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Abstract .  Algorithms based on Nested Generalized Exemplar (NGE) 
theory [10] classify new data points by computing their distance to the 
nearest "generalized exemplar" (i.e. an axis-parallel multidimensional 
rectangle). An improved version of NGE, called BNGE, was previously 
shown to perform comparably to the Nearest Neighbor algorithm. Ad- 
vantages of the NGE approach include compact representation of the 
training data and fast training and classification. A hybrid method that 
combines BNGE and the k-Nearest Neighbor algorithm, called KBNGE, 
is introduced for improved classification accuracy. Results from eleven 
domains show that KBNGE achieves generalization accuracies similar 
to the k-Nearest Neighbor algorithm at improved classification speed. 
KBNGE is a fast and easy to use inductive learning algorithm that gives 
very accurate predictions in a variety of domains and represents the 
learned knowledge in a manner that can be easily interpreted by the 
u s e r .  

1 I n t r o d u c t i o n  

Salzberg [10] describes a family of learning algorithms based on nested general- 
ized exemplars (NGE). In NGE, an exemplar is a single training example and 
a generalized exemplar is an axis-parallel hyperrectangle that  may cover sev- 
eral training examples. These hyperrectangles may overlap or nest. The NGE 
algorithm grows the hyperrectangles incrementally as training examples are pro- 
cessed. Once the generalized exemplars are learned, a test example can be classi- 
fied by computing the distance between the example and each of the generalized 
exemplars. If an example is contained inside a generalized exemplar, the dis- 
tance to that  generalized exemplar is zero. The class of the nearest generalized 
exemplar is assigned to the test example. 

The NGE approach can be viewed as a hybrid of nearest neighbor methods 
and propositional Horn clause rules. Like nearest neighbor methods, a distance 
metric is applied to match test examples to training examples. But like Horn 
clause rules, training examples can be generalized to be axis-parallel hyper- 
rectangles. Advantages of the NGE approach over other methods include fast 
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training, few user-defined parameters (one for NGE and none for BNGE, see 
below), compact representation of the training data, and the ability to inter- 
pret hyperrectangles as prototypes of the task. These prototypes can be used 
to justify or explain decisions made by the classifier. The NGE algorithm, as 
described in this paper, differs from Nearest Neighbor methods, including those 
with reduced exemplar sets [3, Chapter 6], through its rectangular bias and its 
ability to distinguish queries that fall inside of some hyperrectangles from those 
that are not covered by any hyperrectangle. It differs from Parzen Windows [9] 
in that hyperrectangles can be of varying sizes and edge lengths may be unequal. 

Salzberg [10] achieved promising classification results with NGE in three do- 
mains. However, Wettschereck &5 Dietterich [14] have reported that when tested 
in 11 additional domains, NGE does not perform as well as the nearest neigh- 
bor (NN) algorithm in 6 out of the 11. Wettschereck & Dietterich [14] point out 
some weaknesses of NGE and suggest ways to improve its performance. The 
single most successful improvement in predictive accuracy can be achieved by 
elimination of overlapping hyperrectangles. A weakness of the NGE algorithm 
is the need for expensive cross-validation to estimate the best value for the 
one user-defined parameter of NGE. This necessity for cross-validation can be 
avoided by training NGE in batch mode. This improved version of NGE, called 
BNGE ("Batch" NGE), is either superior to or indistinguishable from NGE in 
all domains tested, It was concluded that creation of overlapping hyperrectan- 
gles should be avoided when training NGE and that BNGE should be employed 
in place of NGE in any situation where batch learning is appropriate. The main 
advantages of BNGE over NGE are that BNGE often yields better data compres- 
sion and has no user-specified parameters thus making it easier to use. BNGE 
compares favorably to approaches based on neural networks in training time and 
experimenter's effort required to construct a classifier. For example, it takes only 
approximately 1 hour on a Sparc-2 workstation to construct a BNGE classifier 
for the 16000 training examples of the Letter Recognition domain described in 
Table 1. A classifier constructed by BNGE is generally faster than a Nearest 
Neighbor approach while neural networks often find more compact representa- 
tions of the training data thus making them faster at classification time. 

