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Abs t rac t .  This paper describes an application of the genetic program- 
ming paradigm to the problem of structure identification of dynamical 
systems. The approach is experimentally evaluated by reconstructing the 
models of several dynamical systems from simulated behaviors. 

1 I n t r o d u c t i o n  
The task of identification of dynamical systems (discovering dynamics), as ad- 
dressed in this paper, can be defined informally as follows: Given an example 
behavior of a dynamical system, find a set of laws that  describe the dynamics 
of the system. More precisely, a set of real-valued system variables is measured 
at regular intervals over a period of time, as illustrated in Table 1. The laws to 
be discovered (also called model of the dynamical system) are typically a set of 
differential equations d X d d t  = f ~ ( X 1 , . . . ,  Xn), i = 1 , . . . ,  n. 

Table 1. A behavior trace of a dynamical system. 

Time System variables 
X1 X2 .. .  X,~ 

~0 2710 X 2 0  �9 �9 �9 X n 0  

~i ---- t o  + h Xll X21 �9 �9 . 3 ~ n l  

tN = to + N h  X l g  x 2 g  .. �9 xnN  

In mainstream system identification, as summarized by Ljung [4], the as- 
sumption is that  the model structure (i.e. the functional form of each fi) is 
known. The task is then to determine suitable values for the parameters in the 
model. This task is accordingly called p a r a m e t e r  i d e n t i f i c a t i o n .  In practice, many 
different model structures are tried out and the process of identification really 
becomes the process of evaluating and choosing between the resulting models in 
these different structures [4]. We refer to this task as s t r u c t u r e  i d e n t i f i c a t i o n .  

Genetic algorithms [2] can be used to optimize the values of parameters in a 
fixed model structure, operating on parameter  values encoded as bit strings. Ge- 
netic programming [3], on the other hand, can operate on populations of models 
(expressions) of different structure, which can also contain parameters.  While ge- 
netic algorithms can be used for parameter identification, genetic programming 
can be used for structure identification. 

In this paper, we describe the application of genetic programming to the 
problem of structure identification of dynamical systems. Section 2 presents in 
detail the implementation of the genetic programming paradigm intended for 
structure identification. The experimental evaluation of the approach is described 
in Section 3. Finally, Section 4 gives a brief discussion and concludes. 
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2 S t r u c t u r e  i d e n t i f i c a t i o n  w i t h  g e n e t i c  p r o g r a m m i n g  

In the following, we describe our implementation of the genetic programming 
paradigm intended for discovering dynamics (GPDD). Parameters  will be writ- 
ten in t e l e t y p e  font and their default values given in brackets. 

An initial population of pop_size (300) individuals is first randomly gener- 
ated. For a predefined number of g e n e r a t i o n s  (30) the population is evolved 
in the following manner. The fitness of each individual is calculated and track 
is kept of the individual with best fitness seen so far. The new population is 
created from the current one by applying fitness-proportionate reproduction 
and crossover, pe t e_c rossove r  % (90 %) of the new population is formed by 
crossover and (100 - pe te_crossover )  % (10 %) by reproduction. Offspring that  
are already in the new generation or are too large (i.e. have more than max_nodes 
(30) nodes) are not inserted in the new population. Finally, after the predefined 
number of generations, the fittest individual (over all generations) is returned. 

During the generation of the initial population, trees are randomly gener- 
ated by choosing internal nodes from the set of available operators and terminal 
(leaf) nodes from the set of system variables. Terminal nodes can also be con- 
stants, perc__full_tr  % (50 %) of the generated trees are full (i.e. have all leaves 
at the same depth), with depth ranging from 1 to s i z e _ t r  (3). Operators are 
chosen according to a pre-specified probability distribution (default operators 
{+zy, - xy , / xy ,  *xy, square(x)},  probabilities (0.24, 0.24, 0.24, 0.24, 0.04)). 

When generating random (non-full trees) an internal node is created with 
probability percnaode_tr  % (40 %), and a terminal node (leaf) otherwise. 
perc_const  % (50 %) of the leaf nodes are constants, pe te_blocks  % (20 %) of 
the remaining are building blocks if any are provided, and the rest are variables. 
We discuss building blocks below. Constants are assigned random initial values 
from the interval [-5,  5]; their values are optimized during the calculation of the 
fitness. Finally, duplicates are not inserted in the initial population�9 

Building blocks are subexpressions that  can appear in the model sought. The 
user can specify them as a kind of background knowledge. They may contain 
generic variables (standing for any system variable), system variables, generic 
constants and operators. The values of the generic constants are optimized in 
the context of the tree in which the building block appears. Building blocks are 
treated as single units (leaves) during crossover (i.e. are not split). 

When searching for a formula dY/dt = fi(X1, .. .,Xn), Y e { X ] , . . .  ,Xn}, 
trees in the population are candidate functions for fi. The fitness of a tree T 
is calculated as F(T) = (1 + E(T)) -I • (1 + 0.01 x s i z e _ i n . : f i t  • logS(T)) -1, 

- - r  t~ T(X1 ...,Xn)dt) 2, size_in_fit (20) is where E(T) = EN=I (Yi - Y0 ~t0 
a parameter, and S(T) is the size of the tree T (total number of nodes of T). 

�9 . �9 fto+ih The m~egral Jr0 T(X1, . . . ,  Xn)dt is calculated numerically from the measured 
values of the system variables. The accuracy term dominates the fitness function, 
but tree size can still have considerable influence in favor of smaller trees. 

