to be solved.
Initially L is empty.
For all P in training problems

ST = Result of solving P without any rules.
ST' = Result of solving P with current set of rules L.
L' = Bounded-Explanation(ST, ST')
L ' = Induee(L,L')
If needs-refinement-p(ST, ST')
Then L=Refine(ST, ST',L")

Fig. 3. A high level description of HAMLET's learning algorithm.

68

3 Bounded Explanation

In this initial phase, HAMLET learns control rules directly by loosely explaining
the problem solving search tree. The algorithm relies on three main parts: label-
ing and credit assignment on the search tree; the actual generation of the control
rules; and the generalization of the control rules.

3.1 Labe l ing t he Search Tree and Cred i t Ass ignment

When solving a problem, the problem solver generates a search tree. The domain
theory implicitly defines a subgoaling structure that links goals with the oper-
ators that achieve those goals. In a linear planner, the search tree reproduces
exactly this structure, since interleaving of goals and subgoals at different search
spaces is not allowed. However, in nonlinear problem solving, there is a variety
of different interleaved ways to traverse the subgoaling structure which are cap-
tured in the search tree. This leads to a very large search space so that there is
no tractable way to generate a correct explanation for the decisions made from
a unique problem solving experience.

The labeling algorithm of HAMLET traverses the search tree top-down to label
first the leaf nodes.I t assigns three kinds of labels to the leaf nodes: success, if it
was a solution path; failure, if it was a failed path; and unknown, if the planner
did not expand the node. After labeling the leaf nodes, it backs up the values up
to the root of the search tree. Figure 4 summarizes this labeling strategy. The
credit assignment is done at the same time as the labeling, and it consists of
identifying the decisions for which learning will occur.

At each decision choice to be learned, HAMLET has access to information
on the problem state and meta-level planning state, which is explicitly main-
tained in the search tree structure. Examples of meta-level knowledge at each
nodel available to the learning procedures, include the goals that had not been
achieved, the goal the planner is working on, and in general the alternatives
known to have failed or succeeded. This information is used by the generation
module to create the pre- and post-conditions of the control rules.

The parameter eagerp controls the situations from which control rules are
generated. If eagerp is true, HAMLET will learn a select rule, 4 whenever a node
has a success child. If eagerp is false, HAMLET follows a conservative learning
mode. A rule is then learned only if all of its children are labeled success or
failure and there is at least one child labeled failure. These two different modes
correspond to different levels of learning eagerness.

The parameter optimal-learning-p allows to learn only from the best solution
found, 5 where we can incorporate different quality criteria. If optimal-learning-p
is t~e, HAMLET delays learning until it traverses the complete tree and finds

A select rule, when applied, selects an alternative and rejects all others for which
there is not a select control rule.

5 We consider currently best as shortest solution and less number of nodes. We will
extend this criterium according to the results of [18].

69

,rocedure LABEL (node eagerp)

for all successors of node do

LABEL (successor eagerp)

case of

null(successors):

case of

solution-path: label node as success.

failed-path: label node as failure.

untried: label node as unknown.

there is at least one unknown successor:

if eagerp AND there are success children

then if optimal-learning-p

then store the "best" successor

else LEARN the "best" successor

label node as success

else label node as unknown.

there are only success and failure:

if optimal-learning-p

then store the "best" successor

else LEARN the "best" successor

label node as success.

there are only failures

label node as failure.

there are only successes

label node as success.

Fig. 4. A skeleton of the labeling and credit assignment algorithm

the best solution. In that case, after labeling, it descends only through the best
solution path, learning from every decision according to the selected level of
eagerness.

This algorithm builds upon some early previous work on learning and prob-
lem solving, including [14, 17]. We extend these pioneering methods in several
dimensions, as discussed in section 8.

3.2 G e n e r a t i o n of Cont ro l Rules

HAMLET proceeds to generate each control rule by acquiring its corresponding
pre- and postconditions. The preconditions of the control rule need to establish
the relevant conditions under which the decision was made and also define the
situations under which the rule can be re-applied. The appropriate set of features
that we consider in our bounded explanation technique has evolved from previous
work of the first author [3]. Although there is no guarantee that this set of
features is a sufficient set, there have been a number of iterations in the design of
the set, to generate our confidence on it. Furthermore the empirical experiments

70

confirm that the set is appropriate and the induction and refinement phases
increase its application efficiency.