The potential advantages of NGE algorithms (data compression, fast learning 
and classification, interpretability of exemplars) are significant, but classification 
accuracy is still not satisfactory. This paper proposes and tests two additional 
modifications to the NGE algorithm. First, the amount of memory required by 
NGE algorithms can be further reduced after the classifier is constructed by 
pruning hyperrectangles that were not generalized during the training period. 
These trivial hyperrectangles contribute little to NGE's predictive accuracy, but 
they consume memory and increase the time needed for classification. Second, 
to achieve better classification accuracy, a hybrid algorithm that uses BNGE 
in areas of the input space that are covered by hyperrectangles and that uses 
kNN otherwise, is introduced and evaluated. We call this algorithm KBNGE. It 
is shown that, while BNGE is significantly inferior to the kNN algorithm in 6 
out of 11 domains, KBNGE is inferior to the kNN algorithm in only 1 domain 
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and yields better predictive accuracy in 2 other domains. Furthermore, KBNGE 
is shown to be faster than kNN in all domains. The KBNGE algorithm can be 
seen as a generalized Nearest Neighbor algorithm. Nearest Neighbor algorithms 
play an important role in inductive machine learning because of their simplicity 
and their ability to give highly accurate predictions after a short learning phase. 
The KBNGE algorithm shares these advantages and offers, in addition, fast 
classification and a compact representation of the most salient parts of the task 
learned. 

1.1 The  N G E  A l g o r i t h m  

Figure 1 summarizes the NGE algorithm following closely Salzberg's definition 
of NGE. NGE constructs hyperrectangles by processing the training examples 
sequentially. It is initialized by randomly selecting a user-defined number of seed 
training examples and constructing trivial (point) hyperrectangles for each seed. 
Each subsequent training example is first classified according to the existing set 
of hyperrectangles by computing the distance from the example to each hyper- 
rectangle. If the class of the nearest hyperrectangle and the training example 
coincide, then the nearest hyperrectangle is extended to include the training ex- 
ample, otherwise the second nearest hyperrectangle is tried (this is called the 
second match heuristic). Should both the first and second nearest hyperrectan- 
gles have different classes than the training example, then the training example 
is stored as a new (trivial) hyperrectangle. A query is classified according to 
the class of the nearest hyperrectangle. Distances are computed as follows: If 
an example lies outside of all existing hyperrectangles, a distance is computed 
according to a distance metric. If the example falls inside a hyperrectangle, its 
distance to that hyperrectangle is zero. If the example is equidistant to several 
hyperrectangles, the smallest of these is taken to be the "nearest" hyperrectan- 
gle. 

In our implementation of NGE, we first make a pass over the training ex- 
amples and normalize the values of each feature into the interval [0,1] (linear 
normalization [1]). Features of values in the test set are normalized by the same 
scaling factors (but note that they may fall outside the [0,1] range). Aside from 
this scaling pass, the algorithm is entirely incremental. 

The original NGE algorithm was designed for continuous features only. Dis- 
crete and symbolic features require a modification of the distance computation 
for NGE. We adopted for NGE the policy that for each symbolic or discrete fea- 
ture the set of covered feature values is stored for each hyperrectangle (analogous 
to storing the range of feature values for continuous features). A hyperrectangle 
then covers a certain feature value if that value is a member of the covered set. If 
a hyperrectangle is generalized to include a missing discrete or symbolic feature, 
then a flag is set such that the corresponding feature of the hyperrectangle will 
cover any feature value in the future. 

Each hyperrectangle H j is labeled with an output class. The hyperrectangle 
H j is represented by its lower left corner ( to ,o , r )  and its upper right corner (HJ~pp~,.) 

for continuous features and by the set of values (H j) covered for symbolic or 
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discrete features. The distance between H j and an example E with features fl  
through fnFeature, is defined as follows: 

I nFeati~: ulres D(E,H j) = d/,(E, HJ) 2 

where: 

if (fi continuous) 

else 

Efi J -- HJupper,f i 
df,(E, U j) = J - E/, Hlower,fl 

0 

{ ~ if Ef' E HJ 
dfi (E, H j) = otherwise 

if E/, > H j upper,fi 
J E/, if  Hlower, fi > 

otherwise 

Choice of the distance metric can significantly influence the performance 
of any distance-based machine learning algorithm in domains with continuous 
features [15]. Euclidean distance (L2-norm) is used in this paper for NGE. Note 
that the decision whether a query is inside or outside of a hyperrectangle is 
independent of the metric. On the other hand, the metric may heavily influence 
the number and shape of hyperrectangles constructed. 

