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Abstract. Inductive Logic Programming (ILP) deals with inductive in- 
ference in first order Horn logic. A commonly employed restriction on 
the hypothesis space in ILP is that to function-free programs. It yields 
a more tractable hypothesis space, and simplifies induction. This paper 
investigates basic properties of ILP in function-free languages. 

1 I n t r o d u c t i o n  

Because of the limitations of propositional learning algorithms there is an in- 
creasing interest in investigating learning methods in a first order framework. 
Inductive Logic Programming (ILP) [Mug92] is one of the approaches that re- 
ceived a lot of attention recently. The task of ILP is to inductively learn logic 
programs from examples in presence of background knowledge. 

In order to constrain the generally infinite hypothesis space, ILP-systems 
impose restrictions, so-called biases, on their hypothesis language. These include 
for example the vocabulary or syntactic form of the target clauses. A commonly 
employed restriction in ILP is that to function-free Horn logic. Though more 
expressive than propositional logic, it still allows for deciding logical implication. 
These advantages make function-free languages prominent not only in ILP, but 
also in deductive databases and knowledge representation. 

In this paper, we explore basic properties of ILP in function-free languages. 
First, we prove the decidability of the learning problem in function-free logic. 
Then, we investigate flattening as means to transform programs in function-free 
form, and discuss its limitations for inductive inference. 

2 B a s i c  D e f i n i t i o n s  

The task of ILP is defined formally as follows. Given ground facts E r and E e as 
positive and negative examples, a logic program B as background knowledge and 
a target language L with finitely many predicate symbols, find a logic program 
P E L such that B U P b E ~ (completeness) and B U P ~/E e (consistency). 
The quadruple (E ~, E @, B, L) is called the learning problem. Deciding whether 
a solution P exists is called the FA- (finite axiomatisability) problem. 

If L is function-free, it contains no functions of arity > 1. However, it may 
contain constants. As each program contains only finitely many constants, its 
Herbrand base is finite. This allows to decide whether a fact is implied by the 
program. Apart from the decidability which allows to check hypothesis on com- 
pleteness and consistency, function-free logic simplifies the description and im- 
plementation of learning operators. 
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3 Decidability of the FA-problem in Function-Free Logic 

The restriction to finitely many  constants is fundamental  for function-free lan- 
guages. I t  leads to an interesting observation when inductive inference is con- 
cerned. I f  all n constants in B, E ~ and E e are known, it suffices to consider 
clauses with at  most  n variables for the target  program.  As these finitely many  
programs can be enumerated and tested on completeness and consistency, the 
FA-problem is decidable. The following theorem captures the above observation�9 

Theorem 1. Given a function-free language L with n different constants, then 
for  each P in L there exists a P~ in L such that each clause in P~ contains at 
most n variables, and P ~- a iff P~ ~- a for each fact a in L. 

Proof. [Rei93] Each clause C E P with m > n variables is replaced by n m clauses 
C a  for each possible substi tut ion a : va t s (C)  ---, {Z1, .., Zn}.  For the resulting 
program P~ we show tha t  P l- a r P~ l- a. 

:=~J: Wi thout  loss of generality we assume P 1- a via a SLD proof  

( ( . . ( ( a "  e l 0 1 )  - C 2 0 2 ) . . ) "  CkOk) 1. 
Then,  (( . . ( (~.  C1#1..0k) �9 C202..0k)..) �9 CkOk) is also a proof  tha t  P ~- a. Given 
a subst i tut ion p which substi tutes all variables in cial..ok with an arbi t rary  
constant,  (( . .((~. Cl01..Okp)" C20~..O~p)..). CkOkp) is also a proof. Now CiO~..Okp 
is a ground clause with at most  n different constants so tha t  there exists a 

! J C~ E P '  and a subst i tut ion p~ such tha t  CiOi..Okp = Clp~. Thus,  (( . . ( (~.  Clp l ) "  
! ! C~p~)..). C~pk) is a proof. 

r We assume P~ ~- a via a SLD-proof  

�9 C k O k ) .  . C x 0 1 )  . 
, ,  , ,  , ,  

For each C~ there is a Ci E P,  either Ci = C~ if Ci contains < n variables, 
or Ci~r = C~. Therefore, C~ can be replaced by Ci and 0~ through a0~ without  
changing the success of the proof. 

The  decidability of the FA-problem in function-free logic depends on whether 
all constants are known�9 This will in general not be the case, especially if cross- 

"validation is used. This technique presents only a par t  of the examples as training 
set to the learning method.  The  number  of new constants in the remaining test  
set is unknown, and likewise the upper  bound for the number  of variables in the 
target  clauses�9 

However, theorem 1 can be generalised to the case tha t  E ~ and E e contain 
constants not in B or L. The  generalisation is based on the subsumpt ion  theorem 
IRon91]. A program P implies a ground fact e with constants not in P if  and 
only if P implies the fact e ~ tha t  results f rom replacing these constants by vari- 
ables. T h a t  is, the unknown constants themselves do not mat te r ,  but  only their 
potential  number  within an example.  This  number  is bound by the m a x i m u m  
predicate ari ty max_A in E $ and E e .  Thus,  if L is missing some constants in 
E r and E ~ , it suffices to consider clauses with at  most  n + max_A variables for 

1 Here, (A.  BS) is the result of resolving A and B with substitution 8. 
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the target program. That is, even in case that examples with unknown constants 
are to be covered, the FA-probiem is decidable. 