HAMLET learns four kinds of control rules: select a goal from the set of pend-
ing goals, select an operator to achieve a goal, select bindings for the chosen
operators, and decide whether to apply an operator when its preconditions are
met in the current state of the search, or continue subgoaling selecting a goal
from the set of unachieved goals. Each rule corresponds to a generalized tar-
get concept. The target concepts are each one of the possible decisions to be
made attached to some of the preconditions required to make them. For in-
stance, for an operator decision, a target concept might be select operator <op>
to achieve the goal <goal>. The number of target concepts of a given domain
is 0 § P -t- 20 ~~ p(Oi), where O is the total number of operator schemas
in the domain, P is the number of predicates of the domain, and p(Oi) is the
number of postconditions of the operator Oi.S HAMLET generates a set of rules
for each target concept, each one with a conjunctive set of preconditions. This
representation can be viewed as the disjunction of conjunctive rules, as we can
learn several rules for the same target concept. This is equivalent, therefore, to
learning a DNF description of the target concept.

Each kind of control rule has a template for describing its preconditions.
The templates share a set of common features for all kinds of control rules, but
each one has certain local features. Examples of common features, which become
meta-predicates of the control language, are:

- True-in-state <assertion>: tests whether the <assertion> is true in the cur-
rent state of the search for the solution.

- Other-goals <list of goals>: test whether any of the goals in the <list of
goals> is a pending goal in the current node of the search tree.

- Prior-goal <goal>: tests whether <goal> is the first goal of the conceptual
path of the node the planner is in.

Similarly, examples of the other features are:

- Current-goal <goal>: tests whether the <goal> is the one that the planner
is trying to achieve.

- Candidate-applicable-op <operator>: tests whether the <operator> is ap-
plicable in the current state.

The preconditions of the control rules are created using the information on
the state and the meta~level state linked to the corresponding decision node in
the search tree. The postconditions are the decisions to be made, such as (se-
lect operator unstack), or (selecl~ goal (on <x> <y>))J See section 6 for an

e This number is t h e s u m o f t h e n u m b e r o f target concepts for each kind of learned
control rule. For instance, the select operator kind of control rule has two variables:
the operator, and a goal that can be achieved by that operator. Therefore, in this
case, the number of target concepts for that kind is 0)"~~ p(Oi).

7 Variables are represented in brackets.

7]

example of a learned control rule. After the rule has been created, it is parame-
terized, imposing the condition that two variables cannot be bound to the same
value. After the induction phase, the rule is checked against the possible negative
examples of the target concept. At the beginning, the set of negative examples for
each target concept is empty. Section 5 explains the refinement module includ-
ing how to identify negative examples. Section 6 shows an illustrative example
of the learning process.

Figure 5 shows an example of a learned control rule in the blocksworld do-
main [10] learned after PRODIGY solves the Sussman's anomaly [21]. The control
rule allows the problem solver to select the goal of holding a block, block1, over
the goal of having another block, block3, on top of block1, given that there are
three blocks on the table, and the goal of holding block1 was created as a subgoal
of the goal of having bloc~l on top of another block, block2. This control rule
allows PRODIGY later to solve similar nonlinear problems more efficiently than
before the rule is learned.

(control-rule SELECT-ON-1
(i f ((candidate-goal (HOLDING <BLOCKI>))

(prior-goal (ON <BLOCK1> <BLOCK2>))
(true-in-state (ON-TABLE <BLOCK1>))
(true-in-state (ON-TABLE <BLOCK2>))
(true-in-state (ON-TABLE <BLOCK3>))
(other-goals ((ON <BLOCK3> <BLOCKI>))))>

(then SELECT GOALS (HOLDING <BLOCK1>)))

Fig. 5. Rule ~arned in the blockswoddfor selecting the goM holdingover the goM on
forinter~fing block configurations.

4 Induc t ive Genera l i za t ion

The rules generated by the bounded explanation method may be over-specific,
as also analyzed in [9]. Particularly, the rules may be over-specific in the aspects
explained below. The more over-specific the rules are the lower the transfer to
other problems, s We follow up the deductive phase with a generalization algo-
rithm that inductively modifies the rules based on new examples, reducing the
set of preconditions. The rules may become over-general but their transfer poten-
tim increases. We have devised ways of inducing over the following aspects of the
learned knowledge, that practically cover all the features in the preconditions.

