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Abstract. Hidden variables are well known sources of disturbance when 
recovering belief networks from data based only on measurable variables. 
Hence models assuming existence of hidden variables are under develop- 
ment. This paper presents a new algorithm exploiting the results of the 
known CI algorithm of Spirtes, Glymour and Scheines [4]. CI algorithm 
produces partial causal structure from data indicating for some variables 
common unmeasured causes. We claim that there exist belief network 
models which (1) have connections identical with those of CI output, (2) 
have edge orientations identical with CI (3) have no other latent vari- 
ables than those indicated by CI, and (4) and the same time fit the data. 
We present a non-deterministic algorithm generating the whole family of 
such belief networks. 

1 I n t r o d u c t i o n  

It is a well known phenomenon of human mind to think in terms of causality. 
The background behind this paradigm is a strong belief that an event may in 
fact have only few causes so that reasoning about real world events may be 
kept from explosion of alternative explanations by identifying intrinsic causality. 
Belief networks (BN), bayesian networks, causal networks, or influence diagrams, 
or (in Polish) cause-effect networks (terms frequently used interchangeably) are 
quite popular for expressing causal relations under multiple variable setting both 
for deterministic and non-deterministic (e.g. stochastic) relationships in domains 
like statistics, philosophy, artificial intelligence. 

Various expert systems, dealing with uncertain data and knowledge, possess 
knowledge representation in terms of a belief network (e.g. knowledge base of 
the MUNIM system, ALARM network [1] etc.). A number of efficient algorithms 
for propagation of uncertainty within belief networks and their derivatives have 
been developed, e.g. [2]. 

2 Causal Inference Algorithm 

Hidden (latent) variables are source of trouble both for identification of causal 
relationships (well-known confounding effects) and for construction of a belief 
network (ill-recognized direction of causal influence may lead to assumption of 
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independence of variables not present in the real distribution). Hence much re- 
search has been devoted to construction of models with hidden variables. It is a 
trivial task to construct a belief network with hidden variables correctly reflect- 
ing the measured joint distribution. One can consider a single hidden variable 
upon which all the measurnbles depend on. But such a model would neither meet 
the requirements put on belief network (space saving representation of distribu- 
tion, efficient computation of mnrginnls and conditionals) nor those for causal 
networks (prediction capability under control of some variables). Therefore, cri- 
teria like minimal Intent model [3] or maximally informative partially oriented 
path graph [4] have been proposed. As the IC algorithm for learning minimal 
latent model [3] is known to be wrong, let us consider the CI algorithm from [4]. 

In [4] the concept of including path graph is introduced and studied. Given 
a directed acyclic graph G with the set of hidden nodes Vh and visible nodes V, 
representing a causal network CN, an including path between nodes A and B 
belonging to V, is n path in the graph G such that the only visible nodes (except 
for A and B) on the path are those where edges of the path meet head-to-head 
and there exists a directed path in G from such n node to either A or B. An 
including path graph for G is such n graph over V, in which if nodes A and B 
are connected by an including path in G ingoing into A and B, then A and B are 
connected by n bidirectional edge A < - > B. Otherwise if they are connected 
by an including path in G outgoing from A and ingoing into B then A and B 
are connected by an unidirectional edge A -  > lY. As the set Vh is generally 
unknown, the including path graph (IPG) for G is the best we can ever know 
about G. However, given an empirical distribution (a sample), though we may 
be able to detect presence/absence of edges from IPG, we may fail to decide 
uniquely orientation of all edges in IPG. 

Therefore, the concept of n partial including path graph was considered in 
[4]. A partially oriented including path graph contains the following types of 
edges: unidirectional A -  > B, bidirectional A < - > B, partially oriented 
A o -  > B and non-oriented A o - o B ,  as well as some local constraint information 
A . - * B * - * C  meaning that edges between A and B and between B and C cannot 
meet head to head at B. (Subsequently an asterisk (*) means any orientation of 
an edge end: e.g. A ,  - > B means either A -  > B or A o -  > 13 or A < - > B). 
A partial including path graph (PIPG) would be maximally informative if nil 
definite edge orientations in it (e.g. A - *B or A < - * B at A) would be 
shared by all candidate IPG for the given sample nnd. vice versa (shared definite 
orientations in candidate IPG also present in maximally informative PIPG), the 
same should hold for local constraints. 

