
A Hybrid Nearest-Neighbor and
Nearest-Hyperrectangle Algorithm

Dietrich Wettschereck

Dearborn Hall 303
Department of Computer Science

Oregon State University
Corvallis, OR 97331-3202

USA
wettscd@cs.orst.edu

Abstract . Algorithms based on Nested Generalized Exemplar (NGE)
theory [10] classify new data points by computing their distance to the
nearest "generalized exemplar" (i.e. an axis-parallel multidimensional
rectangle). An improved version of NGE, called BNGE, was previously
shown to perform comparably to the Nearest Neighbor algorithm. Ad-
vantages of the NGE approach include compact representation of the
training data and fast training and classification. A hybrid method that
combines BNGE and the k-Nearest Neighbor algorithm, called KBNGE,
is introduced for improved classification accuracy. Results from eleven
domains show that KBNGE achieves generalization accuracies similar
to the k-Nearest Neighbor algorithm at improved classification speed.
KBNGE is a fast and easy to use inductive learning algorithm that gives
very accurate predictions in a variety of domains and represents the
learned knowledge in a manner that can be easily interpreted by the
u s e r .

1 I n t r o d u c t i o n

Salzberg [10] describes a family of learning algorithms based on nested general-
ized exemplars (NGE). In NGE, an exemplar is a single training example and
a generalized exemplar is an axis-parallel hyperrectangle that may cover sev-
eral training examples. These hyperrectangles may overlap or nest. The NGE
algorithm grows the hyperrectangles incrementally as training examples are pro-
cessed. Once the generalized exemplars are learned, a test example can be classi-
fied by computing the distance between the example and each of the generalized
exemplars. If an example is contained inside a generalized exemplar, the dis-
tance to that generalized exemplar is zero. The class of the nearest generalized
exemplar is assigned to the test example.

The NGE approach can be viewed as a hybrid of nearest neighbor methods
and propositional Horn clause rules. Like nearest neighbor methods, a distance
metric is applied to match test examples to training examples. But like Horn
clause rules, training examples can be generalized to be axis-parallel hyper-
rectangles. Advantages of the NGE approach over other methods include fast

324

training, few user-defined parameters (one for NGE and none for BNGE, see
below), compact representation of the training data, and the ability to inter-
pret hyperrectangles as prototypes of the task. These prototypes can be used
to justify or explain decisions made by the classifier. The NGE algorithm, as
described in this paper, differs from Nearest Neighbor methods, including those
with reduced exemplar sets [3, Chapter 6], through its rectangular bias and its
ability to distinguish queries that fall inside of some hyperrectangles from those
that are not covered by any hyperrectangle. It differs from Parzen Windows [9]
in that hyperrectangles can be of varying sizes and edge lengths may be unequal.

Salzberg [10] achieved promising classification results with NGE in three do-
mains. However, Wettschereck &5 Dietterich [14] have reported that when tested
in 11 additional domains, NGE does not perform as well as the nearest neigh-
bor (NN) algorithm in 6 out of the 11. Wettschereck & Dietterich [14] point out
some weaknesses of NGE and suggest ways to improve its performance. The
single most successful improvement in predictive accuracy can be achieved by
elimination of overlapping hyperrectangles. A weakness of the NGE algorithm
is the need for expensive cross-validation to estimate the best value for the
one user-defined parameter of NGE. This necessity for cross-validation can be
avoided by training NGE in batch mode. This improved version of NGE, called
BNGE ("Batch" NGE), is either superior to or indistinguishable from NGE in
all domains tested, It was concluded that creation of overlapping hyperrectan-
gles should be avoided when training NGE and that BNGE should be employed
in place of NGE in any situation where batch learning is appropriate. The main
advantages of BNGE over NGE are that BNGE often yields better data compres-
sion and has no user-specified parameters thus making it easier to use. BNGE
compares favorably to approaches based on neural networks in training time and
experimenter's effort required to construct a classifier. For example, it takes only
approximately 1 hour on a Sparc-2 workstation to construct a BNGE classifier
for the 16000 training examples of the Letter Recognition domain described in
Table 1. A classifier constructed by BNGE is generally faster than a Nearest
Neighbor approach while neural networks often find more compact representa-
tions of the training data thus making them faster at classification time.

