
Discovering dynamics with genetic programming

Sago D~eroski and Igor Petrovski

Institut Jo~ef Stefan, Jamova 39, 61111 Ljubljana, Slovenia

Abs t rac t . This paper describes an application of the genetic program-
ming paradigm to the problem of structure identification of dynamical
systems. The approach is experimentally evaluated by reconstructing the
models of several dynamical systems from simulated behaviors.

1 I n t r o d u c t i o n
The task of identification of dynamical systems (discovering dynamics), as ad-
dressed in this paper, can be defined informally as follows: Given an example
behavior of a dynamical system, find a set of laws that describe the dynamics
of the system. More precisely, a set of real-valued system variables is measured
at regular intervals over a period of time, as illustrated in Table 1. The laws to
be discovered (also called model of the dynamical system) are typically a set of
differential equations d X d d t = f ~ (X 1 , . . . , Xn), i = 1 , . . . , n.

Table 1. A behavior trace of a dynamical system.

Time System variables
X1 X2 .. . X,~

~0 2710 X 2 0 �9 �9 �9 X n 0

~i ---- t o + h Xll X21 �9 �9 . 3 ~ n l

tN = to + N h X l g x 2 g .. �9 xnN

In mainstream system identification, as summarized by Ljung [4], the as-
sumption is that the model structure (i.e. the functional form of each fi) is
known. The task is then to determine suitable values for the parameters in the
model. This task is accordingly called p a r a m e t e r i d e n t i f i c a t i o n . In practice, many
different model structures are tried out and the process of identification really
becomes the process of evaluating and choosing between the resulting models in
these different structures [4]. We refer to this task as s t r u c t u r e i d e n t i f i c a t i o n .

Genetic algorithms [2] can be used to optimize the values of parameters in a
fixed model structure, operating on parameter values encoded as bit strings. Ge-
netic programming [3], on the other hand, can operate on populations of models
(expressions) of different structure, which can also contain parameters. While ge-
netic algorithms can be used for parameter identification, genetic programming
can be used for structure identification.

In this paper, we describe the application of genetic programming to the
problem of structure identification of dynamical systems. Section 2 presents in
detail the implementation of the genetic programming paradigm intended for
structure identification. The experimental evaluation of the approach is described
in Section 3. Finally, Section 4 gives a brief discussion and concludes.

348

2 S t r u c t u r e i d e n t i f i c a t i o n w i t h g e n e t i c p r o g r a m m i n g

In the following, we describe our implementation of the genetic programming
paradigm intended for discovering dynamics (GPDD). Parameters will be writ-
ten in t e l e t y p e font and their default values given in brackets.

An initial population of pop_size (300) individuals is first randomly gener-
ated. For a predefined number of g e n e r a t i o n s (30) the population is evolved
in the following manner. The fitness of each individual is calculated and track
is kept of the individual with best fitness seen so far. The new population is
created from the current one by applying fitness-proportionate reproduction
and crossover, pe t e_c rossove r % (90 %) of the new population is formed by
crossover and (100 - pe te_crossover) % (10 %) by reproduction. Offspring that
are already in the new generation or are too large (i.e. have more than max_nodes
(30) nodes) are not inserted in the new population. Finally, after the predefined
number of generations, the fittest individual (over all generations) is returned.

During the generation of the initial population, trees are randomly gener-
ated by choosing internal nodes from the set of available operators and terminal
(leaf) nodes from the set of system variables. Terminal nodes can also be con-
stants, perc__full_tr % (50 %) of the generated trees are full (i.e. have all leaves
at the same depth), with depth ranging from 1 to s i z e _ t r (3). Operators are
chosen according to a pre-specified probability distribution (default operators
{+zy, - xy , / xy , *xy, square(x)}, probabilities (0.24, 0.24, 0.24, 0.24, 0.04)).

