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Abstract .  Analogical reasoning is carried out based on an analogy which 
gives a similarity between a base domain and a target domain. Thus the 
analogy plays an important role in analogical reasoning. However, com- 
puting such an analogy leads to a combinatorial explosion. This paper 
introduces a notion of partially isomorphic generalizations of atoms and 
rules which makes it possible to carry out analogical reasoning without 
computing the analogy, and gives a relationship between our generaliza- 
tion and the analogy. Then we give a procedure which produces such a 
generalization in polynomial time. 

1 Introduction 

Analogical reasoning is an important  paradigm of machine learning. It acquires 
unknown knowledge by computing an analogy which gives a similarity between 
a base domain and a target domain. In analogical reasoning, we first detect an 
analogy, and then project the well-known knowledge in the base domain into 
the target domain under the analogy. Thus essentials of analogical reasoning 
are computing an analogy which is a mapping from a base domain to a target 
domain. However, there often arises a problem of combinatorial explosion in 
computing analogies. We solve this problem by using a new concept of partially 
isomorphic generalizations of atoms or rules. 

Our partially isomorphic generalization is a method to generalize an atom 
or a rule as general as possible without destroying its syntactical structure. We 
show that  the facts, i.e., grand atoms, derived from the atoms thus generalized 
are also derived by the ordinary analogical reasoning by Haraguchi and Arikawa 
[1, 2]. Hence our generalization can be justified by their theory of analogical 
reasoning. 

2 Analogical Reasoning 

Analogical reasoning is carried out by projecting some of a base domain to a 
target domain under an analogy. Hence we take an analogy as a mapping from 
the base to the target. 
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In this paper  we deal with logic programs (programs, for short) as the do- 
mains for analogical reasoning. Let P1 and P2 be base and target  programs,  
respectively, on which analogical reasoning is carried out. Let Ui be the Her- 
brand universe for Pi (i = 1,2). For a finite subset 9 of U1 x U2, we define a set 
~+ as the smallest set tha t  satisfies the following conditions: 

(a) c 
(b) ( t l , s l ) , . . . , ( t n ,  sn) E ~+ ~ ( f ( t l , . . . , t ~ ) , f ( s l , . . . , s ~ ) )  E ~+, 

where f is a function symbol occurring in both P1 and P2. We say that  ~ is an 
analogy if we can take ~ as a function such tha t  ~+ (t) : s if (t, s) E ~+.  

An analogy can be extended from terms to a toms in a natural  way. For a toms 
a = p ( t l , . . . ,  t~) and/3 = p ( s l , . . . ,  sn), and for an analogy ~, we say tha t  a is 
analogous to /3 under ~, if ~+( t i )  = si holds for 1 < i < n. 

3 P a r t i a l l y  I s o m o r p h i c  G e n e r a l i z a t i o n  

For a toms a and /3, we write a < /3 when/30 = a for a substi tution 0, and 
a ---/3 when/3 < a and a </3.  Let S be the set of all generalizations of an atom. 
By [S] we denote the set of equivalence classes of all a toms in S induced by _ .  
From now on we identify an a tom with its equivalence class. Then < is a partial  
order on [S]. We define two binary functions R and U on IS] as follows: For [a] 
and [/3] in IS], Is] M [/3] and [a] U [/3] are the greatest  common instance and the 
least common generalization of {[a], L3]} w.r.t. <, respectively [5]. Hence [S] is 
a lattice with a partial  order <,  a meet operator  ~, and a join operator  U. We 
call the lattice IS] a normal lattice. 

Now we introduce a new concept of partially isomorphic generalizations of 
atoms. Let a be an a tom and t be  a t e rm occurring in a .  Then we say tha t  t is a 
quasi-replaceable term of a ,  if t is a constant or a te rm of the form f ( X 1 , . . . ,  Xn) ,  
where f is a function symbol and each Xi is a variable symbol. For u, a t e rm or 
an atom, let V~ be the set of all variables occurring in u. Let air] be the a tom 
obtained by replacing each occurrence of a quasi-replaceable term t in a by a 
new variable Z. If  V, n V~[~] = 0 holds, we write a -~ ~ for each variant ~ of a[t], 
and then we say  tha t  t is a replaceable term of a.  The relation --* is a binary 
relation on a set of atoms. We define --** as the reflexive and transitive closure of 
--.. Then we say tha t /3  is a partially isomorphic generalization (PIG,  for short) 

of a ,  i f a  --**/3. 
Let S be the set of all P IGs  of an atom. We consider the set [S] of equivalence 

classes of all a toms in S induced by ~ .  Jus t  as we have done with <,  we have 
the following theorem. 