- State: Most of the rules are over-specific because they keep many irrelevant
features from the state.

s Note that in order to apply a control rule, we require that the rule totally matches
a decision making situation, i.e., all the preconditions need to be satisfied.

72

- Subgoaling structure: By relaxing the subgoaling links, for example as cap-
tured by the prior-goal meta-predicate, since the same goal can be generated
as a subgoal of many different goals (see section 3).

- Interacting goals: Identifying the correct subset of the set of pending goals
that affect a particular decision extending the learning scope also to quality
decisions.

- Type hierarchy: The generalization level to which the variables in the control
rules belong considering the ontological type hierarchy that is available in
the nonlinear version of PRODIGY.

- Operator types: Further learning from an operator hierarchy to enlarge the
scope of the generalization procedure.

The inductive component of HAMLET currently considers the following in-
ductive operators relative to one or more of the above aspects:

- Preserve main preconditions: HAMLET is able to remove "unimportant" pre-
conditions that are found not to affect the validity of the control rule. It keeps
the main preconditions, i.e., the preconditions that have.variables directly
related to the learned decision.

- Delete rules that subsume others: A rule subsumes another rule of the same
target concept if there is a substitution thai makes its preconditions a su-
perset of the other.

- Intersection of preconditions: From two rules, R1 and R2 of the same tar-
get concept, create a new rule with preconditions the intersection of the
preconditions of R1 and R2 (when the intersection is not empty).

- Refinement of subgoaling dependencies: If there are two rules, R1 and R2
sharing some preconditions, but their prior goals are different, they are
merged into a new rule that tests for the presence of any of the prior goals
of the two rules.

- Refinement of goal dependencies: Similar to the previous one, but, in this
case, it refers to the meta predicate other-goals.

- Relaxing the subgoaling dependency: If there is no evidence that the prior
goal is needed, it gets deleted until needed.

- Find common superclass: When two rules can be unified by two variables
that belong to subclasses of a common class (except for the root class), this
operator generalizes the variables to the common class. We implemented
previously a variation of this technique applied to the parameterization pro-
cedure of a single rule [2].

HAMLET tries to find an intersection of two rules using all these operators. If
it finds a correct intersection that does not cover any previous negative example,
a new rule is created, and the two previous ones are deleted. However HAMLET
can backtrack to that learning point, and try an alternative way of intersecting
the rules. This should not be considered as plain backtracking. When HAMLET

"backtracks" to that point, it accumulated more information than when the
alternative was generated, since it has found a new negative example, and it

73

can now do better generalizations. The inductive phase significantly improves
the transfer potential of the rules as it generalizes their application conditions.
The inductive operators are triggered by positive examples, but also take into
account the negative examples found so far as we describe in the next section.

5 R e f i n e m e n t

After the two previous learning phases, H A M L E T may have produced over-general
rules in special situations (due to the inductive operators, e.g., intersection). An
over-generM rule is beneficial for our inductive learning strategy as it may provide
negative examples of its application. There are two main issues to be addressed:
how to detect a negative example, and how to refine the learned knowledge
according to it (making the rule more specific).

A negative example for H A M L E T is a situation in which a control rule
was applied, and the resulting decision led to either a failure (instead
of the expected success), or a worse solution than the best one for that
decision.

Once identified a negative example for a certain rule, the negative example
is processed against all the current rules for the same target concept. Figure 6
shortly describes the procedures used for the refinement.

In a nutshell, the refinement module will try to relax the effect of the induc-
tive operators by adding the tests removed in the inductive steps. The goal is to
find a larger set of literals that covers the positive examples, but not the negative
examples. It first checks the type of the control rule. The types are deduced, in-
duced, and refined. Deduced are the rules generated by the Bounded-Explanation
module. Induced are the ones that were generated by inducing from two rules.
Refined are the ones generated by refining an existing rule, because it covered
negative examples. The procedure add.new-preconds (not shown) does the fol-
lowing: for each precondition of the whole rule, having in mind even the ones
that were not main preconditions, adds that precondition to the preconditions,
and tests whether it covers the negative examples or not. If not, then returns the
new preconditions. The procedure find-new-intersection (not shown) searches for
other bindings of the variables of the rules from where it generated the rule, so
that the new bindings substituted on the preconditions of one of those rules do
not cover the negative examples.