We use the iterative Levenberg-Marquardt nonlinear optimization method 
[5] to fit (optimize) the constants in the candidate trees. The total number of 
iterations used (consumption of computational resources) is fixed and equals 
f i r s t _ i t e r s  • pop_size + t o t a l _ i t e r s  (3• + 1000). 
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3 E x p e r i m e n t a l  e v a l u a t i o n  

Three domains (Population dynamics, Brusselator, Monod) from D~eroski and 
Todorovski [1] were used. Simulated behaviors were given to GPDD,  which was 
run once for each system variable, producing one differential equation each time. 
This was repeated 10 times. The parameter  settings for GPDD were as described 
in Section 2. The number of generations was lowered from 30 to 20 and 15 when 
fast convergence to the correct model was obtained in a preliminary experiment.  

P o p u l a t i o n  d y n a m i c s .  The model of population dynamics consists of two 
equations: dN1/dt = kiN1 - sN1N2 and dN2/dt = sN1N2 - k2N2. 

Ten runs were conducted for both system variables, and the genetic program- 
ming algorithm was given 20 generations. 

Formulae equivalent to the correct one were found in eight of the ten runs 
for dN1/dt.  Among these, six are variants of dN1/dt = (160 - N2)(N1/IO0) 
and have the same fitness. The formulae dN1/dt = N2Nl(1.6/N2 - 0.01) and 
dN1/dt = (N1/N2)(1.6N2 - 0.0IN,  N2) are larger and have smaller fitness. In 
the remaining two cases, formulae with large error (low fitness) were produced. 

In seven of the ten runs for dN2/dt correct formulae were found, all with the 
same fitness and of the form dN2/dt = 0.01N2(N1 - 20). In two cases, formulae 
with large error were produced. The remaining formula has 29 nodes and can be 
simplified to dN2/clt = 0.001 - 0.00005N1 - 0.2N2 + 0.01N1N2. It has low error. 

B r u s s e l a t o r .  The Brusselator is described by the following equations: 
dX/d t  = A -  (B + 1)X + X 2 Y  and dY/d t  = B X  - X 2 Y .  

The ten runs of the genetic programming algorithm were given 15 generations 
each. The best tree for dX/d t  is dX/d t  = X ( Y  ( X - 0 ) -  3)+ 1, which is equivalent 
to the first equation in the model. It is worth noting that  several formulae have 
lower error, but  much larger size, and consequently lower fitness than the above. 

Nine of the ten formulae produced for dY/d t  are equivalent to the correct 
one, three of them being of the form dY /d t  = (2 - Y X ) X  and having the 
highest fitness. For illustration, one of the remaining six formulae has the form 
dY /d t  = Y X ( - 1  x X )  - ( - 2  x X),  and a fitness of 0.68 (the best formula has 
fitness 0.72). The tenth formula is both longer and has higher error. 

M o n o d .  Equations dc/dt = -~ -"~  c .y c+k, x and dx/dt  = ( Irma= c+k,c kd) x 
describe the growth of bacteria x given nutrient c. 

Ten runs of 30 generations each were conducted. The best formulae for dc/dt 
and dx/dt  are quite complicated and not obviously related to the above equa- 
tions, although the equation for dx/dt  contains the term ~ which is the 
maximum growth rate of the bacteria. They also have relatively high error as 
compared to the errors of the best equations for previous domains. 

The maximum growth rate is a known quanti ty in ecological modeling and 
can be used as a background (domain) knowledge in the form of the building 
block r ~---g-~, where C is a generic constant. Another ten runs of 30 generations 
each were conducted using the building block ~-r This time, the two best 
formulae, dc/dt = x / ( - 6 / ( c / ( c +  100))) and dc/dt = (x(c / (c+ 100))) x ( -0 .167) ,  
are equivalent to the correct formula. The three best formulae for dx/dt  are 
also correct. The errors of these formulae are comparable to the ones for the 
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best formulae in the other domains. The building block thus helps significantly 
towards building more accurate and understandable models. 

4 Discuss ion and fu r the r  work 
As compared to Koza's symbolic regression approach [3], several improvements 
have been made in our approach. First, parameter identification is carried by 
the Levenberg-Marquardt method. This gives better parameter values than the 
entirely evolutionary manipulation of randomly introduced constants done by 
Koza. Second, our fitness function takes into account the size of the formulae, 
imposing a bias towards simpler formulae. Finally, our approach allows for the 
use of background knowledge in the form of building blocks. 

In addition, the fitness function takes into account the nature of the problem 
of discovering dynamics. Namely, instead of numerically introducing derivatives, 
as done in LAGRANGE [1] (which can produce highly inaccurate results), the 
fitness function in GPDD integrates the candidate function numerically. An- 
other advantage over the LAGRANGE approach is the more expressive space 
of models. Furthermore, GPDD avoids the problem of redundancy present in 
LAGRANGE. Finally, while GPDD can use background knowledge, it is not 
obvious how this can be done in LAGRANGE. 

We applied GPDD to simulated behaviors of several dynamical systems. For 
the simpler systems, GPDD reconstructed models equivalent to the original even 
without the use of domain knowledge. For the Monod model, better results 
were achieved when background knowledge was available. These results illustrate 
the potential of our approach for discovering dynamics. However, much more 
experimental evaluation is needed. In particular, a thorough study over a variety 
of domains, both real and artificial, is needed. In this respect, the sensitivity of 
GPDD to noisy (erroneous) measurements should be investigated. This is easiest 
to carry out on artificial data with synthetical noise. An analysis is also needed 
of the influence of unnecessary (irrelevant) operators and background knowledge 
(building blocks). Finally, the approach should be applied to real-life domains. 
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