The potential advantages of NGE algorithms (data compression, fast learning
and classification, interpretability of exemplars) are significant, but classification
accuracy is still not satisfactory. This paper proposes and tests two additional
modifications to the NGE algorithm. First, the amount of memory required by
NGE algorithms can be further reduced after the classifier is constructed by
pruning hyperrectangles that were not generalized during the training period.
These trivial hyperrectangles contribute little to NGE's predictive accuracy, but
they consume memory and increase the time needed for classification. Second,
to achieve better classification accuracy, a hybrid algorithm that uses BNGE
in areas of the input space that are covered by hyperrectangles and that uses
kNN otherwise, is introduced and evaluated. We call this algorithm KBNGE. It
is shown that, while BNGE is significantly inferior to the kNN algorithm in 6
out of 11 domains, KBNGE is inferior to the kNN algorithm in only 1 domain

325

and yields better predictive accuracy in 2 other domains. Furthermore, KBNGE
is shown to be faster than kNN in all domains. The KBNGE algorithm can be
seen as a generalized Nearest Neighbor algorithm. Nearest Neighbor algorithms
play an important role in inductive machine learning because of their simplicity
and their ability to give highly accurate predictions after a short learning phase.
The KBNGE algorithm shares these advantages and offers, in addition, fast
classification and a compact representation of the most salient parts of the task
learned.

1.1 The N G E A l g o r i t h m

Figure 1 summarizes the NGE algorithm following closely Salzberg's definition
of NGE. NGE constructs hyperrectangles by processing the training examples
sequentially. It is initialized by randomly selecting a user-defined number of seed
training examples and constructing trivial (point) hyperrectangles for each seed.
Each subsequent training example is first classified according to the existing set
of hyperrectangles by computing the distance from the example to each hyper-
rectangle. If the class of the nearest hyperrectangle and the training example
coincide, then the nearest hyperrectangle is extended to include the training ex-
ample, otherwise the second nearest hyperrectangle is tried (this is called the
second match heuristic). Should both the first and second nearest hyperrectan-
gles have different classes than the training example, then the training example
is stored as a new (trivial) hyperrectangle. A query is classified according to
the class of the nearest hyperrectangle. Distances are computed as follows: If
an example lies outside of all existing hyperrectangles, a distance is computed
according to a distance metric. If the example falls inside a hyperrectangle, its
distance to that hyperrectangle is zero. If the example is equidistant to several
hyperrectangles, the smallest of these is taken to be the "nearest" hyperrectan-
gle.

In our implementation of NGE, we first make a pass over the training ex-
amples and normalize the values of each feature into the interval [0,1] (linear
normalization [1]). Features of values in the test set are normalized by the same
scaling factors (but note that they may fall outside the [0,1] range). Aside from
this scaling pass, the algorithm is entirely incremental.

The original NGE algorithm was designed for continuous features only. Dis-
crete and symbolic features require a modification of the distance computation
for NGE. We adopted for NGE the policy that for each symbolic or discrete fea-
ture the set of covered feature values is stored for each hyperrectangle (analogous
to storing the range of feature values for continuous features). A hyperrectangle
then covers a certain feature value if that value is a member of the covered set. If
a hyperrectangle is generalized to include a missing discrete or symbolic feature,
then a flag is set such that the corresponding feature of the hyperrectangle will
cover any feature value in the future.

Each hyperrectangle H j is labeled with an output class. The hyperrectangle
H j is represented by its lower left corner (to ,o , r) and its upper right corner (HJ~pp~,.)

for continuous features and by the set of values (H j) covered for symbolic or

326

discrete features. The distance between H j and an example E with features fl
through fnFeature, is defined as follows:

I nFeati~: ulres D(E,H j) = d/,(E, HJ) 2

where:

if (fi continuous)

else

Efi J -- HJupper,f i
df,(E, U j) = J - E/, Hlower,fl

0

{ ~ if Ef' E HJ
dfi (E, H j) = otherwise

if E/, > H j upper,fi
J E/, if Hlower, fi >

otherwise

Choice of the distance metric can significantly influence the performance
of any distance-based machine learning algorithm in domains with continuous
features [15]. Euclidean distance (L2-norm) is used in this paper for NGE. Note
that the decision whether a query is inside or outside of a hyperrectangle is
independent of the metric. On the other hand, the metric may heavily influence
the number and shape of hyperrectangles constructed.