An interesting question is whether inducing programs that cover examples 
with new constants is really desirable. Due to the subsumption theorem, covering 
examples with new constants means that the according allquantified formula is 
implied. This is often too strong such that many systems require that knowledge 
about all constants in E | and E e is present in B, e.g. [Quig0]. Even more, 
for the case that new examples contain constants missing in B, techniques to 
acquire the background knowledge about them have been proposed [Rae91]. 

However, this technique leads to a stronger success criterion for learning, and 
accordingly to the undecidability of the FA-problem. The induced program must 
cover not only the given examples with respect to the background knowledge, 
but also new examples with respect to an augmented background knowledge. 

4 T r a n s f o r m a t i o n  t o  a F u n c t i o n - F r e e  F o r m  

In order to obtain the advantages of function-free logic without sacrificing the ex- 
pressiveness of unrestricted Horn logic, a representation change called flattening 
has been proposed in/Rougt].  

Flattening transforms programs to function-free form by replacing n-cry 
terms with predicates of arity n + 1. Given a clause C, each occurrence of a 
term f(tl ,  ...,tn)is replaced by a variable X, and a new literal fp(tz, . . . , t , ,X)  
is added to the body of C. The predicate fp is defined by the unit clause 
fr(tl, ...,tn, f(tz, ..., tn)). Flattening is a reversible process. Removing all predi- 
cates fr(t~, ..., tn, X) from a fiat clause, and unifying X with f(tz,..., tn) yields 
the original clause. A program is equivalent to its flattened counterpart. 

Theorem2. [Rou91] 1f flat(P) is the flattened, function-free version ofF, and 
flat_defs(P) the according definitions of the flattening predicates, then P F A 
iff flat(P) U/lat_defs(P) ~- flat(A) 

However, this is not completely the desired result, as flat_clefs(F) still con- 
tains structured terms. The really desirable result would be P t- A iff flat(P) b 
flat(A) or, equivalently [Rou91] P t- A iff flat(P)Uskolemized_body(flat(A)) ~- 
skolemized_head(flat(A)). And this is in fact the result that is used in the sys- 
tem ITOU [Rou91] for the subsumption test. However, the equivalence is not 
generally valid, a.s the following example will show. 

Example 1. Let P be succ(O, s(0)) 
succ( s( X ), s(Y ) ) ~ suce( X, Y) 
p( X, Y) ~-- succ(s(s( X ) ), Z ), succ(s(s( Y ) ), Z) 

and let A be p(0, 0). The corresponding flat version of P is 

flat(P) Iflat_de f s(P) 
suec( N, SN) +- Op( N), sp( N, SN) lop(o) 
succ(SX, SY) +-- sp (X, SX), sp (Y, ST'), suet(X, Y)]sp (X, s(X)) 
p(x, Y) sgsx, ssx), sgSY, ssr), sgX, sx), I 

sp ( Y, ~ ) ,  succ( S S X, Z), succ( S SY, Z) I 
and flat(A) = (p(N, N) ~ 0p(N)). 
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Then, P l- A holds. But contrary to the equivalence assumed in ITOU, 
f la t (P)  ~/ flat(A), or equivalently f la t (P)  U {0p(sk0)} t/ p(sko, sk0), as the 
predicate sp has no positive occurrence in flat(P). 

That is, the equivalence tacitly assumed for the subsumption test in ITOU 
is generally not valid. Only if flat_de/s(P) or, alternatively, arbitrarily many 
constants are supplied, the equivalence holds. 

5 The Weakness of Function-ri-ee Logic 
The expressiveness of a function-free language is determined by its inventory of 
constants and predicates. Particularly the finite set of constants leads to a finite 
set of potential target programs. A weakness of function-free logic is that the 
range of expressible concepts is fixed even if additional predicates are introduced. 

Introducing new predicates or predicate invention is performed to extend the 
vocabulary in case that the target language is insufficient for the learning task. 
New predicates generally increase the expressiveness of a language. However, be- 
cause of the restricted expressiveness of function-free languages, new predicates 
cannot exceed the given predicates. The uselessness of predicate invention for 
recovering from a failure of the learning problem in function-free logic is proved 
in [Sta94]. It contrasts the power of predicate invention for enlarging the range 
of expressible concepts in the general case. 

6 C o n c l u s i o n s  

Function-free languages play a prominent role under the biases of ILP-systems. 
This paper investigates basic properties of ILP in function-free languages. The 
main results are the decidability of the learning problem and the according 
weakness of function-free logic as target language. This weakness turns out par- 
ticularly in the uselessness of predicate invention as bias shift operation. 
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