One of the key things of any inductive method is to capture the right features
in the learned description of a concept. In respect to this issue, the current
version of H A M L E T gets rid of irrelevant features if it learns positive examples of
a target concept that do not have those features in common, or it finds negative
examples of the target concept where those features are also present. In those
cases, the eager inductive and refinement modules will remove these features.
To speed up the convergence of the learning, we are currently introducing more
informed elaborated ways of removing and adding features from the description
of the target concept, such as information gain measures, similarly to [20]. These

74

~rocedure refine-rule (rule)
if covers-neEative-examples-p(rule)

then
if type(rule)=deduced

then refine-deduced-rule(rule)
else for all rulel in rules(target-concept(rule))

refine-induced-rule(rulel)
else if deletedp(rule)

then undelete-rule(rule)

rocedure refine-deduced-rule (rule)
preconditions=add-new-preconds(rule)
if preconditions

then create-rule(preconditions,postconditions(rule))
delete-rule(rule)

,rocedure refine-induced-rule (rule)
rule l=originat ing-rule I (rule)
rul e2=originat ing-rule2 (rule)
precondit ions--f ind-ne.-int ersect ion (rule I ,rule2)
if preconditions

then create-rule(preconditions ,postconditions(rule))
else refine-rule(rule I)

ref ine-rule (rule2)
delet e-rule (rule)

Fig. 6. High level description of the algorithm for the refinement of control rules.

methods have been tested on an analysis of a complete set of examples, and we
are now exploring extending them to our incremental learning procedures.

The hill climbing performance of our global learning algorithm will approach
the ultimately correct control knowledge by converging gradually closer from
'both over-specific and over-general rule sets. Our learning algorithm reasons
a b o u t and converges from points in the generalization space as it is prohibitively
costly to maintain both the specific and general sets as in the version space
method [17].

6 Illustrative Example

We show now an example of the learning method applied to a logistics domain
where we illustrate the phases of the generation of the control rules and their
inductive refinement. 9 In this domain, packages are to be moved among different
cities. Packages are carried within the same city in trucks and across cities in

9 This domMn was first introduced in [23].

75

airplanes. At each city, there are several locations, e.g. post offices and airports.
This transportation domain represents a considerable scale up in length of the
solution, size of the search space, and other difficult learning issues, such as non-
linearity, un-optimality of solutions, and a large number of planning alternatives.

Consider the following problem solving situation illustrated in Figure 7. There
are two cities, city1 and city~, with one post-office each, respectively post-office1
and post-office2, and with one airport each, namely airport1 and airport~. Ini-
tially, at post-office1, there are two objects, object1 and object3, and two trucks,
truck1 and truck3. At airport1 there is an airplane, airplane1, and another object,
object2. At city~, there is only one truck, truck2, at the city airport, airpovtE
There are two goals: object1 must be at post-office~, and airplane1 at airport2.
This problem is interesting because both the object and the airplane need to
be moved to a different city. HAMLET will learn, among other things, that the
object should be loaded into the airplane (or any other needed carrier) before
the airplane moves.

The optimal solution to this problem is the following sequence of steps:

- (load-truck object1 truck1 post-office1),
- (drive-truck truck1 post-office1 airpo~l),
- (unload-truck objectl truck1 airport1),
- (load-airplane object1 airplane1 airport1),
- (fly-airplane airplane1 airport1 airport2),
- (unload-airplane objectl airplane1 airport2),
- (load-truck object1 truck2 airport2),
- (drive-truck truck2 airport2 post-office2),
- (unload-truck objectl truck2 post-office2).

Cityl
Post O f f i c e l ~

l~Obl ~trl I iAi:p~

Cityl
Post O f f i c e l ~ ~ ' ~

City2
Post O f f i c e ~

Initial State
City2

Post O f ~

Goal Statement

Fig. 7. An illustrative example - initial state and goal statement

76

Notice that although in this example, the optimal plan corresponds to this
unique linearization, in general the learning procedure can reason about a partially-
ordered dependency network of the plan steps.

HAMLET labels and assigns credit to decisions made in the search tree gener-
ated by PRODmY. The rule in Figure 8 is learned at one of the decisions made,
namely when PRODmY finds that it should delay moving the carriers until the
object is loaded. 1~ The rule says that the planner should plan first to achieve
(inside-truck object1 truck1) before moving the carriers, including truck1 and
airplane1. This is a very effective control rule, since if the problem solver works
first on any of the other two goals, it will arrive to an un-optimal solution, where
carriers would have to do trips not needed.