1.2 The Nea re s t N e i g h b o r Algorithm

One of the most venerable algorithms in machine learning is the nearest neighbor
algorithm (NN, see [3] for a survey of the literature). The entire training set is
stored in memory. To classify a new example, the Euclidean distance (possibly
weighted) is computed between the example and each stored training example,
and the new example is assigned the class of the nearest neighboring example.
Better classification accuracy can often be achieved by using more than the first
nearest neighbor to classify a query. The number k of neighbors to be considered
is usually determined via leave-one-out cross-validation [13]. Aha [1] describes
several space-efficient variations of nearest-neighbor algorithms.

1.3 Experimental Methods and Test Domains

To measure the performance of the NGE and nearest neighbor algorithms, we
employed the training set/test set methodology. Each data set was randomly
partitioned into a training set containing approximately 70% of the patterns and
a test set containing the remaining patterns (see also Table 1). After training
on the training set, the percentage of correct classifications on the test set was
measured. The procedure was repeated a total of 25 times to reduce statistical
variation. In each experiment, the algorithms being compared were trained (and
tested) on identical data sets to ensure that differences in performance were due
entirely to the algorithms.

327

1. B u i l d an N G E classifier (i npu t : n u m b e r s o f seeds) :

2. Initialization: / , assume training examples axe given in random order */

3. for each of the first s training examples E ~ call createHyperrectangle(E s)

4. Training:

5. for each remaining training example E:

6. find the two H j with D(E, H j) minimal

7. / . in case of ties, choose the two H ~' with minimal area . /
8. call these hyperrectangles H cl t and H dct t

9. if (class(E) = = class(H*'~ genera~ze(H*'~
10. else if (class(E) = = class(H d ~, *)) generalize(H d r *,E)

11. else createttyperrectangle(E)

12. G e n e r a l i z e a h y p e r r e c t a n g l e :

13. generalize(H, E)

14. for all features of E do:

15. H~pper,l~ = max(H,,vper, li , E/i)

16. H~ 11 = min(H~o~r,yi, E/i)
17. replMissFeatures(H,E)

18. C r e a t e a h y p e r r e c t a n g l e :

19. createHyperrectangle(E)

20. H~pp,~ = E

21. H~o~,r = E

22. replMissFeatures(H, E)

23. R e p l a c e mi s s ing f e a t u r e s in a h y p e r r e c t a n g l e :

24. replMissFeatures(H,E)

25. for all features of E do:

26. if (feature i of E is missing)

27. Hupper, li = 1
28. Hto~#er,.fi = 0

29. Class i f ica t ion o f a t e s t e x a m p l e :

30. classify(E)

31. output: class(H j) with j = axgmini D(E ,H i)

32. / . in case of ties, choose H i out of all ties with minimal area . /

Fig. I. Pseudo-code describing construction of an NGE classifier and classification of
test exaznples. H genera/ly denotes a hyperrectangle and E an example.

We have repor ted the average percentage of correct classifications and its
s t anda rd error. Two- ta i led paired t- tests were conducted to determine the level
of significance at which one Mgor i thm ou tpe r fo rmed another . A per formance
difference was considered significant when the p-value was smaller t h a n 0.05.

Eleven domains of varying size and complexi ty were used to compare the
per formance of N G E to nearest neighbor. T he first three da t a sets are two di-
mensional da t a sets especially const ructed in Wettschereck & Dietterich [14] to
evaluate NGE. The decision boundar ies in Tasks A and C are rectangular , while

328

in Task B the boundary is diagonal. The data sets for the other eight domains
were obtained from the UC-Irvine repository [1, 6] of machine learning databases.
Table 1 describes some of the characteristics of the domains used. There are a
few important points to note: (a) the Waveform-40 domain is identical to the
Waveform-21 domain with the addition of 19 irrelevant features (having ran-
dom values), (b) the Cleveland database [4] contains some missing features, and
(c) many input features in the Hungarian database [4] and the Voting Record
database are missing.

Table 1. Domain characteristics (modified from Aha (1990)). B = Boolean,
C = Continuous, N --- Nominal.

