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Abstract. One of the key issues in so-called multi-strategy learning systems is the 
degree of freedom and flexibility with which different learning and inference 
components can be combined. Most of multi-strategy systems only support fixed, 
tailored integration of the different modules for a specific domain of problems. We 
will report here our current research on the Massive Memory Architecture (MMA), an 
attempt to provide a uniform representation framework for inference and learning 
components supporting flexible, multiple combination of these components. Rather 
than a specific combination of learning methods, we are interested in an architecture 
adaptable to different domains where multiple learning strategies (combinations of 
learning methods) can be progra,nmed or even learned. 

1 Introduction 
The first issue we have to debate is the relationship of inference and learning, and the 
second is the kind of representation we use to  support an integration of inference with 
multiple learning methods. Regarding the first issue, the integration of learning methods, 
we agree with the Inferential Theory of Learning (I'lL) approaches such as [2] and [10] in 
that learning methods are a special kind of inference methods. Our approach differs from 
ILT, however, on the characterization of the inference components that made up learning 
methods. For ILT approaches, the components that made up learning are inference 
operators like deduction, analogy, generalizations, etc. In our approach, learning is a kind 
of metalevel inference, that is to say, a kind of inference that requires a certain kind 
knowledge about the system behavior and state itself, e.g. about when a failure occurs, how 
learning can overcome it, etc [6]. The issue of the self-model is crucial because it formally 
defines what a learning method has to know so as to be able to learn. That is, a self model 
specifies the relationship between a learning method in a systems and the system as a 
whole: it specifies what knowledge the learning method can effectively know about the 
system in which it is integrated. There are sorts of integration, like the PRODIGY system, 
where learning methods are external modules that each has a clear and specialized model of 
the problem solver [1]. In the THEO architecture [3] several learning methods are 
integrated but the self-model used are not clear. Our approach is closer to THEO, since the 
MMA is implemented as a reflective language [5], but MMA has been designed having in 
mind the reflective nature of learning from problem solving and with the purpose of  
investigating in clear self-models required for learning. 
The second issue to discuss is the nature of inference in the MMA, since we do not agree 
with the ILT components. Our approach derives from the knowledge-level analysis of 
expert systems and the so-called conceptual frameworks developed for the design and 
construction of KBSs. These conceptual frameworks for knowledge modelling like KADS 
[11 ], components of expertise [ 10] are based on the task/method decomposition principle 
and the analysis of  knowledge requirements for methods. 
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2 T h e  M a s s i v e  M e m o r y  A r c h i t e c t u r e  
The MMA is an experimental framework for experience-based learning and reasoning. 
Every episode of problem solving of MMA is represented and stored as an episode in 
memory. This is the main point of the reification process: create the objects that can be 
usable for learning and improving future behavior. MMA records memories of successes 
and failures of using methods for solving tasks. An episode involves not only a global task 
(e.g. diagnosis) but also all its subtasks and the methods that achieve them are stored, 
allowing learning methods to be used at different levels of granularity and from multiple 
examples. Our hypothesis is that the problem solving process in M/vIA can be described 
into a collection of abstract inference components. Those components are tasks (or goals), 
methods (or ways of achieving a goal) and theories (sets of methods adequate for some 
class of objects). This means that these elements constitute the self-model of the system 
and have to provide the information that will be accessed by introspection by  the learning 
methods. 
A task is engaged when exists a query to the system. One task can be achieved in some 
different ways. A method is a specific way to achieve one task. A method is an evaluable 
object that is recursively decomposed into subtasks (queries to other objects), until some 
direct methods are executed. This recursive decomposition of task into subtasks is called 
the task/method decomposition and is common to all KBS conceptual frameworks [10]. 
The domain knowledge is organized around objects called theories. For instance, the set of 
methods applicable to persons can be defined in a theory of person ,  stating the available 
methods for each task to be solved about persons. Methods to solve a specific task are 
grouped in an object called metafunction. A metafunction holds a set of methods and 
preferences to choose among them. In addition, when a method fails to achieve the task, a 
metafunction allows backtracking to other not failed methods. 
The MMA approach is uniform and this entails that the problem solving process is also 
described in the system in terms of tasks and methods. For instance, if there is no method 
specified for solving a given task, the task of the problem solving process is to find such a 
method; or if there are more than one method that can possibly solve a task, a task of 
problem solving process is to choose among them. A way to do it is trying them out until 
one works: that would be a default method for such a task. This approach involves 
backtracking as a constitutive aspect of MMA, ,as can be expected for plausible reasoning 
applications. One important thing is that any time some knowledge is required by a 
problem Solving method, and that knowledge is not directly available there is an 
opportunity for learning. We call those opportunities impasses, following SOAR 
terminology [4], and the integration of learning methods is realized by methods that solve 
these impasses. This type of methods are called inference methods. 