(control-rule SELECT-INSIDE-TRUCK-1
(if ((target-goal (INSIDE-TRUCK <OBJECT1> <TRUCK1>))

(prior-goal (AT-OBJ <OBJECT1> <POST-OFFICE2>)) **
(true-in-state (AT-TRUCK <TRUCK1> <POST-OFFICE1>))
(true-in-state
(true-in-state
(true-in-state
(true-in-state
(true-in-state
(true-in-state
(true-in-state

(AT-TRUCK <TRUCK2> <AIRPORT2>))
(AT-TRUCK <TRUCK3> <POST-OFFICE1>)) *
(AT-AIRPLANE <AIRPLANEI> <AIRPORT1>))
(AT-OBJ <OBJECT1> <POST-OFFICE1>))
(AT-OBJ <OBJECT2> <AIRPORT1>))
(AT-OBJ <OBJECT3> <POST-OFFICEI>)),
(SAME-CITY <AIRPORT1> <POST-OFFICE1>))

(true-in-state (SAME-CITY <AIRPORT2> <POST-OFFICE2>))
(other-goals ((AT-TRUCK <TRUCK1> <AIRPORT1>)

(AT-AIRPLANE<AIRPLANE1> <AIRPORT2>)))))
(then SELECT GOALS (INSIDE-TRUCK <OBJECTI> <TRUCKI>)))

Fig. 8. Ru~ learned byHAMLETafter app~ing the Bounded-Explanation.

This example, though simple, 11 shows a learning opportunity that is needed
in order to deal with new problems effectively and with quality. This learning
possibility is not'encountered by a linear problem solver who handles multiple
goals independently. It would also not be compiled as a local choice by other
learning methods applied to nonlinear planning [12, 23].

The preconditions are the initial bounded explanation of the problem solving
decision. This rule is over-specific, since, among other things, it records the posi-
tions of other trucks available and another object present at the post office, which
turn out to be irrelevant features for this instantiated target concept. The opera-
tor Preserve Main Preconditions removes the preconditions that we marked with %

10 For simplicity we use the same names for the instances in the problem and the
variables in the rule. Note however that the names in the rules refer to general
variables.

11 In our extensive empirical tests we ran problems of much greater complexity. Sec-
tion 7 shows the results of some of these tests.

77

a star (*) in the description above. Note that there are still irrelevant features
kept, such as truck~ and object2, because they are at a location directly related
to the goals rejected in the decision, namely airporl~. The operator Relaxing
the Subgoaling Dependency removes the precondition on the prior-goal tha t we
marked with a double star (**).

Now suppose that we encounter a new problem where the goal is the same
but there are no additional trucks or objects, and there is an additional airplane.
Figure 9 shows a rule that HAMLET would learn in this case, after applying the
same operators as before.

(control-rule SELECT-INSIDE-TRUCK-2
(if ((target-goal (INSIDE-TRUCK <OBJECT1> <TRUCK1>))

(true-in-state (AT-TRUCK <TRUCK1> <POST-OFFICEI>))
(true-in-state (AT-AIRPLANE <AIRPLANE1> <AIRPORT1>))
(true-in-state (AT-AIRPLANE <AIRPLANE2> <AIRPORT1>))*
(true-in-state (AT-OBJ <OBJECT1> <POST-OFFICE1>))
(true-ln-state (SAME-CITY <AIRPORTI> <POST-OFFICE1>))
(other-goals ((AT-TRUCK <TRUCKI> <AIRPORT1>)))))

(then SELECT GOALS (INSIDE-TRUCK <OBJECTI> <TRUCK1>)))

Fig. 9. Ru~ learned by HAMLET in a second problem. It wiUh~p HAMLET generalize
the rulein Figure 8.

The inductive method combines these rules with the operator Intersection
of Preconditions, as they refer to the same decision. It also merges the goals in
the other-goals meta-predicate. HAMLET generates a new rule, which consists of
the intersection of the rules, being , therefore, more general than the initial two
rules. Figure 10 shows the resulting rule.