1.2 The  Nea re s t  N e i g h b o r  Algorithm 

One of the most venerable algorithms in machine learning is the nearest neighbor 
algorithm (NN, see [3] for a survey of the literature). The entire training set is 
stored in memory. To classify a new example, the Euclidean distance (possibly 
weighted) is computed between the example and each stored training example, 
and the new example is assigned the class of the nearest neighboring example. 
Better classification accuracy can often be achieved by using more than the first 
nearest neighbor to classify a query. The number k of neighbors to be considered 
is usually determined via leave-one-out cross-validation [13]. Aha [1] describes 
several space-efficient variations of nearest-neighbor algorithms. 

1.3 Experimental Methods and Test Domains 

To measure the performance of the NGE and nearest neighbor algorithms, we 
employed the training set/test set methodology. Each data set was randomly 
partitioned into a training set containing approximately 70% of the patterns and 
a test set containing the remaining patterns (see also Table 1). After training 
on the training set, the percentage of correct classifications on the test set was 
measured. The procedure was repeated a total of 25 times to reduce statistical 
variation. In each experiment, the algorithms being compared were trained (and 
tested) on identical data sets to ensure that differences in performance were due 
entirely to the algorithms. 
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1. B u i l d  an  N G E  classifier  ( i npu t :  n u m b e r  s o f  seeds) :  

2. Initialization: / ,  assume training examples axe given in random order */ 

3. for each of the first s training examples E ~ call createHyperrectangle(E s) 

4. Training: 

5. for each remaining training example E: 

6. find the two H j with D(E, H j) minimal 

7. / .  in case of ties, choose the two H ~' with minimal area . /  
8. call these hyperrectangles H cl . . . .  t and H . . . . .  dct . . . .  t 

9. if (class(E) = =  class(H*'~ genera~ze(H*'~ 
10. else if (class(E) = =  class(H . . . . .  d ~, . . . .  *)) generalize(H . . . .  d r . . . .  *,E) 

11. else createttyperrectangle(E) 

12. G e n e r a l i z e  a h y p e r r e c t a n g l e :  

13. generalize(H, E) 

14. for all features of E do: 

15. H~pper,l~ = max( H,,vper, li , E/i) 

16. H~ . . . . .  11 = min(H~o~r,yi, E/i) 
17. replMissFeatures(H,E) 

18. C r e a t e  a h y p e r r e c t a n g l e :  

19. createHyperrectangle(E) 

20. H~pp,~ = E 

21. H~o~,r = E 

22. replMissFeatures(H, E) 

23. R e p l a c e  mi s s ing  f e a t u r e s  in  a h y p e r r e c t a n g l e :  

24. replMissFeatures(H,E) 

25. for all features of E do: 

26. if (feature i of E is missing) 

27. Hupper, li = 1 
28. Hto~#er,.fi = 0 

29. Class i f ica t ion  o f  a t e s t  e x a m p l e :  

30. classify(E) 

31. output: class(H j) with j = axgmini D(E ,H i) 

32. / .  in case of ties, choose H i out of all ties with minimal area . /  

Fig. I. Pseudo-code describing construction of an NGE classifier and classification of 
test exaznples. H genera/ly denotes a hyperrectangle and E an example. 

We have repor ted  the average percentage of  correct classifications and  its 
s t anda rd  error. Two- ta i led  paired t- tests  were conducted  to  determine the level 
of  significance at which one Mgor i thm ou tpe r fo rmed  another .  A per formance  
difference was considered significant when the  p-value was smaller  t h a n  0.05. 