Recovery of the maximally informative PIPG is considered in [4] as too com- 
plex and a less ambitious algorithm CI has been developed therein producing a 
PIPG where only a subset of edge end orientations of the maximally informative 
PIPG are recovered. Authors of CI claim such an output to be still useful when 
considering direct and indirect causal influence among visible variables as well 
as some prediction tasks. 
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3 From CI Output to Belief Network 

From the point of view of BN construction the output of CI is not satisfactory. 
Though it indicates necessity of inclusion of hidden variables at some places (as 
a parentless parent of nodes at ends of bidirectional edges), it leaves open the 
question of necessity of inclusion of other latent variables into the model (e.g. as 
parent of nodes at ends of undecided edges A o  - oB or partially decided edges 
A o -  > B). Though we can clearly include as many hidden variables as we want 
and the model may be as correct as ever, however such procedure would impose 
unnecessary space and computation time burden for applications exploiting the 
belief network (probability distributions of hidden variables are to be saved, and 
the space required for saving conditional distribution at a visible node grows 
about exponentially with the number of ingoing edges). On the other hand, 
incorrect orientation of edges left unoriented may result in introducing indepen- 
dencies not really present in the data, so that belief network would not reflect 
the true underlying probability distribution. Therefore, it is of vital importance 
to answer the question if the output of CI is sufficient to construct a belief net- 
work, if further hidden variables need to be included, and how to construct this 
BN. 

As an answer to this question we propose the following algorithm and the 
accompanying theorem. First we introduce the notion of legally removable node. 

In a partially oriented including path graph It, a node A is called legally re- 
movable iff there exists no local constraint information B �9 - * A .  - *C for any 
nodes B and C and there exists no edge of the form A �9 - > B for any node B. 

C L t o - B N  Algor i thm 
Input: Result of the CI algorithm (a partial including path graph) 
Output: A belief network 

A) Accept unidirectional and bidirectional edges obtained from CI. 
B) Orient every edge A o -  > B as A -  > B. 
C) Copy the partially oriented including path graph 7r onto lr ~. 

Repeat: 
In ld identify a legally removable node A. Remove it from lr ~ together with 
every edge A * - * B and every constraint with A involved in it. Whenever 
an edge Ao - oB is removed from Ir ~, orient edge A o -  oB in a" as A < - B .  
Until no more node is left in ~r ~. 

D) Understand every bidirectional edge A < - > B as indicator of parentless 
hidden variable HAB being parent of exactly A and B A < -HArt--  > B 
with no edge between A and B. 

End  of  CI- to-BN 

T h e o r e m  i By the CI-to-BN algorithm, a belief network can always be obtained. 
(ii} The obtained belief network keeps all the dependencies and independencies 
of the original underlying including path graph. 
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Please notice that no other hidden variables are introduced than those indi- 
cated by CI. Notice also that the step C) is non-deterministic: at a given moment 
more than one legally removable node may exist. A change in order of node re- 
moval may lead to change of orientation of some edges of the resulting BN. 
Hence a whole family of BN compatible with the CI output and not introducing 
additional hidden variables is generated. 

4 D i s c u s s i o n ,  S u m m a r y  a n d  O u t l o o k  

Within this paper an algorithm of recovery of belief network structure from data 
has been presented. It relies essentially on exploitation of the result of the known 
CI algorithm of Spirtes, Glymour and Scheines [4]. The edges of partial including 
path graph, not oriented by CI, are oriented to form a directed acyclic graph. 
We claim that such an orientation of edges always exists without necessity of 
adding auxiliary hidden variables, and that this BN captures all dependencies 
and independencies of the intrinsic underlying including path graph. 

The algorithm presented will provide with belief networks with provably 
minimal number of parentless latent variables with two unconnected children so 
that the computational and spatial complexity of the resulting belief network 
will be as small as possible. Also the precise location of hidden variables to be 
included will be provided - contrary to the proposal of [1] sect.3.2.2, where most 
probably location of hidden variables is identified. It will (non-deterministiely) 
yield a whole statistically indistinguishable family of such belief networks. 

The CI-to-BN algorithm will suffer from very same shortcomings as the CI 
algorithm, that is it is tractable only for a small number of edges (< 10). It 
will be interesting task to examine the possibility of such an adaptation of the 
Fast CI algorithm [4]. It may not he trivial as the product of CI differs from 
that of FCI. It is worth trying as FCI can realistically handle networks with 30 
and more variables. Another path of research would be to elaborate a version of 
CLto-BN assuming only with a restricted number of variables participating in 
d-separation, which would also bind the exponential explosion of search space. 
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