(c on t r o l - r u l e SELECT-INSIDE-TRUCK-3
(i f ((t a rge t -goa l (INSIDE-TRUCK <OBJECT1> <TRUCK1>))

(t r u e - i n - s t a t e (AT-TRUCK <TRUCK1> <POST-OFFICE1>))
(t r u e - i n - s t a t e (AT-AIRPLANE <AIRPLANE1> <AIRPORTI>))
(t r u e - i n - s t a t e (AT-OBJ <OBJECT1> <POST-OFFICE1>))
(t r u e - i n - s t a t e (SAME-CITY <AIRPORT1> <POST-OFFICE1>))
(o ther -goals ((AT-TRUCK <TRUCK1> <AIRPORT1>)

(AT-AIRPLANE <AIRPLANE1> <AIRPORT2>)))))
(then SELECT GOALS (INSIDE-TRUCK <OBJECT1> <TRUCK2>)))

Fig. 10. Rule induced ~omthe rules in Figures 8 and 9.

The induced rule is "almost" fully correct and it becomes "completely" cor-
rect after a couple of more training situations. Irrelevant features are removed
with more positive examples, while important features are captured by the re-

78

finement with negative examples. HAMLET proceeds in this hill-climbing way
searching the hypotheses space converging to the set of correct rules. 12 It in-
duces and generalizes upon experiencing positive examples and it refines the
learned control rules, when negative examples are found.

7 E m p i r i c a l R e s u l t s

We have been performing extensive empirical experiments in several domains.
We report here results from the logistics transportation domain [23] and the
blocksworld domain (where we experience nonlinear learning situations, similar
to the Sussman's anomaly [21]). The results illustrate our main claims about the
effectiveness of the combined deductive and inductive methods. The nonlinear
version of PRODIGY we are using has embedded several domain-independent
search heuristics [1]. Therefore, the substrate problem solver has some underlying
"intelligence" that makes it difficult for a learning mechanism to outperform it
by large. However, as we will show, HAMLET is able to perform considerably
better.

In the blocksworld, we used a set of 100 problems randomly generated from
which HAMLET learns the control rules. It learned 14 control rules. These rules
were applied to a test set of 200 randomly generated problems. We varied the
time bound given to PRODIGY to solve the problems from 100 to 300 seconds ob-
taining similar results for the different time bounds. Figure 11 shows the results
obtained with 100 seconds of time bound. The unsolved problems are accounted
for in the running time by a term equal to the running time bound.

In the logistics domain, we performed a training phase of 350 problems, 300
one-goal problems and 50 two-goal problems. We used the resulting learned 22
control rules in testing with three test sets of different complexity in terms of
initial state and number of goals. We again varied the time bounds, from 150 to
300 seconds, obtaining similar results to the ones shown in Figure 11 for a time
of bound of 150 seconds.

Number Unsolved problems Running time (sec) Nodes explored
Domain of Problems without with without with without I with

per Test Set rules rules rules rules rules t rules

Blocksworld 200 [I 43 I 19 H 5402 I 2872 U 34065] 9513
Logistics 300 II 57 I 25 II 9890 [5615]] 1344317798

Fig. 11. Table that reflects the performance of HAMLET in two different domains:
blocksworld and a logistics transportation domain.

12 Since it is an incremental inductive system, the performance of HAMLET depends on
the order of the examples given.

79

The main conclusion from the table is that the number of unsolved problems
drops from 21.5% to 9.5% in the blocksworld, and from i9% to 8.3% in the
logistics. This corresponds to a considerable increase in the solvability horizon of
the problem solver when using the rules. Also, since the matcher for the control
rules is not using any optimum retrieving and organization algorithm [7], the
time spent matching the rules represents the usual utility problem. The results
shown in the table are especially relevant as the use of the learned set of rules
outperformed the base-level problem solver even with the rudimentary marcher.

8 Re la t ed Work

There are several dimensions along which we can compare this work with pre-
vious approaches, including the representation, the granularity, the correctness
of the control knowledge, and the essence of the substrate problem solving algo-
rithm.

With respect to the representation, control guidance to prune the problem
solving search space has been introduced as additional preconditions of the oper-
ators of the domain in simple one-goal planning situations, such as in [14, 17]. In
our framework, control knowledge is explicitly distinct from the set o f operators
describing the domain knowledge because it introduces knowledge about the var-
ious problem solving decisions, such as selecting which goal/subgoal to address
next, which operator to apply, what bindings to select for the operator or where
to backtrack in case of failure. This clear division between the declarative domain
knowledge, i.e., the operators, and the more procedural control knowledge sim-
plifies both the initial specification of a domain and the automated acquisition,
i.e., the learning of the control knowledge.

