
Identifying Unrecognizable Regular Languages
by Queries

Claudio Ferretti - Giancarlo Mauri
{f erretti, maur i} @ imiucca, csi. unimi, it

Dipartimento di Scienze dell'Informazione
via Comelico 39, 20135 Milano - Universitk di Milano, ITALY

A b s t r a c t . We describe a new technique useful in identifying a sub-
class of regular trace languages (defined on a free partially commutative
monoid). We extend an algorithm defined by Dana Angluin in 1987 for
DFA's and using equivalence and membership queries. In trace languages
the words are equivalence classes of strings, and we show how to extract,
from a given class, a string that can drive the original learning algorithm.
In this way we can identify a class of regular trace languages which in-
cludes languages which are not recognizable by any automaton.

1 Introduct ion

Considering the problem of learning formal languages from examples, and specif-
ically regular languages, [An87] gave an efficient algorithm to learn deterministic
finite a u t o m a t a by membership and equivalence queries with counterexamples.
We call this algori thm DFAL, and we will show how to extend it to learn other
classes of languages, even not representable by automata . Other extensions to
DFAL are, e.g., in [BR87, Sa90].

Recently, researches on formal models for concurrent processes underlined the
importance of trace languages [Ma85], defined as subsets of a free part ial ly com-
muta t ive monoid (f.p.c.m.), and a theory of trace languages has been developed
[BMS89, AR86], parallel to that of classical languages on free non-commutat ive
monoids (string languages).

A fundamental difference between trace and string languages is tha t regular
trace languages are in general not recognized by a finite state au tomaton on the
f.p.c.m., i.e. Kleene's theorem cannot be generalized to them. As known results
about the identification of regular languages are based on au tomata , here we
discuss some modifications to use them on regular trace languages.

2 Definit ions and Notat ions

Given a finite alphabet Z and the free monoid L -~, a concurrence relation t~ is
a subset of Z • Z and =0 denotes the congruence relation on L -~ generated by
the set Co = {(ab, ba) I (a, b) 6 t~}. The quotient M (~ , ~) -- L ~ / = o is the free
partially commutat ive monoid associated with the concurrence relation ~.

An element of M (~ , 0) = L ~ / =o is a trace, and can be seen as a set of
strings. Given a string s, [s]o is the trace containing s; given a string language
L, [L]0 is the set of traces containing at least one string from L.

356

Any T C M (Z , 6) is a trace language. As in the sequential case, the class
RTL8 of regular trace languages on M(Z', 6) can be defined as the least class
containing finite trace languages and closed with respect to set-theoretic union,
concatenation and (.)* closure of languages, being the concatenation of two traces
the equivalence class of the concatenations of their strings. I.e., these languages
are defined by regular expressions on finite sets. Moreover, it can be shown that
a trace language T is regular if and only if there is a regular string language L
such that T - [L]o [BMSS9].

We will consider only the case in which 0 is a transitive relation. As a conse-
quence, the maximal cliques of the graph associated to the concurrence relation
induce a parti t ion on S. Two letters will be in the same element of this part i t ion
if and only if they are nodes of the same maximal clique in the graph associated
to 6, i.e., if and only if they commute in C0. So we can define the alphabet as
the partition: Z = U n i=1 c/, where n is the number of maximal cliques in the
graph of 6. The term clique is from now on extended to the elements ci of the
parti t ion on S , when not explicitly referred to the graph of 6. Given this, We
can prove a useful result, where letters from Z are grouped as the variables in a
usual algebraic monomiah

T h e o r e m 1. Each trace t in M (Z , 6) can be uniquely represented as a sequence
of monomials tl . . . t in , where all the letters of each monomial ti are from the
same clique, and any two adjacent monomials are for different cliques.

Proof. (Sketch) Any string is divided in groups of letters that never mix together.

Given a monomial ti, Itilaj denotes the degree of aj in ti, and MCD(ItiI~:)
denotes the Maximum Common Divisor of the degrees of the letters in ti.

3 Main Resul ts

Our results apply to the restricted class of regular trace languages defined by a
transitive 6 and by regular expressions where, when an operation of the expres-
sion joins two different traces, the trailing letters of the first don' t commute in 6
with the leading letters of the second. This means that in such a regular expres-
sion the joining of different traces never mix letters, while this is'still allowed
when concatenating one or more copies of the sametrace. We call them isolating
regular expressions and isolating regular trace languages. This subclass of RTLo
offers a way to extract strings with interesting properties from each trace. Given
Z = {a, b, x} and 6 = {(a, b)}, isolating languages are: [az. {axb}*]9, [{ab}*]~.

3.1 C h o o s i n g a S t r i n g

Given the monoid M(Z , 0), with 6 transitive, we can choose from any trace t,
represented by the sequence of monomials tl . . . tin, the string s = sl . . . s,~ made

pl p~ ..aPllap2..., in the following way: for each t~ write the string si ----- a 1 a~ . where
a~ is a letter and pj = It~la/MCD(Iqls). Let's call these strings ordered strings.
E.g., given that (a, b) is in 6, the trace [aaabbbbbb]e can be represented by a3b 6,
and the corresponding ordered string is abbabbabb.