Domain Training Test Number and Kind Number of
Set Size Set Size of Features Classes

Task A 350 150 2 C 2
Task B 350 150 2 C 2
Task C 350 150 2 C 10
Iris 105 45 4 C 3
Led-7 Display 200 500 7 B 10
Waveform-21 300 100 21 C 3
W~veform-40 300 100 40 C 3
Cleveland 212 91 5 C, 3 B, 5 N 2
Hungarian 206 88 5 C, 3 B, 5 N 2
Voting 305 130 16 B 2
Letter recog. 16000 4000 16 C 26

2 Pruning

One of the main advantages of NGE and its variations when compared to the
Nearest Neighbor algorithm is that NGE often finds a more compact representa-
tion of the data. For example, if all training patterns of one class can be described
by a single rectangle, then BNGE will find that rectangle. Often, however, NGE
and BNGE store trivial point-hyperrectangles. Since these hyperrectangles cover
no significant part of the input space, they may contribute little to the general-
ization accuracy of NGE while using up memory and slowing down the classifier
during classification. Figure 2 describes the effect on the performance of BNGE
if hyperrectangles that cover only one training example (BNGEpl), at most two
training examples (BNGEp2), or at most five training examples (BNGEp~) were
removed from the classifier prior to classification of the test examples. Pruning
of exemplars that cover only one training example (i.e. were never generalized)
significantly decreased the performance of BNGE only in the Cleveland domain.
However, in the remaining ten domains, pruning of un-generalized hyperrectan-
gles had little effect on the predictive accuracy of BNGE (and NGE, experiments
not shown). The largest reduction in memory was achieved by removal of un-
generalized exemplars in the Waveform domains. BNGE stored approximately
140 hyperrectangles in these domains. On average, 4 hyperrectangles remained

329

after pruning in these domains, while no loss in predictive accuracy was observed.
More than 75% of the hyperrectangles could be pruned in the Letter Recognition
domain, also with no significant loss in predictive accuracy. A significant reduc-
tion in storage was observed in all domains except in Task A, where BNGE had
found the smallest possible representation of the training data without pruning.
The slight improvement in performance in the Hungarian and Voting domains
indicates that un-generalized exemplars may often represent noisy training ex-
amples. Pruning could therefore be used to filter out noisy exemplars to improve
speed and accuracy of the classifier.

It is important to note that the main purpose of the pruning technique de-
scribed here is to find a more compact BNGE classifier with somewhat similar
classification accuracy. Since this approach is a modification of BNGE's bias, it
may also suffer from the same problems as other pruning techniques [11] with
respect to classification accuracy. However, pruning never increases the amount
of storage required by BNGE.

.~ 2

�9 ~ E
r

i
i

f
�9 BNGEpl - BNGE

i i

r
B N G E

BNGE~2 - BNGE [] BNGEp5 - BNGE

Fig. 2. Performance differences between BNGE without pruning and BNGE with dif-
ferent levels of pruning on the test set. The subscript px indicates that hyperrectangles
which cover at most x training examples were removed before the dassifier was tested.
Performance relative to BNGE without pruning is shown. These differences (*) are
statistically significant (p < 0.05).

Through inspection of hyperrectangles that were constructed by BNGEv~ in
the Hungarian domain, we could, for example, determine that 4 of the 13 input
features in this domain are completely irrelevant and that the typical patient
who is likely to suffer from heart disease can be described as a middle-aged male
experiencing atypical angina or asymptomatic chest pains with exercise-induced
angina and a medium to high ST depression induced by exercise relative to
rest. After pruning in the Voting Records domain only one hyperrectangle for
Republicans and one for Democrats was left to describe the voting patterns of
the members of the US congress in the legislative period described in that data
set. In particular, the votes on adoption of the budget and the physician fee
freeze were most informative, and 1] of the 16 features were irrelevant.

330

3 A H y b r i d A l g o r i t h m - K B N G E

Figure 3 (and Table 4) compares the performances of the Nearest Neighbor algo-
rithm (NN), BNGE, and KBNGE (see below) to those of the k-Nearest Neighbor
algorithm (kNN, k determined via leave-one-out cross-validation [13]) in eleven
domains. Shown are relative performance differences between kNN and the other
algorithms compared. An asterisk appears when the difference is statistically
significant. BNGE (without pruning) outperforms the first Nearest Neighbor al-
gorithm (NN) in 3 domains and is outperformed by NN in 4 other domains. The
k-Nearest Neighbor algorithm outperforms NN and BNGE in 6 domains, and
BNGE shows better generalization performance than kNN in Tasks A and C.

1 o -'~'~'~'~''" "~''~'''~'~ "~'~'~'(:"

Z

,io

o~
- 5 -

~ -10--

* !~

ili

[] N N - k N N

r

[] B N G E - k N N

I

K B N G E - k N N

k N N

Fig. 3. Performance of NN, BNGE, and KBNGE relative to kNN. An �9 indicates
that the performance difference between kNN and the other algorithms is statistically
significant (p < 0.05). See Table 4 in appendix for detailed numbers.