Learned control knowledge can be local or global. Local control knowledge
is used on each decision of a problem solver, while global knowledge guides the
problem solver strategy as a whole. [23] develops a case-based learning method
for PRODIGY that consists of storing individual complete problems solved to
guide the planner when solving similar new problems. The guiding similar plans
provide global control knowledge in the sense that they consist of a chain of
decisions. Other examples of learning global knowledge although with different
granularities are [10, 11, 12, 13, 25]. These systems learn macro-operators or
complete generalized plans HAMLET, however, learns local control rules that ap-
ply independently to individual decision steps with greater potential for transfer.
We are already studying the integration of the two kinds of strategic knowledge,
since we believe they have complementary benefits to the problem solver.

Previous work has usually learned control knowledge on simple problem
solvers such as linear planners with no more than one goal [8, 14, 15, 16, 17,
19, 26]. In this kind of problem solver the underlying complexity of interleaving
goals at different levels of the search does not exist, so the learning methods lack
these learning opportunities. Other new learning opportunities not present in
linear problem solving, consist of opportunistic operator choices driven by other
planning goals. In our case, the nonlinear planner introduces this factor of corn-

80

plexity and the learning task becomes more challenging, due to having to find
the right language for describing the hypotheses among other things. Also, the
kinds of domalus/problems we use are more complex than the previously studied
ones, except in [23]. There is no immediately clear way to directly compare our
results to other systems that learn local control rules, because none applies to
nonlinear problem solving.

Another difference can be found in the way positive and negative instances
are presented to the system. Systems like [15, 20, 26] are one-step learning algo-
rithms in that they work on all examples at one time. However, HAMLET learns
incrementally the control knowledge.

Usually, rules produced by learning methods are worse than the ones pro-
duced by the experts. However, learning methods produce those control rules
much faster than the experts, since the acquisition of control knowledge is much
harder than the acquisition of domain knowledge. We believe that one could get
better results if one could present the learned rules to the expert and he or she
could refine them to make them more accurate. Then, the issue of clarity of the
rules is a major point and HAMLET'S rules are very easy to read and require very
little effort to debug or refine.

9 C o n c l u s i o n s

The approach we have presented addresses a new speedup learning strategy to ef-
ficiently acquire control knowledge for improving the performance of a nonlinear
problem solver. We proposed a solution where we combine a bounded deduc-
tive explanation method with an inductive technique. In this case, the tradeoff
between the accuracy of the learned control knowledge, and the learning effort
required is addressed by bounding the learning step with a fixed set of tests
that have been manually adapted from the experience of the authors. Upon ex-
periencing new problem solving episodes, HAMLET refines its control knowledge
incrementally acquiring increasingly correct control knowledge. Therefore, HAM-
LET combines analytical-based learning, using the problem solving search tree,
and induction-based learning, refining and generalizing the control rules from
examples. We showed empirical results that demonstrate the improvement that
this learning strategy provides to PRODIGY'S nonlinear problem.

A c k n o w l e d g e m e n t s

We greatly appreciate the help from Juan Pedro Cara~a-Valente in previous steps
of the research, and insightful comments from J aime Carbonell, Alicia P~rez, and
the anonymous reviewers.

This work was sponsored for the first author by a grant of the Ministerio de
Educaci6n y Ciencia and the project CO44-91 from Comunidad de Madrid.

For the second author, this research was sponsored by the Wright Labora-
tory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and

81

the Advanced Research Projects Agency (ARPA) under grant number F33615-
93-1-1330. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of Wright Laboratory
or the U. S. Government. The U. S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. This manuscript is submitted for publication with the under-
standing that the U. S. Government is authorized to reproduce and distribute
reprints for Governmental purposes.

References

1. Jim Blythe and Manuela M. Veloso. An analysis of search techniques for a totally-
ordered nonlinear planner. In Proceedings 0 I the First International Conference on
AI Planning Systems, College Park, MD, June 1992.

2. Daniel Borrajo, Juan P. Cara~a-Valente, and Jos~ Luis Morant. Learning heuris-
tics in planning. In Sixth International Conference on Systems Research, lnfor-
matics and Cybernetics, Baden-Baden, Germany, 1992.

3. Daniel Borrajo, Juan P. Caraqa-Valente, aatd Juan Pazos. A knowledge compila-
tion model for learning heuristics. In Proceedings of the Workshop on Knowledge
Compilation of the 9th International Con]erence on Machine Learning, Scotland,
1992.