357

The first key property of this rule is that the ordered string of a trace,
obtained concatenating an unbounded number of times the same unknown trace,
is the concatenation of the ordered strings of the repeated trace.

L e m m a 2 . If the trace t is represented by a single monomial, and os(t) is the
ordered string of t, then os(t . t) = os(t) . os(t).

Proof. The single monomial representing t �9 t will have each letter with twice
the degree it has in t. Therefore also the M C D is doubled, and the exponents
p~ in the resulting ordered string will be the same. Then this string will be the
concatenation of two copies of the ordered string of t. []

When the concatenated trace is more complex we can state a weaker prop-
erty: from any trace generated by the closure of a regular language, the ordered
string we choose belongs to a slightly bigger regular language generating the
same traces.

L e m m a 3 . If O is transitive, s = sls2s3 is a string on Z, with strings sl and
s3 containing letters from the same clique, and s2 an ordered string with trailing
and leading letters from cliques different from that of sl and s3:

[{L U {s18283]}*]o = [{L U {SlS2{sls2}*s3}}*]8,

where s' is the ordered string of [838110.

Proof. Clearly, [s']e = [s3sl]o, and the inner closure adds strings to the language
between square brackets, but doesn't add new traces to the trace language. Any
trace [...SlS2S3SlS2S3...]e, generated by the first language, will contain also
the string . . . s ls2ds2s3. . . , which belong to the second language and that is its
ordered string. []

Given any regular expression for T we can find an equivalent, w.r.t. 0, regular
expression on L ~* containing the ordered strings. This means that the ordered
strings of traces of T belong to a regular trace language L such that [L]e = T.

T h e o r e m 4 . Given an isolating regular trace language T over a transitive con-
currence relation O, there exists a regular language L on L'* such that [L]o = T
and any ordered string extracted from t 6 M (Z , 0) belongs to L if and only i f t
belongs to T.

Proof. (Sketch) Consider the regular expression that defines T as being built
from finite trace languages, applying to them many subsequent union, concate-
nation, and closure operations. We will build a regular expression on L'*, that
defines a language L which satisfies our statement, by induction on the structure
of the regular expression for T, using the properties stated for ordered strings
over regular operations.

E.g., when T = T'*, being it a union of concatenations, we consider different
cases of joined traces, and cover this unbounded operation using Lemma 3. Q

358

3.2 Identifying Isolating Languages

We can identify an isolating target language T using membership and equivalence
queries with counterexamples using DFAL on Z* [An87] to identify a regular
language L such that [L]e = T. DFAL identifies an automaton, but in this way
it represents L and then an isolating regular trace language, and some of these
have no finite automaton recognizing them, as it is for [{ab}*]o (otherwise one
could obtain by regular operations {anb n In > 0}, which is not regular).

Given any regular expression for T, by Theorem 4 we know that there exists
an equivalent, w.r.t. 0, regular expression made of ordered strings. This means
that the ordered strings of traces of T belong to a regular trace language L
such that [L]e = T. This same L is the real target of DFAL. The interactions
between teacher and learner are filtered substituting counterexamples traces by
their ordered strings, and strings from DFAL with the traces that are their
equivalence classes in the f.p.c.m. This operation requires polynomial time in
the relevant parameters, except when substituting a negative counterexample,
where the best known method requires exponential time.

Given the regular expression for T, n the number of states of the minimal
DFA recognizing a regular string language L such that [L]o = T. Our operations
enlarge the corresponding regular expression but this additions cannot require
more than a polynomial, in n, number of new states in the automaton recognizing
the new regular language.

We can then apply the results of [An87] on learning with DFAL a DFA of p
states, with p polynomial in n and, together with the observation on the time
required to process a negative counterexample, we can state the following

T h e o r e m 5. Isolating regular trace languages with transitive concurrence rela-
tion, and generated by a language recognized by a DFA of n states, can be exactly
identified in polynomial time in n and in the length of positive counter examples.

It would be interesting to refine the algorithm making use of the information
we have about the structure of the extracted regular language, trying to reduce
the exponential dependence on the length of negative counterexamples.

R e f e r e n c e s

[AR86] IJ.Aalbersberg, G.Rozenberg. Theory of traces. Theor. Comp. Sci., 60:1-, 1986.
[An87] D.Angluin. Learning regular sets from queries and counterexamples. Informa-

tion and Computation, 75:87-, 1987.
[BR87] P.Berman, R.Roos. Learning one-counter languages in polynomial time. In

Proc. of the Syrup. on Found. of Comp. Sci., 61-, 1987.
[BMS89] A.Bertoni, G.Mauri, N.Sabadini. Membership problems for regular and

context-free trace languages. Information and Computation, 82:135-, 1989.
[Ma85] A.Mazurkiewicz. Semantics of concurrent systems: A modular fixed point trace

approach. Lect. Notes in Comp. Sci., vol. 188, 353-, Springer-Verlag, 1985.
[Sa90] Y.Sakakibara. Inductive inference of logic programs based on algebraic seman-

tics. New Generation Computing, 7:365-, 1990.