Eleven domains  of  varying size and complexi ty  were used to  compare  the 
per formance  of  N G E  to  nearest  neighbor.  T he  first three da t a  sets are two di- 
mensional  da t a  sets especially const ructed  in Wettschereck & Dietterich [14] to  
evaluate NGE.  The  decision boundar ies  in Tasks A and C are rectangular ,  while 
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in Task B the boundary is diagonal. The data sets for the other eight domains 
were obtained from the UC-Irvine repository [1, 6] of machine learning databases. 
Table 1 describes some of the characteristics of the domains used. There are a 
few important points to note: (a) the Waveform-40 domain is identical to the 
Waveform-21 domain with the addition of 19 irrelevant features (having ran- 
dom values), (b) the Cleveland database [4] contains some missing features, and 
(c) many input features in the Hungarian database [4] and the Voting Record 
database are missing. 

Table 1. Domain characteristics (modified from Aha (1990)). B = Boolean, 
C = Continuous, N --- Nominal. 

Domain Training Test Number and Kind Number of 
Set Size Set Size of Features Classes 

Task A 350 150 2 C 2 
Task B 350 150 2 C 2 
Task C 350 150 2 C 10 
Iris 105 45 4 C 3 
Led-7 Display 200 500 7 B 10 
Waveform-21 300 100 21 C 3 
W~veform-40 300 100 40 C 3 
Cleveland 212 91 5 C, 3 B, 5 N 2 
Hungarian 206 88 5 C, 3 B, 5 N 2 
Voting 305 130 16 B 2 
Letter recog. 16000 4000 16 C 26 

2 Pruning 

One of the main advantages of NGE and its variations when compared to the 
Nearest Neighbor algorithm is that NGE often finds a more compact representa- 
tion of the data. For example, if all training patterns of one class can be described 
by a single rectangle, then BNGE will find that rectangle. Often, however, NGE 
and BNGE store trivial point-hyperrectangles. Since these hyperrectangles cover 
no significant part of the input space, they may contribute little to the general- 
ization accuracy of NGE while using up memory and slowing down the classifier 
during classification. Figure 2 describes the effect on the performance of BNGE 
if hyperrectangles that cover only one training example (BNGEpl), at most two 
training examples (BNGEp2), or at most five training examples (BNGEp~) were 
removed from the classifier prior to classification of the test examples. Pruning 
of exemplars that cover only one training example (i.e. were never generalized) 
significantly decreased the performance of BNGE only in the Cleveland domain. 
However, in the remaining ten domains, pruning of un-generalized hyperrectan- 
gles had little effect on the predictive accuracy of BNGE (and NGE, experiments 
not shown). The largest reduction in memory was achieved by removal of un- 
generalized exemplars in the Waveform domains. BNGE stored approximately 
140 hyperrectangles in these domains. On average, 4 hyperrectangles remained 
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after pruning in these domains, while no loss in predictive accuracy was observed. 
More than 75% of the hyperrectangles could be pruned in the Letter Recognition 
domain, also with no significant loss in predictive accuracy. A significant reduc- 
tion in storage was observed in all domains except in Task A, where BNGE had 
found the smallest possible representation of the training data without pruning. 
The slight improvement in performance in the Hungarian and Voting domains 
indicates that un-generalized exemplars may often represent noisy training ex- 
amples. Pruning could therefore be used to filter out noisy exemplars to improve 
speed and accuracy of the classifier. 

It is important to note that the main purpose of the pruning technique de- 
scribed here is to find a more compact BNGE classifier with somewhat similar 
classification accuracy. Since this approach is a modification of BNGE's bias, it 
may also suffer from the same problems as other pruning techniques [11] with 
respect to classification accuracy. However, pruning never increases the amount 
of storage required by BNGE. 

.~ 2 

�9 ~ E 
r 

i 
i 

f 
�9 BNGEpl - BNGE 

i i 

r 
B N G E  

BNGE~2 - BNGE [] BNGEp5 - BNGE 

Fig. 2. Performance differences between BNGE without pruning and BNGE with dif- 
ferent levels of pruning on the test set. The subscript px indicates that hyperrectangles 
which cover at most x training examples were removed before the dassifier was tested. 
Performance relative to BNGE without pruning is shown. These differences (*) are 
statistically significant (p < 0.05). 