Table 2 shows results from a set of experiments that were conducted to
determine where BNGE would commit most of its errors. Displayed are the
percentages of test examples that were covered by at least one hyperrectangle
(column 2), the percentage of these test examples that were misclassified (col-
umn 3), the percentage of test examples that were outside of all hyperrectangles
(column 4), and the percentage of these "outside"-test examples that were mis-
classified (column 5). BNGE commits significantly more errors when predicting

331

Table 2. Comparison of correctness of classifications made by BNGE inside of hyper-
rectangles versus outside. Numbers axe based on a single repetition.

Percentage of test examples
classified classified

Domain inside of these incorrect outside of these incorrect
Task A 93.3 0.0 6.7 20.0
Task B 80.7 4.1 19.3 10.3
Task C 76.0 0.9 24.0 38.9
Iris 80.0 0.0 20.0 22.2
Led-7 89.4 26.0 10.6 56.6
Wave-21 26.0 11.5 74.0 33.8
Wave-40 12.0 8.3 88.0 35.2
Cleveland 30.8 3.6 69.2 33.3
Hungarian 45.5 12.5 54.5 22.9
Voting 83.0 2.8 17.0 13.6
Letter recogn. 68.4 1.0 31.6 32.8

the class of test examples that are not inside any hyperrectangles than when
predicting the class of test examples that are inside hyperrectangles. Hence, we
decided to use a different classifier for any queries that are not covered by hy-
perrectangles. In the experiments described in Fig. 3, the k-Nearest Neighbor
algorithm was used as tha t classifier) Un-generalized exemplars were pruned to
accelerate the classifier. We call this hybrid method KBNGE to indicate tha t it
is a combination of BNGEvl and kNN.

KBNGE has two main advantages over kNN: 1) Areas that clearly belong to
only one class are represented by only one hyperrectangle. This can often lead
to significantly faster classification times. The computationally more expensive
kNN classifier is only used to classify queries in areas with complex decision
boundaries or high levels of noise. 2) The hyperrectangles constructed can be
inspected and interpreted by the user. This may lead to a higher acceptance
of the decisions made by KBNGE than of those made by kNN or by neural
networks, for example. Figure 3 indicates that KBNGE has the same predictive
accuracy as kNN in 8 domains, is outperformed by kNN in the Cleveland domain,
and outperforms kNN in Tasks A and C (level of significance p < 0.05). KBNGE
is faster than kNN at classification t ime if the following rough formula is satisfied:

#(training examples) >
2 • #(hyperrectangles) + (I - x) • #(training examples) (1)

where x is the percentage of test cases classified by BNGE. All other (1 - x)%
of the test cases are classified by the kNN classifier. The value of z differs from
domain to domain (see Table 3) and must be determined empirically. The jus-
tification for the formula is that kNN has to compare each query to all training

x Once again, k values were determined via leave-one-out cross-validation [13]. Values
of k varied significantly across domains and for different random partitions of the
training data within most domains (see also Table 5).

332

examples, while KBNGE must compare each query to all hyperrectangles (a com-
parison to a hyperrectangle is approximately twice as expensive as a comparison
to a training example), and if the query is not covered by any hyperrectangles
(which happens in (1 - x)% of the cases), KBNGE must compare the query to all
training examples. 2 Formula (1), evaluated with the data displayed in Table 3,
shows that KBNGE is faster than kNN in M1 domains tested. It can Mso be
seen from that table that in domains with large amounts of noise (Waveform,
Cleveland, and Hungarian), kNN is used very often, which indicates that a noise
tolerant version of BNGE should help to improve the speed of KBNGE even
further.

The number of training (and test) examples covered by any hyperrectangle
differs significantly within and across domains. For example, a single hyper-
rectangle is always constructed in the Iris domain to cover all instances of Iris
Setosa, while in the Cleveland and Hungarian domains a single hyperrectangle
never covers more than approximately 30% of the training (20% of the test)
examples of its class.

Table 3. Complexity of KBNGE. Shown are the number of hyperrectangles constructed
by the BNGE part of KBNGE, the ratio of the number of hyperrectangles to the number
of training examples (in parentheses), and the average percentage of test examples
which were covered by at least one hyperrectangle. Numbers are means (4- standard
error) over 25 experiments.