An inference method is a type of method with a self-model of the architecture and at least a 
retrieve/select subtask decomposition. The goal of retrieve task is to obtain a set of 
plausible useful past episodes from the memory. MMA provides a set of basic retrieval 
methods that can be combined to build more complex retrieval methods. The goal of select 
task is to rank the precedents in some criteria to work first with the most plausible past 
episodes. MMA provides also a set of basic preference methods that can be combined to 
build more complex preference methods. An inference method combines the precedents in 
some programmable way and, finally, the result is installed in the current task. In this way 
we can program different learning methods as a different inference methods. Inference 
methods are organized around theories called inference theories. This means that we can 
also program different strategies to combining the learning methods. 
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3 Integration of Multiple Learning Methods 
In this section we want to show how different strategies of learning can be developed and 
integrated into the Massive Memory Architecture. We will present two families of learning 
methods: Analogical methods and Inductive methods and finally we will discuss the 
combination of them. 
Analogical methods are a family of inference methods that follow a Retrieve/Select task 
decomposition. The characteristic of analogical methods is that the R e t r  i e v e  method 
uses a similarity-based methods. 5e l e c t  methods can also be based on similarity or can 
be domain-specific, knowledge-intensive methods. The most basic (less domain- 
dependent) method for analogy uses a retrieval method that finds all objects having some 
successful method solving the task at hand, and no preference knowledge is provided so a 
random selection is performed. This method is the most general, less focused, less 
informed, and less domain-dependent analogical method. If we have some knowledge of 
the domain we can add it and focus the analogical reasoning. Adding this knowledge in the 
retrieval or/and the preference methods we can define some more specific, i.e. domain 
specific, analogy methods. A form of useful domain knowledge are determinations (they 
are a form of functional dependence, as in "Spoken language of a person depends on 
his/her nationality" [9]). Determinations in MMA can be used during Retrieve or Select 
tasks of analogy. During retrieval MMA has retrieve methods that find from memory those 
cases or episodes that comply to the determination (e.g. in solving the spoken-language 
task, retrieve only those examples with the same nationality as the current problem). 
During selection tasks MMA has a preference method that prioritizes, from the retrieved 
cases, those complying to the determination. Thus different analogical and case-based 
methods can be included into MMA in a uniform way and only depending on the 
knowledge available for a domain, as is essential for KBS conceptual frameworks. Since to 
all tasks and subtasks can be ascribed a specific method MMA is capable of handling 
multiple methods for different subtasks? In fact multiple methods for a single task can be 
applied, as we'll show presently with inductive and analogical methods, 
Inductive methods are another family of inference methods that follow a 
Retrieve/Construct task decomposition. Re t  r i e v e  methods obtain a set of past solved 
examples from which to learn the knowledge to solve a particular task. C o n s t r u c t  
methods are domain-specific methods that compare the examples and build a domain 
theory for that specific task. We can build an inductive method that learns to solve all the 
problems that an analogical method solves case by case. This method retrieves the same 
examples as the analogical method and constructs a metafunction with all the methods 
successfully used in those past examples. In the language-nationality example, the 
inductive method learns the function associating nationalities with languages. That is to say 
it learns in one step the domain knowledge needed by the method that solves the spoken- 
language task, while the analogical method solves the task acquiring the needed knowledge 
on a case-by-case manner. 
Another possibility in MMA is to combine for the same task an inductive method and an 
analogical method. In this situation the inductive method acquires not all domain 
knowledge but only those methods frequently used, resulting in a domain theory that is 
efficient although incomplete. The task now has available two methods: the induced 
method and the analogical method and a preference from the first to the second. In this 
strategy first the general knowledge is used and if it fails then the analogical method tries 
the specific cases retrieved from memory, this strategy embodies the general form of an 
imperfect theory (the induced knowledge) plus a set of exceptions or unusual cases out of 
the scope of the theory and for being exploited by an analogy method. 
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4 Conc lus ions  and Future  W o r k  
MMA provides a flexible framework for integration and experimentation of the ranges of 
applicability and/or utility of learning methods. Different analogical, case-based and 
inductive methods can be included into MMA in a uniform way and only depending on the 
knowledge available for a domain. In fact, this is essential idea of KBS conceptual 
frameworks that we are using for integrating multiple learning methods. Since to all tasks 
and subtasks can be ascribed a specific method MMA is capable of handling multiple 
methods for different subtasks and even multiple methods for a single task. Since all 
decisions, successes, and failures, are stored for every subtask, learning can be applied to 
any subtask of a global task. 
In order to achieve a more autonomous learning capability the study of learning goals [7, 8] 
is in this context a very important future research line for ML. What we presented here 
seems however to be an unavoidable previous step because of the necessity of achieving 
integration and uniform representation of learning methods and problem solving methods 
in order to have a common ground of comparison. In the next phase of our project (1994- 
1996) the goal is to enlarge the self-model of the system in such a way that compilafive 
learning methods and other inductive methods are integrated. 
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