Through inspection of hyperrectangles that were constructed by BNGEv~ in 
the Hungarian domain, we could, for example, determine that 4 of the 13 input 
features in this domain are completely irrelevant and that the typical patient 
who is likely to suffer from heart disease can be described as a middle-aged male 
experiencing atypical angina or asymptomatic chest pains with exercise-induced 
angina and a medium to high ST depression induced by exercise relative to 
rest. After pruning in the Voting Records domain only one hyperrectangle for 
Republicans and one for Democrats was left to describe the voting patterns of 
the members of the US congress in the legislative period described in that data 
set. In particular, the votes on adoption of the budget and the physician fee 
freeze were most informative, and 1] of the 16 features were irrelevant. 
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3 A H y b r i d  A l g o r i t h m  - K B N G E  

Figure 3 (and Table 4) compares the performances of the Nearest Neighbor algo- 
rithm (NN), BNGE, and KBNGE (see below) to those of the k-Nearest Neighbor 
algorithm (kNN, k determined via leave-one-out cross-validation [13]) in eleven 
domains. Shown are relative performance differences between kNN and the other 
algorithms compared. An asterisk appears when the difference is statistically 
significant. BNGE (without pruning) outperforms the first Nearest Neighbor al- 
gorithm (NN) in 3 domains and is outperformed by NN in 4 other domains. The 
k-Nearest Neighbor algorithm outperforms NN and BNGE in 6 domains, and 
BNGE shows better generalization performance than kNN in Tasks A and C. 

1 o -'~'~'~'~''" "~''~'''~'~ "~'~'~'(:" 

Z 

,io 

o~ 
- 5 -  

~ -10--  

* !~ 

ili 

[ ]  N N  - k N N  

r 

[ ]  B N G E  - k N N  

I 

K B N G E  - k N N  

k N N  

Fig. 3. Performance of NN, BNGE, and KBNGE relative to kNN. An �9 indicates 
that the performance difference between kNN and the other algorithms is statistically 
significant (p < 0.05). See Table 4 in appendix for detailed numbers. 

Table 2 shows results from a set of experiments that were conducted to 
determine where BNGE would commit most of its errors. Displayed are the 
percentages of test examples that were covered by at least one hyperrectangle 
(column 2), the percentage of these test examples that were misclassified (col- 
umn 3), the percentage of test examples that were outside of all hyperrectangles 
(column 4), and the percentage of these "outside"-test examples that were mis- 
classified (column 5). BNGE commits significantly more errors when predicting 
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Table 2. Comparison of correctness of classifications made by BNGE inside of hyper- 
rectangles versus outside. Numbers axe based on a single repetition. 

Percentage of test examples 
classified classified 

Domain inside of these incorrect outside of these incorrect 
Task A 93.3 0.0 6.7 20.0 
Task B 80.7 4.1 19.3 10.3 
Task C 76.0 0.9 24.0 38.9 
Iris 80.0 0.0 20.0 22.2 
Led-7 89.4 26.0 10.6 56.6 
Wave-21 26.0 11.5 74.0 33.8 
Wave-40 12.0 8.3 88.0 35.2 
Cleveland 30.8 3.6 69.2 33.3 
Hungarian 45.5 12.5 54.5 22.9 
Voting 83.0 2.8 17.0 13.6 
Letter recogn. 68.4 1.0 31.6 32.8 

the class of test examples that  are not inside any hyperrectangles than when 
predicting the class of test examples that  are inside hyperrectangles. Hence, we 
decided to use a different classifier for any queries that  are not covered by hy- 
perrectangles. In the experiments described in Fig. 3, the k-Nearest Neighbor 
algorithm was used as tha t  classifier) Un-generalized exemplars were pruned to 
accelerate the classifier. We call this hybrid method KBNGE to indicate tha t  it 
is a combination of BNGEvl and kNN. 

