
Properties of Inductive Logic Programming in
Function-Free Horn Logic

Irene Stahl

Fakult~t Informatik, Universits Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart

Abstract. Inductive Logic Programming (ILP) deals with inductive in-
ference in first order Horn logic. A commonly employed restriction on
the hypothesis space in ILP is that to function-free programs. It yields
a more tractable hypothesis space, and simplifies induction. This paper
investigates basic properties of ILP in function-free languages.

1 I n t r o d u c t i o n

Because of the limitations of propositional learning algorithms there is an in-
creasing interest in investigating learning methods in a first order framework.
Inductive Logic Programming (ILP) [Mug92] is one of the approaches that re-
ceived a lot of attention recently. The task of ILP is to inductively learn logic
programs from examples in presence of background knowledge.

In order to constrain the generally infinite hypothesis space, ILP-systems
impose restrictions, so-called biases, on their hypothesis language. These include
for example the vocabulary or syntactic form of the target clauses. A commonly
employed restriction in ILP is that to function-free Horn logic. Though more
expressive than propositional logic, it still allows for deciding logical implication.
These advantages make function-free languages prominent not only in ILP, but
also in deductive databases and knowledge representation.

In this paper, we explore basic properties of ILP in function-free languages.
First, we prove the decidability of the learning problem in function-free logic.
Then, we investigate flattening as means to transform programs in function-free
form, and discuss its limitations for inductive inference.

2 B a s i c D e f i n i t i o n s

The task of ILP is defined formally as follows. Given ground facts E r and E e as
positive and negative examples, a logic program B as background knowledge and
a target language L with finitely many predicate symbols, find a logic program
P E L such that B U P b E ~ (completeness) and B U P ~/E e (consistency).
The quadruple (E ~, E @, B, L) is called the learning problem. Deciding whether
a solution P exists is called the FA- (finite axiomatisability) problem.

If L is function-free, it contains no functions of arity > 1. However, it may
contain constants. As each program contains only finitely many constants, its
Herbrand base is finite. This allows to decide whether a fact is implied by the
program. Apart from the decidability which allows to check hypothesis on com-
pleteness and consistency, function-free logic simplifies the description and im-
plementation of learning operators.

424

3 Decidability of the FA-problem in Function-Free Logic

The restriction to finitely many constants is fundamental for function-free lan-
guages. I t leads to an interesting observation when inductive inference is con-
cerned. I f all n constants in B, E ~ and E e are known, it suffices to consider
clauses with at most n variables for the target program. As these finitely many
programs can be enumerated and tested on completeness and consistency, the
FA-problem is decidable. The following theorem captures the above observation�9

Theorem 1. Given a function-free language L with n different constants, then
for each P in L there exists a P~ in L such that each clause in P~ contains at
most n variables, and P ~- a iff P~ ~- a for each fact a in L.

Proof. [Rei93] Each clause C E P with m > n variables is replaced by n m clauses
C a for each possible substi tut ion a : va t s (C) ---, {Z1, .., Zn}. For the resulting
program P~ we show tha t P l- a r P~ l- a.

:=~J: Wi thout loss of generality we assume P 1- a via a SLD proof

((. . ((a " e l 0 1) - C 2 0 2) . .) " CkOk) 1.
Then, ((. . ((~. C1#1..0k) �9 C202..0k)..) �9 CkOk) is also a proof tha t P ~- a. Given
a subst i tut ion p which substi tutes all variables in cial..ok with an arbi t rary
constant, ((. .((~. Cl01..Okp)" C20~..O~p)..). CkOkp) is also a proof. Now CiO~..Okp
is a ground clause with at most n different constants so tha t there exists a

! J C~ E P ' and a subst i tut ion p~ such tha t CiOi..Okp = Clp~. Thus, ((. . ((~. Clp l) "
! ! C~p~)..). C~pk) is a proof.

r We assume P~ ~- a via a SLD-proof

�9 C k O k) . . C x 0 1) .
, , , , , ,

For each C~ there is a Ci E P, either Ci = C~ if Ci contains < n variables,
or Ci~r = C~. Therefore, C~ can be replaced by Ci and 0~ through a0~ without
changing the success of the proof.

The decidability of the FA-problem in function-free logic depends on whether
all constants are known�9 This will in general not be the case, especially if cross-

"validation is used. This technique presents only a par t of the examples as training
set to the learning method. The number of new constants in the remaining test
set is unknown, and likewise the upper bound for the number of variables in the
target clauses�9

However, theorem 1 can be generalised to the case tha t E ~ and E e contain
constants not in B or L. The generalisation is based on the subsumpt ion theorem
IRon91]. A program P implies a ground fact e with constants not in P if and
only if P implies the fact e ~ tha t results f rom replacing these constants by vari-
ables. T h a t is, the unknown constants themselves do not mat te r , but only their
potential number within an example. This number is bound by the m a x i m u m
predicate ari ty max_A in E $ and E e . Thus, if L is missing some constants in
E r and E ~ , it suffices to consider clauses with at most n + max_A variables for

1 Here, (A. BS) is the result of resolving A and B with substitution 8.

425

the target program. That is, even in case that examples with unknown constants
are to be covered, the FA-probiem is decidable.