Number of hyperrectangles Percentage of test examples
Domain constructed by BNGEpl classified by BNGEpl*
Const A 4.04-0.0 (1%) 96.7%
Const B 18.24-0.6 (6%) 82.6%
Const C 22.44-0.7 (7%) 83.8%
Iris 4.64-0.3 (4%) 77.9%
Led-7 31.04-0.6 (16%) 77.0%
Wave-21 4.0=E0.1 (1%) 22.7%
Wave-40 3.14-0.1 (1%) 14.4%
Cleveland 23.04-0.8 (11%) 35.8%
Hungarian 25,34-0.5 (12%) 49.8%
Voting 12.34-0.7 (4%) 78.0%
Letter recogn. 663.54-2.7 (4%) 68.3%

* All other test examples were classified by kNN

2 Formula (1) assumes that retrieval of training data is not conducted more efficiently
with methods such as k-d trees [5] or box-trees [7]. In domains with many rele-
vant features, neither k-d trees nor box-trees provide significant speedups over serial
search. In domains where they do provide speedups, KBNGE could also be acceler-
ated by storing the hyperrectangles in a box tree.

333

4 Conclus ions and Discuss ion

A batch version of NGE without overlapping hyperrectangles, called BNGE,
was introduced in Wettschereck & Dietterich [14] and shown to significantly
outperform NGE in most domains tested. A simple pruning technique, which
significantly reduces the amount of storage required by NGE and BNGE, i s

introduced in this paper. This significant simplification of the classifier had no
negative effect on the predictive accuracy of BNGE (and NGE) in 10 of the
11 domains tested. A very compact representation of the training data is found
after a classifier is constructed with BNGE and pruned. This representation can
be used to do the following:

- Re-evaluate the representation. For example, we were able to determine in
several domains through inspection of the hyperrectangles after training and
pruning that some of the input features were irrelevant.

- Learn about the task. If only a few hyperrectangles are necessary to describe
a task, then it can be said that it has a low level of noise and that one might
be able to construct a rule-based system from the hyperrectangles to solve
the task. If a large number of small hyperrectangles is necessary, then the
task at hand is either extremely complex or the input representation is not
powerful enough and should be modified.

- Assign levels of confidence to decisions. Queries that fall inside of hyper-
rectangles constructed by BNGE are significantly more likely to be classified
correctly than queries outside of all hyperrectangles.

- Determine which regions of the input space are not adequately covered by
training examples. This could prompt the experimenter either to collect more
data or to clearly define which inputs can be processed by the system and
which should be rejected. The ability for the user to easily interpret ex-
emplars as prototypes of the task to be learned is a significant advantage
of hyperrectangular based methods over such methods as kNN, neural net-
works, or decision trees.

A hybrid method, called KBNGE, that uses BNGE in areas that clearly
belong to one output class and kNN otherwise was introduced and shown to
have accuracy similar to kNN at improved classification speed in a large number
of applications. In the majority of the domains tested, over 70% of the test
examples were classified by the hyperrectangular based part of KBNGE, thus
making it significantly faster than kNN at classification time and enabling the
system to justify most of its decisions in a manner that can be easily understood
by the user. Note that the pruning technique used by KBNGE (un-generalized
hyperrectangles are removed) influences the classification accuracy of KBNGE
only for queries that perfectly match a given trivial hyperrectangle and only if
k # 1. In all other cases, pruning only affects the speed of KBNGE.

A flaw of the current version of BNGE is that it constructs hyperrectangles
only in those parts of the input space that contain no noisy patterns. Future work
will introduce noise tolerance into the BNGE algorithm by introducing a mech-
anism for accepting merges of hyperrectangles even if examples of other classes

334

would be covered. A conceivable approach would be Omohundro's bottom-up
model merging approach [8], for example.

The KBNGE algorithm exhibits classification accuracies comparable to the
best known accuracies, it is fast in training and testing time, and it is easy to
use. We believe KBNGE is an important tool to include in the set of commonly
used machine learning algorithms.

Acknowledgement s

I thank Steven Salzberg for providing assistance during the implementation of
NGE. I also thank Thomas Dietterich, Kathy Astrahantseff, Bill Langford, and
the anonymous reviewers for comments made on earlier drafts of this manuscript.
This research was supported in part by NSF Grant IRI-8657316, NASA Ames
Grant NAG 2-630, and gifts from Sun Microsystems and ttewlett-Packard.