KBNGE has two main advantages over kNN: 1) Areas that  clearly belong to 
only one class are represented by only one hyperrectangle. This can often lead 
to significantly faster classification times. The computationally more expensive 
kNN classifier is only used to classify queries in areas with complex decision 
boundaries or high levels of noise. 2) The hyperrectangles constructed can be 
inspected and interpreted by the user. This may lead to a higher acceptance 
of the decisions made by KBNGE than of those made by kNN or by neural 
networks, for example. Figure 3 indicates that  KBNGE has the same predictive 
accuracy as kNN in 8 domains, is outperformed by kNN in the Cleveland domain, 
and outperforms kNN in Tasks A and C (level of significance p < 0.05). KBNGE 
is faster than kNN at classification t ime if the following rough formula is satisfied: 

#(training examples) > 
2 • #(hyperrectangles) + (I - x) • #(training examples) (1) 

where x is the percentage of test cases classified by BNGE. All other (1 - x)% 
of the test cases are classified by the kNN classifier. The value of z differs from 
domain to domain (see Table 3) and must be determined empirically. The jus- 
tification for the formula is that  kNN has to compare each query to all training 

x Once again, k values were determined via leave-one-out cross-validation [13]. Values 
of k varied significantly across domains and for different random partitions of the 
training data within most domains (see also Table 5). 
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examples, while KBNGE must compare each query to all hyperrectangles (a com- 
parison to a hyperrectangle is approximately twice as expensive as a comparison 
to a training example), and if the query is not covered by any hyperrectangles 
(which happens in ( 1 -  x)% of the cases), KBNGE must compare the query to all 
training examples. 2 Formula (1), evaluated with the data  displayed in Table 3, 
shows that  KBNGE is faster than kNN in M1 domains tested. It  can Mso be 
seen from that  table that  in domains with large amounts of noise (Waveform, 
Cleveland, and Hungarian), kNN is used very often, which indicates that  a noise 
tolerant version of BNGE should help to improve the speed of KBNGE even 
further. 

The number of training (and test) examples covered by any hyperrectangle 
differs significantly within and across domains. For example, a single hyper- 
rectangle is always constructed in the Iris domain to cover all instances of Iris 
Setosa, while in the Cleveland and Hungarian domains a single hyperrectangle 
never covers more than approximately 30% of the training (20% of the test) 
examples of its class. 

Table  3. Complexity of KBNGE. Shown are the number of hyperrectangles constructed 
by the BNGE part of KBNGE, the ratio of the number of hyperrectangles to the number 
of training examples (in parentheses), and the average percentage of test examples 
which were covered by at least one hyperrectangle. Numbers are means (4- standard 
error) over 25 experiments. 

Number of hyperrectangles Percentage of test examples 
Domain constructed by BNGEpl classified by BNGEpl* 
Const A 4.04-0.0 (1%) 96.7% 
Const B 18.24-0.6 (6%) 82.6% 
Const C 22.44-0.7 (7%) 83.8% 
Iris 4.64-0.3 (4%) 77.9% 
Led-7 31.04-0.6 (16%) 77.0% 
Wave-21 4.0=E0.1 (1%) 22.7% 
Wave-40 3.14-0.1 (1%) 14.4% 
Cleveland 23.04-0.8 (11%) 35.8% 
Hungarian 25,34-0.5 (12%) 49.8% 
Voting 12.34-0.7 (4%) 78.0% 
Letter recogn. 663.54-2.7 (4%) 68.3% 

* All other test examples were classified by kNN 

2 Formula (1) assumes that retrieval of training data is not conducted more efficiently 
with methods such as k-d trees [5] or box-trees [7]. In domains with many rele- 
vant features, neither k-d trees nor box-trees provide significant speedups over serial 
search. In domains where they do provide speedups, KBNGE could also be acceler- 
ated by storing the hyperrectangles in a box tree. 
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4 Conclus ions  and Discuss ion 

A batch version of NGE without overlapping hyperrectangles, called BNGE, 
was introduced in Wettschereck & Dietterich [14] and shown to significantly 
outperform NGE in most domains tested. A simple pruning technique, which 
significantly reduces the amount of storage required by NGE and BNGE, i s  

introduced in this paper. This significant simplification of the classifier had no 
negative effect on the predictive accuracy of BNGE (and NGE) in 10 of the 
11 domains tested. A very compact representation of the training data is found 
after a classifier is constructed with BNGE and pruned. This representation can 
be used to do the following: 

- Re-evaluate the representation. For example, we were able to determine in 
several domains through inspection of the hyperrectangles after training and 
pruning that some of the input features were irrelevant. 

- Learn about the task. If only a few hyperrectangles are necessary to describe 
a task, then it can be said that it has a low level of noise and that  one might 
be able to construct a rule-based system from the hyperrectangles to solve 
the task. If a large number of small hyperrectangles is necessary, then the 
task at hand is either extremely complex or the input representation is not 
powerful enough and should be modified. 