An interesting question is whether inducing programs that cover examples
with new constants is really desirable. Due to the subsumption theorem, covering
examples with new constants means that the according allquantified formula is
implied. This is often too strong such that many systems require that knowledge
about all constants in E | and E e is present in B, e.g. [Quig0]. Even more,
for the case that new examples contain constants missing in B, techniques to
acquire the background knowledge about them have been proposed [Rae91].

However, this technique leads to a stronger success criterion for learning, and
accordingly to the undecidability of the FA-problem. The induced program must
cover not only the given examples with respect to the background knowledge,
but also new examples with respect to an augmented background knowledge.

4 T r a n s f o r m a t i o n t o a F u n c t i o n - F r e e F o r m

In order to obtain the advantages of function-free logic without sacrificing the ex-
pressiveness of unrestricted Horn logic, a representation change called flattening
has been proposed in/Rougt].

Flattening transforms programs to function-free form by replacing n-cry
terms with predicates of arity n + 1. Given a clause C, each occurrence of a
term f(tl , ...,tn)is replaced by a variable X, and a new literal fp(tz, . . . , t , ,X)
is added to the body of C. The predicate fp is defined by the unit clause
fr(tl, ...,tn, f(tz, ..., tn)). Flattening is a reversible process. Removing all predi-
cates fr(t~, ..., tn, X) from a fiat clause, and unifying X with f(tz,..., tn) yields
the original clause. A program is equivalent to its flattened counterpart.

Theorem2. [Rou91] 1f flat(P) is the flattened, function-free version ofF, and
flat_defs(P) the according definitions of the flattening predicates, then P F A
iff flat(P) U/lat_defs(P) ~- flat(A)

However, this is not completely the desired result, as flat_clefs(F) still con-
tains structured terms. The really desirable result would be P t- A iff flat(P) b
flat(A) or, equivalently [Rou91] P t- A iff flat(P)Uskolemized_body(flat(A)) ~-
skolemized_head(flat(A)). And this is in fact the result that is used in the sys-
tem ITOU [Rou91] for the subsumption test. However, the equivalence is not
generally valid, a.s the following example will show.

Example 1. Let P be succ(O, s(0))
succ(s(X), s(Y)) ~ suce(X, Y)
p(X, Y) ~-- succ(s(s(X)), Z), succ(s(s(Y)), Z)

and let A be p(0, 0). The corresponding flat version of P is

flat(P) Iflat_de f s(P)
suec(N, SN) +- Op(N), sp(N, SN) lop(o)
succ(SX, SY) +-- sp (X, SX), sp (Y, ST'), suet(X, Y)]sp (X, s(X))
p(x, Y) sgsx, ssx), sgSY, ssr), sgX, sx), I

sp (Y, ~) , succ(S S X, Z), succ(S SY, Z) I
and flat(A) = (p(N, N) ~ 0p(N)).

426

Then, P l- A holds. But contrary to the equivalence assumed in ITOU,
f la t (P) ~/ flat(A), or equivalently f la t (P) U {0p(sk0)} t/ p(sko, sk0), as the
predicate sp has no positive occurrence in flat(P).

That is, the equivalence tacitly assumed for the subsumption test in ITOU
is generally not valid. Only if flat_de/s(P) or, alternatively, arbitrarily many
constants are supplied, the equivalence holds.

5 The Weakness of Function-ri-ee Logic
The expressiveness of a function-free language is determined by its inventory of
constants and predicates. Particularly the finite set of constants leads to a finite
set of potential target programs. A weakness of function-free logic is that the
range of expressible concepts is fixed even if additional predicates are introduced.

Introducing new predicates or predicate invention is performed to extend the
vocabulary in case that the target language is insufficient for the learning task.
New predicates generally increase the expressiveness of a language. However, be-
cause of the restricted expressiveness of function-free languages, new predicates
cannot exceed the given predicates. The uselessness of predicate invention for
recovering from a failure of the learning problem in function-free logic is proved
in [Sta94]. It contrasts the power of predicate invention for enlarging the range
of expressible concepts in the general case.

6 C o n c l u s i o n s

Function-free languages play a prominent role under the biases of ILP-systems.
This paper investigates basic properties of ILP in function-free languages. The
main results are the decidability of the learning problem and the according
weakness of function-free logic as target language. This weakness turns out par-
ticularly in the uselessness of predicate invention as bias shift operation.

A c k n o w l e d g e m e n t s This work has been supported by the ESPRIT BRA 6020
ILP. I want to thank Klaus Reinhardt for his ideas concering the proofs.

R e f e r e n c e s
[Mug92] Muggleton, S. (1992): Inductive Logic Programming, in S. Muggleton (ed):

Inductive Logic Programming, Academic Press
[Qui90] Quinlan, J. R. (1990): Learning Logical Definitions from Relations, Machine

Learning 5
[Rae91] De Raedt, L., Feyaerts, J., Bruynooghe, M. (1991): Acquiring Object-

Knowledge]or Learning Systems, in Y. Kodratoff (ed): Proceedings of the
Fifth European Working Session on Learning, Springer

[Rei93] Reinhardt, K. (1993), personal communication
[Rou91] Rouveirol, C. (1991): ITOU: Induction of First Order Theories, in S. Muggle-

ton (ed): Inductive Logic Programming, Academic Press
[Sta94] Stahl, I. (1994): On the Utility of Predicate Invention in Inductive Logic Pro-

gramming, this volume