4. Daniel Borrajo and Manuela Veloso. Bounded explanation and inductive re-
finement for acquiring control knowledgeL In Proceedings o] the Third Interns.
tional Workshop on Knowledge Compilatian and Speedup Learning, pages 21-27,
Amherst, MA, June 1993.

5. Jaime G. Carbonell, and the PRODIGY Research Group. PRODIGY4.0: The
manual and tutorial. Technical Report CMU-CS-92-150, School of Computer Sci-
ence, Carnegie Mellon University, June 1992.

6. Jalme G. Ca~bonell, Craig A. Knoblock, and Steven Minton. Prodigy: An inte-
grated architecture for planning and learning. In K. VanLehn, editor, Architectures
for Intelligence. Erlbanm, Hilisdale, N J, 1990. Also Technical Report CMU-CS-
89-189.

7. Robert B. Doorenbos and Manuela M. Veloso. Knowledge organization and the
utility problem. In Proceedings of the Third International Workshop on Knowledge
Compilation and Speedup Learning, pages 28-34, Amherst, MA, June 1993.

8. Oren Etzioni. A StructumI Theory of Ezplanation-Basat Learning. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1990. Available as tech-
nical report CMU-CS-90-185.

9. Oren Etzioni and Steven Minton. Why EBL produces overly-specific knowledge:
A critique of the prodigy approaches. In Proceedings of the Ninth International
Conference on Machine Learning, pages 137-143, 1992.

10. Richard E. Fikes ~nd Nils J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

11. G. A. Iba. A heuristic approach to the discovery of macro-operators. Machine
Learning, 3(4):285-317, 1989.

12. Subbarao Kambhampati and Smadar Kedar. Explanation based generalization of
partially ordered plans~ In Proceedings of AAAI.91, pages 679-685, 1991.

82

13. Richard E. Korf. Macro-operators: A weak method for learning. Artificial lnteUi.
gence, 26:35-77, 1985.

14. Pat Langley. Learning effective search heuristics. In Proceedings ol IJCAI.88,
pages 419-421, 1983.

15. C. Leckie and I. Zukerman. Learning search control rules for planning: An induc-
tive approach. In Proceedings ol Machine Learning Workshop, 1991.

16. Steven Minton. Learning Effective Search Control'Knowledge: An E~planation.
Based Approach. PhD thesis, Computer Science Department, Carnegie Mellon
UniverSity, 1988. Available as technical report CMU-CS-88-133.

17. Tom M. Mitchell, Paul E. Utgoff, and R. B. Banerji. Learning by experimentation:
Acquiring and refining problem-solving heuristics. In R. S. Michalski, J. G. Car-
bonell, and T. M. Mitchell, editors, Machine Learning, An Artificial Intelligence
Approach, pages 163-190. Tioga Press, Palo Alto, CA, 1983.

18. M. Allcia P6rez and Jaime G. Carbonell. Automated acquisition of control knowl-
edge to improve thequality of plans. Technical Report CMU-CS-93-142, School of
Computer Science, Carnegie Mellon University, April 1993.

19. M. Alicia Pdrez and Oren Etzioni. DYNAMIC: A new role for training problems
in EBL. In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth Inter-
national Conference on Machine Learning. Morgan Kaufmann, San Mateo, CA,
1992.

20. J. Ross Qninlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

21. Gerald J. Sussman. A Computer Model of Skill Acquisition. American Elsevier,
New York, 1975. Also available as technical report AI-TR-297, Artificial Intelli-
gence Laboratory, MIT, 1975.

22. Manuela M. Veloso. Nonlinear problem solving ilsing intelligent casual-
commitment. Technical Report CMU-CS-89-210, School of Computer Science,
Carnegie Mellon University, 1989.

23. Manuela M, Veloso. Learning by Analogical Reasoning in General Problem Solving.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, August 1992. Available as technical report CMU-CS-92-174.

24. Manuela M. Veloso and Jaime G. Carbonell. Derivational analogy in PRODIGY:
Automating case acquisition, storage, and utilization. Machine Learning, 10:249-
278, 1993.

25. Hun Yang and Douglas Fisher. Similarity-based retrieval and partial reuse of
macro-operators. Technical Report CS-92-13, Department of Computer Science,
Vanderbilt University, 1992.

26 . J. Zelle and R. Mooney. Combining FOIL and EBG to speed-up logic programs.
In Proceedings of IJCAI.93, 1993.