When generating random (non-full trees) an internal node is created with
probability percnaode_tr % (40 %), and a terminal node (leaf) otherwise.
perc_const % (50 %) of the leaf nodes are constants, pe te_blocks % (20 %) of
the remaining are building blocks if any are provided, and the rest are variables.
We discuss building blocks below. Constants are assigned random initial values
from the interval [-5, 5]; their values are optimized during the calculation of the
fitness. Finally, duplicates are not inserted in the initial population�9

Building blocks are subexpressions that can appear in the model sought. The
user can specify them as a kind of background knowledge. They may contain
generic variables (standing for any system variable), system variables, generic
constants and operators. The values of the generic constants are optimized in
the context of the tree in which the building block appears. Building blocks are
treated as single units (leaves) during crossover (i.e. are not split).

When searching for a formula dY/dt = fi(X1, .. .,Xn), Y e { X] , . . . ,Xn},
trees in the population are candidate functions for fi. The fitness of a tree T
is calculated as F(T) = (1 + E(T)) -I • (1 + 0.01 x s i z e _ i n . : f i t • logS(T)) -1,

- - r t~ T(X1 ...,Xn)dt) 2, size_in_fit (20) is where E(T) = EN=I (Yi - Y0 ~t0
a parameter, and S(T) is the size of the tree T (total number of nodes of T).

�9 . �9 fto+ih The m~egral Jr0 T(X1, . . . , Xn)dt is calculated numerically from the measured
values of the system variables. The accuracy term dominates the fitness function,
but tree size can still have considerable influence in favor of smaller trees.

We use the iterative Levenberg-Marquardt nonlinear optimization method
[5] to fit (optimize) the constants in the candidate trees. The total number of
iterations used (consumption of computational resources) is fixed and equals
f i r s t _ i t e r s • pop_size + t o t a l _ i t e r s (3• + 1000).

349

3 E x p e r i m e n t a l e v a l u a t i o n

Three domains (Population dynamics, Brusselator, Monod) from D~eroski and
Todorovski [1] were used. Simulated behaviors were given to GPDD, which was
run once for each system variable, producing one differential equation each time.
This was repeated 10 times. The parameter settings for GPDD were as described
in Section 2. The number of generations was lowered from 30 to 20 and 15 when
fast convergence to the correct model was obtained in a preliminary experiment.

P o p u l a t i o n d y n a m i c s . The model of population dynamics consists of two
equations: dN1/dt = kiN1 - sN1N2 and dN2/dt = sN1N2 - k2N2.

Ten runs were conducted for both system variables, and the genetic program-
ming algorithm was given 20 generations.

Formulae equivalent to the correct one were found in eight of the ten runs
for dN1/dt. Among these, six are variants of dN1/dt = (160 - N2)(N1/IO0)
and have the same fitness. The formulae dN1/dt = N2Nl(1.6/N2 - 0.01) and
dN1/dt = (N1/N2)(1.6N2 - 0.0IN, N2) are larger and have smaller fitness. In
the remaining two cases, formulae with large error (low fitness) were produced.

In seven of the ten runs for dN2/dt correct formulae were found, all with the
same fitness and of the form dN2/dt = 0.01N2(N1 - 20). In two cases, formulae
with large error were produced. The remaining formula has 29 nodes and can be
simplified to dN2/clt = 0.001 - 0.00005N1 - 0.2N2 + 0.01N1N2. It has low error.

B r u s s e l a t o r . The Brusselator is described by the following equations:
dX/d t = A - (B + 1)X + X 2 Y and dY/d t = B X - X 2 Y .

The ten runs of the genetic programming algorithm were given 15 generations
each. The best tree for dX/d t is dX/d t = X (Y (X - 0) - 3)+ 1, which is equivalent
to the first equation in the model. It is worth noting that several formulae have
lower error, but much larger size, and consequently lower fitness than the above.