References

1. Aha, D.W.: A Study of Instance-Based Algorithms for Supervised Learning Tasks.
Technical Report, University of California, Irvine (1990)

2. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.h., Rosen, D.B.: Fuzzy
ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of
Analog Multidimensional Maps. IEEE Transactions" on Neural Networks 3 (1992)
698-713

3. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Tech-
niques. IEEE Computer Society Press (1991)

4. Detrano, R., Janosi, A,, Steinbrunn, W., Pfisterer, M., Schmid, K., Sandhu, S.,
Guppy, K., Lee, S., Froelicher, V.: Rapid searches for complex patterns in biological
molecules. American Journal of Cardiology 64 (1989) 304-310

5. Friedman, J.H., Bentley J.L., Finkel, R.A.: An Algorithm for Finding Best Matches
in Logarithmic Expected Time. ACM Transactions on Mathematical Software. 3
(1977) 209-226

6. Murphy, P.M., Aha, D.W.: UCI Repository of machine learning databases [Machine-
readable data repository]. Technical Report, University of California, Irvine (1991)

7. Omohundro, S.M.: Five Balltree Construction Algorithms. Technical Report, Inter-
national Computer Science Institute, Berkeley, CA (1989)

8. Omohundro, S.M.: Best-First Model Merging for Dynamic Learning and Recog-
nition. Neural Information Processing Systems 4 San Mateo California: Morgan
Kaufmann Publishers, INC. (1992) 958-965

9. Parzen, E.: An estimation of a probability density function and mode. Ann. Math.
Stat. 33 (1962) 1065-1076

10. Salzberg, S.: A Nearest Hyperrectangle Learning Method. Machine Learning 6
(1991) 277-309

11. Schaffer, C.: Overfitting Avoidance as Bias. Machine Learning 10 (1993) 153-178
12. Simpson, P.K.: Fuzzy min-max neural networks: 1. Classification. IEEE Transac-

tions on Neural Networks 3 (1992) 776-786
13. Weiss, S.M., Kulikowski, C.A.: Computer Systems that learn. San Mateo Califor-

nia: Morgan Kaufmann Publishers, INC. (1991)

335

14. Wettschereck, D., Dietterich, T.G.: An Experimental Comparison of the Nearest-
Neighbor and Nearest-Hyperrectangles Algorithms. Machine Learning (to appear)

15. Wettschereck, D.: A Study of Distance-Based and Local Machine Learning Algo-
rithms. Ph.D. Thesis. Oregon State University, OlZ (to appear)

Appendix

Table 4. Percent accuracy (4- standard error) on test set. Shown axe mean perfor-
mances over 25 repetitions, standard error. These (* t o) differences to kNN are sta-
tisticaJly significant.

Performance
Domain NN kNN BNGE KBNGE
Const A 97.74-0.4* 96.74-0.4 99.4+0.1T 99.0+0.2 t
Const B 97.94-0.3" 97.24-0.5 96.24-0.4 96.84-0.3
Const C 83.54-0.7 83.04-0.7 91.34-0.4 t 92.1+0.3 t
Iris 95.24-0.4 95.64-0.5 95.84-0.4 95.64-0.4
Led-7 70.54-0.6 t 72.34-0.6 68.94-0.6 ? 71.94-0.6
Wave-21 75.24-1.1 t 81.94-0.9 69.44-1.1 t 81.24-0.7"
Wave-40 69.14-0.8 t 80.74-1.1 66.8+1.1 t 80.64-1.0
Cleveland 77.8+0.9 t 83.44-0.5 79.64-1.1" 83.24-0.6
Hungarian 75.9+0.8 t 82.04-1.0 77.6+1.1 t 81.54-1.0
Voting 87.34-0.7 ? 93.34-0.5 91.64-1.7 93.74-0.5
Letter recognition 95.84-0.1 95.84-0.1 89.1+0.1 t 95.74-0.0

l: p < 0.001, *: p < 0.005, *: p < 0.05

Tab le 5. Values of k used by KBNGE.

Domain
Const A
Const B
Const C
Iris
Ledo7
Wave-21
Wave-40
Cleveland
Hungaxian
Voting
Letter recognition

rain
1
1
1
1
2
7

14
3

21
3
1

k value
max average

99 24.7+6.7
27 6.5+1.5

5 1.6+0.2
18 8.0+0.8
7 4.34-0.4

92 34.4+4.2
93 43.3~5.0
57 18.64-3.5
57 37.24-2.3
10 6.1•

1 1.04-O.O