T h e o r e m  1. Let S be the set of all PIGs of an atom. Then IS] is a lattice with 
a partial order --**, a meet operator M, and a join operator It. 

We call the lattice [S] a PIG lattice. There exists an a tom V such tha t /3  --** 
holds for each P I G / 3  of a .  We say such an a tom 7 to be  the greatest PIG of a .  
The  difference of the P IG  lattice from the normal lattice is shown in Figure 1. 

Let a be a ground atom and 9 be an analogy. Then we define Ana(a,  9) as 
the set of all ground atoms to which a is analogous under 9, and G(a) as the 
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PIG lattice 

[l,(f(v),Yz)] 

lp(f(v),~)l INf(a),~,Z)l 

~(f(a),a,b)l 

[p(x,~z)l 
normal lattice 

[p(f(v),'~'Z)l [p(x,a,Z)l [p(x,~)] 

[p(f(v),gZ)l [p(f(a),'gz)] [p( f(v),a,z)] Lo( fIv),Yjb)] [p(X~,b) 1 

g, qlv).v,,)l ~,qO),.,Z)l ~(f(a),~)l  Ip(f(V),a,b)l 

L.(f(a),a,b)] 

Fig .  1. The  P I G  lattice and the normal lattice for p( f (a) ,  a, b). 

set of all ground instances of the greatest  P IG  of a .  Then we have the following 
theorem. 

T h e o r e m  2. Let a be a ground atom. For each atom fl in G(a) ,  there exists an 
analogy ~ such that ~ is in Ana(a ,  ~). 

A ground a tom a is analogous to all ground instances of the greatest  P I G  of 
a under analogies. Hence, in order to obtain an analogy ~o and a grand a tom to 
which a is analogous under ~p, it suffices to compute the greatest  P I G  of a .  Now 
we show an algorithm which computes the greatest  P IG  of an atom. 

Algorithm: GPIG 
i n p u t :  an a tom a 
o u t p u t :  the greatest  P IG  A of a 

b e g i n  
A : - - a ;  N : = 0 ;  
w h i l e  there exists the ( N  + 1)-st quasi-replaceable term t 

from the right in A do  
i f  t is a replaceable te rm t h e n  

replace each occurrence of t in A by a new variable Z 
e lse  N := N + 1; 

output  A and halt 
end .  

The  length of an a tom a is the number  of occurrences of constant,  variable and 
function symbols in a .  Then the numbers of nodes in the P I G  lattice and the 
normal lattice for the a tom of length n is at most 2 ~ and en!, respectively, where 
e is Napier 's  number. 

The following theorem guarantees that  we can compute the greatest P IG  of 
an a tom in polynomial time. 

T h e o r e m  3. Let a be an atom of length n. The greatest PIG of a can be com- 
puted in time O(n2). 
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We have realized the PIG system as a Prolog program which takes an atom a 
as input, constructs PIGs of a in an ordering by the relation -% and then returns 
the greatest PIG of a as output.  It works based on the algorithm Gp1G. The 
system has been implemented by K-Prolog on Spark Station 10. For example, if 
the question to our PIG system is " ? -  p i g  (p ( f  ( a ) ,  a , g  ( b ) ,  g ( b ) ) ,  Atom). " ,  
then the answer from the system is ' 'Atom -- p ( f  (_222) ,_222,_218,_218) ' ' 

4 Reasoning by PIG 

Just as we have done with PIGs of atoms, we can define PIGs of rules with 
bodies, and we have the same results on rules as those of atoms. 

Now we discuss reasoning by PIGs. Let P1 and -P2 be programs. For each rule 
C in P1 t3 P2, we compute the greatest PIG R of C in polynomial time, and then 
learn a new program P obtained by replacing each C in P1 tJ P2 by R. Thus we 
can acquire the fact derived from P without computing an analogy which often 
leads to a combinatorial explosion. The fact thus acquired can be derived from 
P1 and P2 by analogical reasoning. Hence reasoning by PIGs of rules is more 
useful than the analogical reasoning as far as time complexity is concerned. 

5 Conclusion 

The ordinary methods of generalization [4] of examples often cause non-valid 
and over generalization, and sometimes they need vast search-spaces. To over- 
come these difficulties we have considered syntactic analogies and introduced 
the notion of PIG. Our PIGs are all valid generalizations in the sense that  they 
are justified by the theory of analogical reasoning. Moreover each PIG can be 
computed in polynomial time. 

We are now considering a declarative definition of PIGs, and a kind of com- 
pleteness of PIGs with respect to the analogical reasoning. Also we are improving 
our previous work on EBG by analogical reasoning [3] using PIGs. 
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