Nine of the ten formulae produced for dY/d t are equivalent to the correct
one, three of them being of the form dY /d t = (2 - Y X) X and having the
highest fitness. For illustration, one of the remaining six formulae has the form
dY /d t = Y X (- 1 x X) - (- 2 x X), and a fitness of 0.68 (the best formula has
fitness 0.72). The tenth formula is both longer and has higher error.

M o n o d . Equations dc/dt = -~ -"~ c .y c+k, x and dx/dt = (Irma= c+k,c kd) x
describe the growth of bacteria x given nutrient c.

Ten runs of 30 generations each were conducted. The best formulae for dc/dt
and dx/dt are quite complicated and not obviously related to the above equa-
tions, although the equation for dx/dt contains the term ~ which is the
maximum growth rate of the bacteria. They also have relatively high error as
compared to the errors of the best equations for previous domains.

The maximum growth rate is a known quanti ty in ecological modeling and
can be used as a background (domain) knowledge in the form of the building
block r ~---g-~, where C is a generic constant. Another ten runs of 30 generations
each were conducted using the building block ~-r This time, the two best
formulae, dc/dt = x / (- 6 / (c / (c + 100))) and dc/dt = (x(c / (c+ 100))) x (-0 .167) ,
are equivalent to the correct formula. The three best formulae for dx/dt are
also correct. The errors of these formulae are comparable to the ones for the

350

best formulae in the other domains. The building block thus helps significantly
towards building more accurate and understandable models.

4 Discuss ion and fu r the r work
As compared to Koza's symbolic regression approach [3], several improvements
have been made in our approach. First, parameter identification is carried by
the Levenberg-Marquardt method. This gives better parameter values than the
entirely evolutionary manipulation of randomly introduced constants done by
Koza. Second, our fitness function takes into account the size of the formulae,
imposing a bias towards simpler formulae. Finally, our approach allows for the
use of background knowledge in the form of building blocks.

In addition, the fitness function takes into account the nature of the problem
of discovering dynamics. Namely, instead of numerically introducing derivatives,
as done in LAGRANGE [1] (which can produce highly inaccurate results), the
fitness function in GPDD integrates the candidate function numerically. An-
other advantage over the LAGRANGE approach is the more expressive space
of models. Furthermore, GPDD avoids the problem of redundancy present in
LAGRANGE. Finally, while GPDD can use background knowledge, it is not
obvious how this can be done in LAGRANGE.

We applied GPDD to simulated behaviors of several dynamical systems. For
the simpler systems, GPDD reconstructed models equivalent to the original even
without the use of domain knowledge. For the Monod model, better results
were achieved when background knowledge was available. These results illustrate
the potential of our approach for discovering dynamics. However, much more
experimental evaluation is needed. In particular, a thorough study over a variety
of domains, both real and artificial, is needed. In this respect, the sensitivity of
GPDD to noisy (erroneous) measurements should be investigated. This is easiest
to carry out on artificial data with synthetical noise. An analysis is also needed
of the influence of unnecessary (irrelevant) operators and background knowledge
(building blocks). Finally, the approach should be applied to real-life domains.

Acknowledgement . This research was supported in part by the Slovenian
Ministry of Science and Technology.

References
1. S. D~eroski and L. Todorovski. Discovering dynamics. In Proc. lOth Int. Conference

on Machine Learning, pp. 97-103. Morgan Kaufmann, San Mateo, CA, 1993.
2. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading, MA, 1989.
3. J.R. Koza. The genetic programming paradigm: Genetically breeding populations

of computer programs to solve problems. In B. Sou~ek, editor, Dynamic, Genetic,
and Chaotic Programming, pp. 203-321. John Wiley & Sons, 1992.

4. L. Ljung. Modelling of industrial systems. In Proc. 7th Int. Symposium on Method-
ologies for Intelligent Systems, pp. 338-349. Springer, Berlin, 1993.

5. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes. Cambridge University Press, Cambridge, MA, 1986.