- Assign levels of confidence to decisions. Queries that fall inside of hyper- 
rectangles constructed by BNGE are significantly more likely to be classified 
correctly than queries outside of all hyperrectangles. 

- Determine which regions of the input space are not adequately covered by 
training examples. This could prompt the experimenter either to collect more 
data or to clearly define which inputs can be processed by the system and 
which should be rejected. The ability for the user to easily interpret ex- 
emplars as prototypes of the task to be learned is a significant advantage 
of hyperrectangular based methods over such methods as kNN, neural net- 
works, or decision trees. 

A hybrid method, called KBNGE, that uses BNGE in areas that clearly 
belong to one output class and kNN otherwise was introduced and shown to 
have accuracy similar to kNN at improved classification speed in a large number 
of applications. In the majority of the domains tested, over 70% of the test 
examples were classified by the hyperrectangular based part of KBNGE, thus 
making it significantly faster than kNN at classification time and enabling the 
system to justify most of its decisions in a manner that can be easily understood 
by the user. Note that the pruning technique used by KBNGE (un-generalized 
hyperrectangles are removed) influences the classification accuracy of KBNGE 
only for queries that perfectly match a given trivial hyperrectangle and only if 
k # 1. In all other cases, pruning only affects the speed of KBNGE. 

A flaw of the current version of BNGE is that it constructs hyperrectangles 
only in those parts of the input space that contain no noisy patterns. Future work 
will introduce noise tolerance into the BNGE algorithm by introducing a mech- 
anism for accepting merges of hyperrectangles even if examples of other classes 
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would be covered. A conceivable approach would be Omohundro's bottom-up 
model merging approach [8], for example. 

The KBNGE algorithm exhibits classification accuracies comparable to the 
best known accuracies, it is fast in training and testing time, and it is easy to 
use. We believe KBNGE is an important tool to include in the set of commonly 
used machine learning algorithms. 
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Appendix 

Table  4. Percent accuracy (4- standard error) on test set. Shown axe mean perfor- 
mances over 25 repetitions, standard error. These (* t o) differences to kNN are sta- 
tisticaJly significant. 

Performance 
Domain NN kNN BNGE KBNGE 
Const A 97.74-0.4* 96.74-0.4 99.4+0.1T 99.0+0.2 t 
Const B 97.94-0.3" 97.24-0.5 96.24-0.4 96.84-0.3 
Const C 83.54-0.7 83.04-0.7 91.34-0.4 t 92.1+0.3 t 
Iris 95.24-0.4 95.64-0.5 95.84-0.4 95.64-0.4 
Led-7 70.54-0.6 t 72.34-0.6 68.94-0.6 ? 71.94-0.6 
Wave-21 75.24-1.1 t 81.94-0.9 69.44-1.1 t 81.24-0.7" 
Wave-40 69.14-0.8 t 80.74-1.1 66.8+1.1 t 80.64-1.0 
Cleveland 77.8+0.9 t 83.44-0.5 79.64-1.1" 83.24-0.6 
Hungarian 75.9+0.8 t 82.04-1.0 77.6+1.1 t 81.54-1.0 
Voting 87.34-0.7 ? 93.34-0.5 91.64-1.7 93.74-0.5 
Letter recognition 95.84-0.1 95.84-0.1 89.1+0.1 t 95.74-0.0 

l: p < 0.001, *: p < 0.005, *: p < 0.05 

Tab le  5. Values of k used by KBNGE. 

Domain 
Const A 
Const B 
Const C 
Iris 
Ledo7 
Wave-21 
Wave-40 
Cleveland 
Hungaxian 
Voting 
Letter recognition 

rain 
1 
1 
1 
1 
2 
7 

14 
3 

21 
3 
1 

k value 
max average 

99 24.7+6.7 
27 6.5+1.5 

5 1.6+0.2 
18 8.0+0.8 
7 4.34-0.4 

92 34.4+4.2 
93 43.3~5.0 
57 18.64-3.5 
57 37.24-2.3 
10 6.1• 

1 1.04-O.O 


